MN66710

Full-Function DAB Receiver LSI

Overview

The MN66710 is a single-chip digital signal processing LSI for a DAB (digital audio broadcast) receiver, including OFDM demodulation, service selection, error correction, and MPEG audio decoding. The MN66710 conforms to the European DAB standard (ETS 300 401). Since the MN66710 includes an on-chip A/D converter for the IF signal input, it can be directly input the 3.072 MHz center frequency analog IF signal output from the DAB high-frequency circuit. A DAB receiver is implemented easily by combining MN66710 with a small number of additional components, in particular, 4M DRAMs for working memory, audio D/A converters, microcontrollers, and etc.

Features

- The DAB signal-processing block is integrated on a single chip. (with external 4M DRAMs)
- Supports all of DAB modes I, II, III, and IV.
- Achieves a processing data rate of up to 1.536 Mbps.
- Up to 4 MSC sub-channels can be selected.
- MPEG audio decoder (Also supports LSF.)
- Supports the standard audio D/A converter interface.
- Digital audio output unit conforming EIAJ CP-1201 (External driver required.)
- RDI output and dedicated audio RDI input units (For high capacity mode only.)
- F-PAD and X-PAD extraction function
- AIC support function provided in hardware.
- Supports multiplex restructuring with no interruption of the audio signal.
- TII decoding function (basic mode)
- Low supply voltage: 3.3 V±0.3 V
- Low power: Under 500 mW

Applications

• DAB (digital audio broadcast) receivers

Block Diagram

(TOP VIEW)

Note) Do not leave any of the VDD and VSS pins open. Connect the TEST0 to TEST3 pin to VSS.

Pin Descriptions

Pin No.	Pin Name	I/O	Descriptions	Note
1	MPUSYNC	0	Microcontroller operation reference signal	Timing signal with a 24 ms period
2	NPADRDY	0	PAD data ready signal	Indicates that the PAD register can be read
3	MPUCLK	Ι	Microcontroller interface data clock	
4	MPURX	Ι	Microcontroller interface reception data	
5	MPUTX	0	Microcontroller interface transmission data	
6	MPUMOD	Ι	Microcontroller interface mode	
7	TEST0	Ι	Test mode setup	Normally connect to V _{SS}
8	TEST1	Ι	Test mode setup	Normally connect to V _{SS}
9	TEST2	Ι	Test mode setup	Normally connect to V _{SS}
10	TEST3	Ι	Test mode setup	Normally connect to V _{SS}
11	NRST	Ι	Master reset input	The IC is reset when this input is set low
12	VSS0		Digital system ground	
13	VDD0	_	Digital system power supply	
14	MCLK24	Ι	Master clock input (24.576 MHz)	
15	MCLKO	0	Master clock oscillator circuit output	For use with a crystal oscillator element
16	DAOUT	0	SPDIF digital audio interface output	
17	AUXDAT	Ι	Audio A/D converter serial data input	Auxiliary input A/D converter connection
18	SMCK	0	Audio A/D and D/A converter master clock	Outputs a 256 fs clock
19	SLRCK	0	Audio A/D and D/A converter left/right clock	
20	SCLK	0	Audio A/D and D/A converter serial clock output	
21	SDAT	0	Audio D/A converter serial data output	Audio output D/A converter connection
22	RDIU0	0	Auxiliary outputs for RDI expansion	Normally left open
23	RDIU1	0	Auxiliary outputs for RDI expansion	Normally left open
24	RDIU2	0	Auxiliary outputs for RDI expansion	Normally left open
25	RDIIN	Ι	RDI input	RDI back channel (audio only)
26	RDIU3	0	Auxiliary outputs for RDI expansion	Normally left open
27	RDIU4	0	Auxiliary outputs for RDI expansion	Normally left open
28	RDIU5	Ι	Auxiliary inputs for RDI expansion	Normally connect to V _{SS}
29	RDIOUT	0	RDI output	For high capacity mode only
30	VSS1	—	Digital system ground	
31	VDD1	—	Digital system power supply	
32	FD3EN	Ι	General-purpose data output enable	Output enable for FDAT3, FERF3, and FCLK3
33	FW4	0	General-purpose output window 4	Window for sub-channel 4
34	FW3	0	General-purpose output window 3	Window for sub-channel 3
35	FW2	0	General-purpose output window 2	Window for sub-channel 2

■ Pin Descriptions (continued)

Pin No.	Pin Name	I/O	Descriptions	Note
36	FW1	0	General-purpose output window 1	Window for sub-channel 1 (audio)
37	FWFIC	0	General-purpose output window 0	FIC window
38	FCLK3	0	General-purpose data output clock	1.536 MHz continuous clock
39	FERF3	0	General-purpose data output error flag	Flag that indicates Viterbi-corrected bits
40	FDAT3	0	General-purpose data output data	
41	RAD4	0	External DRAM address, bit 4	For connecting external DRAM
42	RAD5	0	External DRAM address, bit 5	For connecting external DRAM
43	RAD6	0	External DRAM address, bit 6	For connecting external DRAM
44	RAD3	0	External DRAM address, bit 3	For connecting external DRAM
45	RAD2	0	External DRAM address, bit 2	For connecting external DRAM
46	RAD1	0	External DRAM address, bit 1	For connecting external DRAM
47	RAD0	0	External DRAM address, bit 0	For connecting external DRAM
48	VSS2		Digital system ground	
49	VDD2		Digital system power supply	
50	RAD7	0	External DRAM address, bit 7	For connecting external DRAM
51	RAD8	0	External DRAM address, bit 8	For connecting external DRAM
52	NRAMOE	0	External DRAM output enable	For connecting external DRAM
53	NRCAS	0	External DRAM column address strobe	For connecting external DRAM
54	RAD9	0	External DRAM address, bit 9	For connecting external DRAM
55	NRRAS	0	External DRAM row address strobe	For connecting external DRAM
56	NRAMWE	0	External DRAM write enable	For connecting external DRAM
57	RDT1	I/O	External DRAM data, bit 1	For connecting external DRAM
58	RDT0	I/O	External DRAM data, bit 0	For connecting external DRAM
59	RDT2	I/O	External DRAM data, bit 2	For connecting external DRAM
60	RDT3	I/O	External DRAM data, bit 3	For connecting external DRAM
61	VSS3		Digital system ground	
62	DSPMON0	0	DSP monitor, bit 0	Normally left open
63	DSPMON1	0	DSP monitor, bit 1	Normally left open
64	DSPMON2	0	DSP monitor, bit 2	Normally left open
65	DSPMON3	0	DSP monitor, bit 3	Normally left open
66	DSPMON4	0	DSP monitor, bit 4	Normally left open
67	DSPMON5	0	DSP monitor, bit 5	Normally left open
68	DSPMON6	0	DSP monitor, bit 6	Normally left open
69	DSPMNEN	Ι	DSP monitor output enable	A low level disables DSP monitor output
70	CIRSYN	0	CIR display cycle signal	CIR monitor display trigger signal
71	CTLLR	0	AFC/CIR D/A converter left/right clock	For AFC control and CIR monitor display
72	CTLCLK	0	AFC/CIR D/A converter clock	For AFC control and CIR monitor display

■ Pin Descriptions (continued)

Pin No.	Pin Name	I/O	Descriptions	Note
			·	
73	CTLDAT	0	AFC/CIR D/A converter data	For AFC control and CIR monitor display
74	VSS4		Digital system ground	
75	VDD3		Digital system power supply	
76	FSYO	0	Frame sync signal output	
77	NULDET	Ι	Null symbol detection signal input	
78	AVSS		Analog system ground	
79	ADVRB		A/D converter low side reference voltage	
80	ADIN	Ι	A/D converter analog input	
81	ADVRT		A/D converter high side reference voltage	
82	AVDD		Analog system power supply	
83	VREF		Reference supply for 5 V input pads	
84	IQMOD	Ι	Digital IQ generation switching input	Normally connect to V _{DD}

Electrical Characteristics

1. Absolute Maximum Ratings at T_a = 25°C, V_{SS} = 0 V

Parameter	Symbol	Rating	Unit
Supply voltage (digital)	V _{DD}	- 0.3 to +4.6	V
Supply voltage (analog)	AV _{DD}	- 0.3 to +4.6	V
5 V reference voltage *1	V _{REF5}	- 0.3 to +5.7	V
Input pin voltage (except for the type A and type B)	VI	- 0.3 to V _{DD} +0.3	V
Input pin voltage (type A)	V ₁₅	- 0.3 to +6.0 *2	v
Input pin voltage (type B)	V ₁₅	-0.3 to V _{REF5} +0.3 *2	v
Output pin voltage (except for the type B)	Vo	- 0.3 to V _{DD} +0.3	V
Output pin voltage (type B)	V ₀₅	-0.3 to V _{REF5} +0.3 *2	V
Output current (type HL1)	Io	±3	mA
Output current (type HL2)	I _O	±6	mA
Output current (type HL4)	I _O	±12	mA
Output current (type HL8)	Io	±24	mA
Power dissipation	P _D	1030	mW
Storage temperature	T _{stg}	-55 to +125	°C

1. Absolute Maximum Ratings at $T_a = 25^{\circ}C$, $V_{SS} = 0 V$ (continued)

Note) 1. *1 : The power supply rise and fall sequences must meet the stipulations shown below.

3. The absolute maximum ratings are limiting values under which the chip will not be destroyed. Operation is not guaranteed within these ranges.

- 4. External power and ground levels must be connected directly to all of the VDD and VSS pins respectively.
- 5. Connect the MINTEST pin to ground.
- 6. When used in car audio equipment, insert bypass capacitors (recommended value: 0.1 μF) between VDD and VSS.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply voltage (digital)	V _{DD}		3.0	3.3	3.6	V
Supply voltage (analog)	AV _{DD}		3.0	3.3	3.6	v
5 V reference voltage	V _{REF5}		4.75	5.0	5.25	V
Ambient temperature	T _a		-30	—	85	°C
Input rise time	t _r		0	—	100	ns
Input fall time	t _f		0		100	ns
Oscillator frequency	f _{OSC} 1	24.576 MHz Xtal	_	24.576		MHz
Recommended external	C _{XI} 7	$V_{DD} = 3.3 \text{ V}$	_	47		pF
capacitor value	C _{XO} 7	Built-in feedback resistor		47		pF

2. Recommended Operating Conditions at $V_{SS} = 0 V$

- Note) 1. Since the oscillator characteristics depend on the oscillator element itself, external capacitances, and other factors, consult the manufacturer of the oscillator element to determine the circuit constants.
 - Apply 5 V to 5 V reference voltage if 5 V inputs are used. This has no steady-state current consumption. Do not apply the 5 V if the 3.3 V is not being applied to the LSI.

3.3 V may be supplied to this pin if only a single 3.3 V power supply is used.

3. DC Characteristics at V_{DD} = 3.0 V to 3.6 V, V_{REF5} = 4.75 V to 5.25 V, V_{SS} = 0.00 V, f_{TEST} = 24.576 MHz, T_a = -30° C to $+85^{\circ}$ C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating supply current	I _{DDO}	$V_{I} = V_{DD}$ or V_{SS} f = 24.576 MHz	—	110	200	mA
		$V_{DD} = 3.3 \text{ V}$, outputs open				
Oscillator circuit: MCLK24, M	CLKO					
High-level input voltage	V _{IH}		$V_{DD} \times 0.8$		V _{DD}	V
Low-level input voltage	V _{IL}		0		$V_{DD} \times 0.2$	V
Internal feedback resistor	R _f 7	$V_{I} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 3.3 \text{ V}$	313	940	2820	kΩ
CMOS level input pins: FD3EN	I, TESTO, T	TEST1, TEST2, IQMOD				
High-level input voltage	V _{IH}		$V_{DD} \times 0.8$		V _{DD}	V
Low-level input voltage	V _{IL}		0	_	$V_{DD} \times 0.2$	V
Input leakage current	I _{LI}	$V_I = V_{DD}$ or V_{SS}	_	_	±5	μΑ
CMOS level input pin with Sch	mitt trigger	circuit: NRST	·			
Input threshold voltage	VT+	$V_{DD} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	_	1.85	$V_{DD} \times 0.8$	V
	VT–		$V_{DD} \times 0.2$	1.45		
Input leakage current	I _{LI}	$V_I = V_{DD}$ or V_{SS}			±5	μΑ
CMOS level input pin with bui	t-in pull-do	own resistor: TEST3				
High-level input voltage	V _{IH}		$V_{DD} \times 0.85$	_	V _{DD}	V
Low-level input voltage	V _{IL}		0		$V_{DD} \times 0.15$	V
Pull-down resistor	R _{IL}	$V_I = V_{DD}$	10	30	90	kΩ
Input leakage current	I _{LI}	$V_I = V_{SS}$			±10	μΑ
TTL level input pins: RDIU5, I	MPURX, R	DIIN, MPUCLK, MPUMOD,	NULDET			
High-level input voltage	V _{IH}		2.2		5.25	V
Low-level input voltage	V _{IL}		0	_	0.6	V
Input leakage current	I _{LI}	$V_I = 5.25 \text{ V or } V_{SS}$	_		±10	μA
Push-pull output pins: FW1 to 1	FW4, FCLE	K3, FDAT3, FERF3, FWFIC				
High-level output voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	V _{DD} -0.5		_	V
Low-level output voltage	V _{OL}	$I_{OL} = 1.0 \text{ mA}$ $V_{I} = V_{DD} \text{ or } V_{SS}$	—	—	0.4	V
Push-pull output pins: MPUTX	, MPUSYN	IC, NPADRDY	·		L	
High-level output voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	V _{DD} - 0.5	_	—	V
Low-level output voltage	V _{OL}	$I_{OL} = 4.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	-	_	0.4	V

3. DC Characteristics at V_{DD} = 3.0 V to 3.6 V, V_{REF5} = 4.75 V to 5.25 V, V_{SS} = 0.00 V, f_{TEST} = 24.576 MHz, T_a = -30°C to +85°C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Push-pull output pins: RAD0	to RAD8					
High-level output voltage	V _{OH}	$I_{OH} = -8.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	V _{DD} -0.5			V
Low-level output voltage	V _{OL}	$I_{OL} = 8.0 \text{ mA}$ V _I = V _{DD} or V _{SS}	—		0.4	V
CMOS level I/O pins: RDIU0) to RDIU4					
High-level input voltage	V _{IH}		$V_{DD} \times 0.8$	_	V _{DD}	V
Low-level input voltage	V _{IL}		0	_	$V_{DD} \times 0.2$	V
High-level output voltage	V _{OH}	$I_{OH} = -2.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	V _{DD} -0.5	_	—	V
Low-level output voltage	V _{OL}	$I_{OL} = 2.0 \text{ mA}$ $V_{I} = V_{DD} \text{ or } V_{SS}$	—		0.4	V
Output leakage current	I _{LO}	$V_{O} = \text{High-impedance state}$ $V_{I} = V_{DD} \text{ or } V_{SS}$ $V_{O} = V_{DD} \text{ or } V_{SS}$	_		±5	μA
CMOS level I/O pins: SCLK,	SDAT, SMC	CK, SLRCK, AUXDAT, RDI	JUT			
High-level input voltage	V _{IH}		$V_{DD} \times 0.8$	_	V _{DD}	V
Low-level input voltage	V _{IL}		0	_	$V_{DD} \times 0.2$	V
High-level output voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	V _{DD} -0.5	—		V
Low-level output voltage	V _{OL}	$I_{OL} = 4.0 \text{ mA}$ $V_{I} = V_{DD} \text{ or } V_{SS}$	—	_	0.4	V
Output leakage current	I _{LO}	$V_{O} = \text{High-impedance state}$ $V_{I} = V_{DD} \text{ or } V_{SS}$ $V_{O} = V_{DD} \text{ or } V_{SS}$	_	_	±5	μΑ
TTL level I/O pins: DSPMON	NO to DSPMC	ON6, DSPMNEN				
High-level input voltage	V _{IH}		2.2	_	V _{REF5}	V
Low-level input voltage	V _{IL}		0		0.6	V
High-level output voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	2.4	—	—	V
Low-level output voltage	V _{OL}	$I_{OL} = 1.0 \text{ mA}$ $V_{I} = V_{DD} \text{ or } V_{SS}$	-		0.4	V
Output leakage current	I _{LO}	V_{O} = High-impedance state V_{I} = 5.25 V or V _{SS} V_{O} = 5.25 V or V _{SS}	—		±10	μΑ

3. DC Characteristics at V_{DD} = 3.0 V to 3.6 V, V_{REF5} = 4.75 V to 5.25 V, V_{SS} = 0.00 V, f_{TEST} = 24.576 MHz, T_a = -30° C to $+85^{\circ}$ C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit				
TTL level I/O pins: FSYO, CTLLR, DAOUT, CIRSYN, CTLCLK, CTLDAT										
High-level input voltage	V _{IH}		2.2		V _{REF5}	V				
Low-level input voltage	V _{IL}		0		0.6	V				
High-level output voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	2.4			V				
Low-level output voltage	V _{OL}	$I_{OL} = 4.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	_		0.4	V				
Output leakage current	I _{LO}	$V_{O} = \text{High-impedance state}$ $V_{I} = 5.25 \text{ V or } V_{SS}$ $V_{O} = 5.25 \text{ V or } V_{SS}$	_		±10	μA				
TTL level I/O pins: RAD9, RD	T0 to RDT	3, NRCAS, NRRAS, NRAMO	E, NRAMV	VE						
High-level input voltage	V _{IH}		2.2		V _{REF5}	V				
Low-level input voltage	V _{IL}		0	—	0.6	V				
High-level output voltage	V _{OH}	$I_{OH} = -8.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	2.4		_	V				
Low-level output voltage	V _{OL}	$I_{OL} = 8.0 \text{ mA}$ $V_I = V_{DD} \text{ or } V_{SS}$	-		0.4	V				
Output leakage current	ILO	V_{O} = High-impedance state	_		±10	μΑ				

4. AC Characteristics at V_{DD} = 3.0 V to 3.6 V, V_{REF5} = 4.75 V to 5.25 V, V_{SS} = 0.00 V, f_{TEST} = 24.576 MHz, T_a = -30° C to $+85^{\circ}$ C

 $V_I = 5.25 V \text{ or } V_{SS}$ $V_O = 5.25 V \text{ or } V_{SS}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Clock input						
MCLK24 clock period	t _{MCLK}	See figure 1.	36	40.69	45	ns
MCLK24 high-level period	t _{MCLKH}		18		—	ns
MCLK24 low-level period	t _{MCLKL}		15		—	ns
Microcontroller interface						
MPUCLK clock period	t _{MPUC}	See figure 2.	$4 \times T$	_	_	ns
MPUCLK high-level period	t _{MPUCH}		72		_	ns
MPUCLK low-level period	t _{MPUCL}		60			ns

Note) The symbol T in the table refers to the MCLK24 period, t_{MCLK}.

4. AC Characteristics at V_{DD} = 3.0 V to 3.6 V, V_{REF5} = 4.75 V to 5.25 V, V_{SS} = 0.00 V, f_{TEST} = 24.576 MHz, T_a = -30° C to $+85^{\circ}$ C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Microcontroller interface (contin	ued)					
MPUMOD setup time	t _{MODS}	See figure 3,4.	0			ns
MPUMOD hold time	t _{MODH}		$2 \times T$			ns
MPURX setup time	t _{RXS}		0	_		ns
MPURX hold time	t _{RXH}		$2 \times T$			ns
MPUTX delay time	t _{TXD}		—		$2 \times T$	ns
Write disabled period 1	t _{WRNG1}		$6 \times T$			ns
Write disabled period 2	t _{WRNG2}		$4 \times T$	$8 \times T$		ns
Read disabled period	t _{RDNG}		$4 \times T$	$8 \times T$		ns
DRAM interface						
Random read/write cycle time	t _{RC}	See figure 5.	120			ns
RAS precharge time	t _{RP}		37.5	40	—	ns
RAS pulse width	t _{RAS}		75	80	—	ns
CAS pulse width	t _{CAS}		17.5	20		ns
Row address setup time	t _{ASR}		10			ns
Row address hold time	t _{RAH}		17.5	_		ns
Column address setup time	t _{ASC}		10	_		ns
Column address hold time	t _{CAH}		17.5			ns
RAS/CAS delay time	t _{RCD}		35		45	ns
RAS column address delay time	t _{RAD}		17.5		25	ns
RAS hold time	t _{RSH}		35			ns
CAS hold time	t _{CSH}		60			ns
CAS/RAS precharge time	t _{CRP}		37.5	40	—	ns
OE/data input delay time	t _{ODD}		20			ns
Write command setup time	t _{WCS}		40	_		ns
Write command hold time	t _{WCH}		15			ns
Data input setup time	t _{DS}		12.5			ns
Data input hold time	t _{DH}		17.5	—	_	ns
Fast page mode cycle time	t _{PC}		40			ns
Fast page mode precharge time	t _{CP}		15	17.5		ns

Note) The symbol T in the table refers to the MCLK24 period, t_{MCLK} .

4. AC Characteristics at V_{DD} = 3.0 V to 3.6 V, V_{REF5} = 4.75 V to 5.25 V, V_{SS} = 0.00 V, f_{TEST} = 24.576 MHz, T_a = -30°C to +85°C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
DRAM interface (continued)						
Master clock/RAS delay time	t ₁	See figure 5.	7	_	32.5	ns
Master clock/CAS delay time	t ₂		7	—	32.5	ns
Master clock/address delay time	t ₃		27.5	—	57.5	ns
Master clock/WE delay time	t ₄		7	—	32.5	ns
Master clock/data input delay time	t ₅		27.5	—	57.5	ns
Master clock/OE delay time	t ₆		7	—	30	ns
Data output setup time	t ₇		0	—		ns
Data output hold time	t ₈		20	—		ns
Audio interface						
SMCK clock period	t _{SMCK}	See figure 6.	72	81.38	_	ns
SMCK high-level period	t _{SMCKH}		31			ns
SMCK low-level period	t _{SMCKL}		31	—	_	ns
SCLK period	t _{SCLK}	See figure 7.	288	325.52	_	ns
SCLK high-level period	t _{SCLKH}		100		_	ns
SCLK low-level period	t _{SCLKL}		100	—	—	ns
SCLK delay time	t _{SCLKD}		—	—	41	ns
SDAT delay time	t _{SDATD}		_		40	ns
SLRCK delay time	t _{SLRD}		_	—	41	ns
AUXDAT setup time	t _{AUXS}		8.5	—	—	ns
General-purpose data outputs						
FCLK3 clock period	t _{FCLK}	See figure 8.	576	651.04	_	ns
FCLK3 high-level period	t _{FCLKH}		200	_	_	ns
FCLK3 low-level period	t _{FCLKL}		200	—		ns
FCLK3 delay time	t _{FCLKD}		_	_	15.5	ns
FDAT3 delay time	t _{FDATD}		—	—	21.5	ns
FERF3 delay time	t _{FERFD}		—	_	21	ns
FWFIC and FW1:4 delay time	t _{FWD}		_	_	18	ns

4. AC Characteristics at V_{DD} = 3.0 V to 3.6 V, V_{REF5} = 4.75 V to 5.25 V, V_{SS} = 0.00 V, f_{TEST} = 24.576 MHz, T_a = -30° C to $+85^{\circ}$ C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
CIR/AFC Output Timing						
CTLCLK clock period	t _{CCLK}	See figure 9.	576	651.04		ns
CTLCLK high-level period	t _{CCLKH}		200	—	_	ns
CTLCLK low-level period	t _{CCLKL}		200	—	—	ns
CIRSYN delay time	t _{CIRD}		_	—	241	ns
CTLCLK delay time	t _{CCLKD}		—	—	35	ns
CTLDAT delay time	t _{CDATD}		_	_	35	ns
CTLLR delay time	t _{CLRD}			_	37	ns

5. A/D Converter Characteristics at V_{DD} = 3.30 V, V_{REF5} = 5.00 V, V_{SS} = 0.00 V, T_a = 25^{\circ}C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Resolution	RES		_		8	bit
Nonlinearity error	NLE1	$f_{MSPCK} = 24.576 \text{ MHz}$ $V_{RT} = 2.6 \text{ V}, V_{RB} = 0.6 \text{ V}$	_	±1.5	±2.0	LSB
Differential nonlinearity error	DNLE1	$f_{MSPCK} = 24.576 \text{ MHz}$ $V_{RT} = 2.6 \text{ V}, V_{RB} = 0.6 \text{ V}$		±0.5	±1.5	LSB

Figure 1. Clock input

Figure 2. Microcontroller interface (data clock)

Qq b6 b6 ЪЛ b7 twrng2 trdng 90 Figure 3. Microcontroller interface (data write time) P0 tRXH t_{RXS} b6 b6 tTXD unknown ЪЛ Ъ7 twRNG1 tMODH tMODH 90 90 unknown tRXS t_{RXS} tRXH tRXH b6 pq b7 b7 tMods tMODS MPUMOD MPUMOD MPUCLK MPUCLK MPURX MPUTX MPUTX MPURX

Figure 4. Microcontroller interface (data read time)

Package Dimensions (Unit: mm)

• QFP084-P-1818E (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.