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 ABSTRACT

 

The MPC106 provides a PowerPC

 



 

 Platform specification
compliant bridge between the family of PowerPC
Microprocessors and the PCI bus. The MPC106’s PCI support
will allow system designers to rapidly design systems using
peripherals already designed for PCI and the other standard
interfaces available in the personal computer hardware
environment. The MPC106 also integrates secondary cache
control and a high-performance memory controller which
supports various types of DRAM and ROM. The MPC106 is
the second of a family of Motorola products that provide system
level support for industry standard interfaces to be used with
PowerPC microprocessors.

This paper describes the MPC106, its performance, and its
implementation of the PowerPC

 

 

 

Platform specification.

The PowerPC Platform specification is formally known as the
Common Hardware Reference Platform or CHRP

 



 

. 

 

 ARCHITECTURAL OVERVIEW

 

The MPC106 connects directly to the PCI bus and the
processor bus, and shares the data bus to system memory with
the processor. The MPC106 is partitioned into four interfaces,
the processor interface, the second level (L2) cache interface,
the memory interface, and the PCI interface. A central control
unit provides arbitration and coherency control between each of
the interfaces. This central control unit supports concurrent
operations on the processor/memory bus and the PCI bus. The
processor interface is a high bandwidth, high performance, TTL
compatible interface which supports any of the MPC60x
PowerPC microprocessors. The processor interface supports
multiprocessor configurations from 1 up to 4 processors. The
L2 interface is highly programmable and flexible and supports
both on chip and off chip interfaces. The on chip L2 interface
supports four different sizes, 256KBytes, 512KBytes, 1MByte,
and 2MBytes, and both write through and copy back modes.
The memory interface supports either DRAM or EDO DRAM
in sizes up to one gigabyte, which can be split into one to eight
banks. The memory interface also supports page mode accesses
and parity checking, Read Modify Write parity checking, or
ECC checking of single and double bit errors and correction of
single bit errors. The ROM interface supports both ROM and
FLASH ROM and allows the ROM to be located on the
memory interface or the PCI bus. The PCI interface is fully
compliant with the PCI Local Bus Specification Revision 2.1
and all its supplements and functions as both a master and target
device.

 

Figure 1  

 

High Performance system using the 
MPC106

 

The MPC106 includes many features designed to optimize
system performance. Since actual system performance numbers
are highly dependent on the system configuration and the type
of software running on it, system performance numbers are
beyond the scope of this paper. Instead we will discuss the
performance related features of the MPC106, give best case
timings for a variety of system configurations, and discuss how
to get an estimate of expected performance for different
hardware limitations. 

 

 PERFORMANCE

 

One general performance strategy used in designing the
MPC106 was to make processor accesses to memory as fast as
possible. This was done by optimizing the address path for
processor reads from memory, and by including page-mode
operation. The L2 cache performance was also enhanced by
changing the castout method compared to the previous chip set,
the MPC105. For PCI accesses to memory, the performance of
reads that cross multiple cache lines can be greatly improved by
the speculative read option or by the use of the Memory Read
Multiple command. For systems which do not require
hardware-enforced coherency between the processor and PCI,
the no-snoop mode was also added to improve the timing for
PCI accesses to memory.
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Fast Processor Accesses to Memory 

 

The address path was designed to minimize the latency for
processor reads from memory. When the chip is idle, the
address from the processor bus is latched each cycle and the
associated row address is driven on the address pins going to
the memory. The row address is always driven from processor
address bits 9-20 to speed up the generation of the row address.
Thus, when TS_ is asserted, the transaction is decoded, the
memory address driven the cycle after TS_, and RAS_ is
asserted one cycle later if appropriate. This results in an initial
latency of 8 clock cycles for a 60ns DRAM and a 66 MHz bus,
as shown in Figure 2.

 

Figure 2  

 

Fastest Processor Read from Normal DRAM

 

Page Mode 

 

The MPC106 implements a one-level pipeline on the
processor bus. This allows the decode of a second transaction to
begin during the data phase of the first transaction. If the current
transaction is a burst access to DRAM, and the pipelined
transaction is also to DRAM (either single-beat or burst), then
the MPC106 attempts a page-mode access. During the last
clock cycle of the last data phase, the memory block compares
the row addresses of the two transactions. If they are different,
the RAS_ precharge begins immediately. If the row addresses
are the same the RAS_ precharge and the RAS_ to CAS_ delay
can be avoided, thus reducing the latency for the first data
access of the second transfer. This implementation of page
mode improves performance for page hits without incurring a
penalty for page misses.

 

Fast L2 Cache Castout 

 

Another aspect of performance for processor accesses to
memory is the penalty incurred when a miss in the L2 cache
requires a castout of modified data to memory. In this case, the
data for the read cannot be fetched from memory until the L2
cache performs a write to memory. The MPC106 minimizes this
latency by allowing the L2 cache to write into an internal buffer
while starting the read transaction in the memory system. 

As shown in Figure 3, the beginning of the transaction looks
like a normal read. The processor's address phase is terminated
normally with the assertion of AACK_, the row address is
driven to the memory subsystem, and RAS_ is asserted.
However, the assertion of CAS_ is delayed while the L2 castout
data is transferred into the MPC106's internal buffer. This data
transfer occurs at the fastest L2 cache access timing, before the
address of the L2 castout is known. Once the L2 castout data
has been transferred, CAS_ is asserted, and the processor read
access completes. In the case shown, the initial read latency is
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11 clock cycles, which is only a 3 cycle penalty for the L2
castout.

 

Figure 3  

 

L2 Castout Timing

 

Speculative Reads 

 

When acting as a target, the MPC106 disconnects at the end
of each cache line to simplify the hardware enforced coherency.
To reduce the latency due to this disconnect, the MPC106
includes a selectable speculative read feature used for multiple
cache line transfers from memory to PCI, . When this feature is
enabled, the MPC106 starts the snoop to the processor and L2
cache of the next sequential cache line address (32-bytes) when
the current PCI read is accessing the third double-word of the
current cache line. Once the speculative snoop response is
known and PCI has completed the read, the data at the
speculative address is fetched from memory and loaded in the
buffer in anticipation of the next PCI request. If a different
address is requested, the speculative operation is halted and any
data latched in the PCI read buffer is invalidated. If the
speculative read feature is enabled the MPC106 will attempt
speculative reads for all PCI Memory Read transaction types
including Memory Read Line transactions. Because PCI
Memory Read Multiple transactions, by definition, are a request
for multiple cache lines of data the MPC106 will attempt a
speculative read operation regardless of whether or not the
speculative read feature is enabled.

 

No-Snoop Mode 

 

The MPC106 provides hardware-enforced coherency
between the primary and secondary caches and PCI devices.
This requires all PCI accesses to memory to be snooped on the
processor bus. Although the snoops do not affect the best-case
timings for the PCI accesses to memory, when the processor bus
is busy and the snoop delayed, PCI performance can be
significantly degraded. For applications which do not require
the hardware-enforced coherency, snooping can be turned off to
eliminate some of the delay.

 

Best Case Performance of Processor Memory 
Accesses 

 

The processor memory access performance numbers were
generated with the following assumptions.  All of the tests were
generated with the PowerPC 604

 



 

 microprocessor using a bus
speed of 66 MHz.  All of the internal MPC106 timing
parameters were set at their minimum possible for the tested
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situation.  No other transactions are occuring in the system.
Parity checking is disabled. The page mode cycle time for 70ns
DRAM is 45ns, 40ns for 60ns DRAM. The second set of
performance numbers generated for the 60ns DRAMS was
achieved by using DRAMS with fast CAS precharge access
times resulting in a 5ns reduction in page mode cycle times.

* Fast CAS precharge access DRAMs

* Fast CAS precharge access DRAMs

 

L2 Performance 

 

The L2 performance numbers were generated using the
following assumptions: all of the tests were generated with the
PowerPC 604 microprocessor using a bus speed of 66 MHz, all
of the internal MPC106 timing parameters were set at their
minimum possible for the tested situation. 60ns DRAMs with
normal CAS accesses times were uesd.

 

TABLE 1 Processor Reads and Writes from Memory

 

Memory 
Type and 

Speed
Buffer 
Type

First 
Burst 
Write

First 
Burst 
Read

Pipelined
Read 

Page Hit

Pipelined
Read 

Page Miss

 

70ns 
DRAM

Flow- 
through

9-5-5-5 9-5-5-5 5-5-5-5 11-5-5-5

70ns 
DRAM

Trans. 
Latch

8-4-4-4 9-4-4-4 5-4-4-4 10-4-4-4

60ns 
DRAM

Trans. 
Latch

8-4-4-4 8-4-4-4 5-4-4-4 8-4-4-4

60ns 
DRAM

Flow- 
through

8-4-4-4 8-4-4-4 4-4-4-4 9-4-4-4

60ns 
DRAM*

Trans. 
Latch

7-3-3-3 8-3-3-3 4-3-3-3 8-3-3-3

60ns EDO Trans. 
Latch

7-3-3-3 8-3-3-3 5-3-3-3 8-3-3-3

50ns EDO Trans. 
Latch

6-2-2-2 7-2-2-2 4-2-2-2 6-2-2-2

 

TABLE 2 Processor Read followed by a Write

 

Memory 
Type and 

Speed Buffer Type

First 
Burst 
Read 

Access

Pipelined
 Write - 
Page Hit

Pipelined 
Write - 

Page Miss

 

70ns DRAM Flow-through 9-5-5-5 8-5-5-5 11-5-5-5

70ns DRAM Trans. Latch 9-4-4-4 6-4-4-4 9-4-4-4

60ns DRAM Trans. Latch 8-4-4-4 6-4-4-4 7-4-4-4

60ns DRAM Flow-through 8-4-4-4 7-4-4-4 9-4-4-4

60ns DRAM* Trans. Latch 8-3-3-3 5-3-3-3 7-3-3-3

60ns EDO Trans. Latch 8-3-3-3 5-3-3-3 6-3-3-3

50ns EDO Trans. Latch 7-2-2-2 4-2-2-2 5-2-2-2

 

Performance of Processor Accesses to PCI 

 

The processor to PCI access performance numbers were
generated using the following assumptions.  All of the tests
were generated with the PowerPC 604 microprocessor using a
bus speed of 66 MHz.  All of the internal MPC106 timing
parameters were set at their minimum possible for the tested
situation. The MPC106 was parked on the PCI bus. The
MPC106 was in 2 to 1 clocking mode, making the PCI bus
frequency 33 MHz. For reads the target provided data 2 cycles
after FRAME# was asserted, inserted no wait states on TRDY#,
and used fast DEVSEL# timing. For writes the target could sink
the data with fast DEVSEL# timing and no wait states on
TRDY#.

For processor accesses to PCI, burst reads, single beat writes
and burst writes are affected by the MPC106 buffering scheme.
Single beat reads are not affected. Burst reads have a roughly
doubled penalty to the first beat of data because the data is
gathered into a cache line size buffer and not forwarded to the
processor until all data has been received. The data is not
forwarded to prevent a deadlock scenario in which the
processor read is retried on the PCI bus and a different PCI
master initiates a transaction that needs to be snooped.

The MPC106 has 2 processor to PCI write buffers that are
each 16 bytes wide. For single beat writes, the first 2 writes get
buffered in 4 cycles each. Subsequent writes by the processor
get held off until a buffer becomes available. Burst writes, 32
bytes in length, use both buffers as one continuous buffer. If the
buffers are empty the burst write can occur very quickly.
Subsequent burst writes from the processor get held off until the
write buffers are empty.

Burst reads by the processor from the PCI bus are done at
about 98 MBytes/S on the PCI bus. Burst writes by the
processor are done at about 108 MBytes/S.

 

TABLE 3 L2 Access Timings

 

Transfer Type
Asynch. 
SRAMs Burst SRAMs

Pipelined 
Burst SRAMs

 

Burst Read Hit 3-2-2-2/2-2-2-2 3-1-1-1/1-1-1-1 4-1-1-1/1-1-1-1

Read Miss 
w/Castout 

 

(

 

Latched Buffers

 

)

 

3-2-2-2/6-4-4-4 3-1-1-1/6-4-4-4 5-1-1-1/6-4-4-4

Read Miss 
w/Castout 

 

(

 

Flow 
through Buffers

 

)

 

3-2-2-2/5-4-4-4 3-1-1-1/5-4-4-4 5-1-1-1/5-4-4-4

Burst Write Hit 4-2-2-2 3-1-1-1 3-1-1-1

Read/ Write 3-2-2-2/3-2-2-2 3-1-1-1/2-1-1-1 4-1-1-1/2-1-1-1

 

TABLE 4 Processor Accesses to PCI

 

Processor Access Performance
Maximum 

Throughput

 

Single-beat Reads 13 20 MBytes/S

Burst Reads 27-1-1-1 71 MBytes/S

Single-beat Writes 4-4-5-8-8-8... 33 MBytes/S

Burst Writes 4-1-1-1-23-1-1-1 82 Mbytes/S
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PCI Performance   

 

The theoretical maximum for a 32-bit, 33Mhz PCI bus is
132MBytes/S. There are some assumptions made with this
maximum. First, the address phase is not accounted for in
writes. For reads, neither the address phase nor the turn-around
phase is counted. Second, it is assumed that the burst is long
enough so that an address phase doesn't have any impact on the
transaction. Third, it is assumed that neither the master nor the
target inserts wait states on IRDY# or TRDY#, and that four
bytes of data are transferred every PCI clock. Finally, this
maximum assumes that memory speeds can keep up with
delivering data for reads, or that a good buffering scheme is
used to mask the memory overhead.   This maximum can be
calculated by using the equation:

where; A = Throughput (bytes/second)

B = Number of PCI bytes

C = Number of cycles for the entire transaction

D = Cycle time (seconds), for 33Mhz D ~ 30ns 

For example, to transfer 256 bytes of data with no wait states;

A 

 

≈

 

133 MBytes/S 

Adding in the overhead of an address phase for every
transaction, the equation for writes becomes 

 

Aw

 

 and for reads
becomes 

 

Ar 

 

as described below. Using the same 256 bytes to
transfer it shows that 

 

Aw

 

 and 

 

Ar

 

 drop accordingly from the
optimal 132 MBytes/S. Note that if one uses a 4K byte transfer,
which takes a minimum number of 1000 cycles, then it can be
shown that the overhead of an address phase is negligible.

A
B

C D×
--------------=

A
256

64 30
9–×10•

--------------------------------= 
 

Aw
256

64 1+( ) 30
9–×10•

------------------------------------------------=

 

Aw

 

 

 

≈

 

 131 MBytes/S

 

Ar

 

 

 

≈

 

 129 MBytes/S

When acting as a master there are some other points that can
limit system performance. They are the delay from the assertion
of GNT# to the actual start of the address phase, wait states on
the IRDY# signal, and the time to get off the bus due to
disconnects (STOP# asserted). Not included in this equation is
the arbitration penalty for REQ# to GNT# assertion. Typically
arbitration overhead can be masked by changing GNT# signals
while the bus is busy. Adding in these factors, the throughput
equations become: 

 

Aw

 

 = (

 

B

 

 / [

 

C'

 

 • 

 

D

 

] and 

 

Ar

 

 = (

 

B

 

 / [(

 

C'

 

+ 1) • 

 

D

 

] 
where 

 

C'

 

 = t

 

Cmin

 

 + t

 

ap

 

 + t

 

gd

 

 + t

 

iw

 

 + t

 

sd

 

 + t

 

tad

 

 

t

 

Cmin

 

= Minimum data transfer cycles
t

 

ap

 

= Address phase
t

 

gd

 

 = Grant delay
t

 

iw

 

= IRDY wait cycles
t

 

sd

 

 = STOP delay
t

 

tad

 

= Turn-around delay
When acting as a target, limiting factors are DEVSEL#

assertion timing, TRDY# wait states, and the buffering scheme.
The buffering scheme determines how much data the target can
source/sink before asserting STOP#, and how much overhead
the PCI bus sees due to memory speeds. It is easy to change 

 

C'

 

above to reflect DEVSEL# assertion and TRDY# wait states but
the buffering scheme is a little more difficult. The buffering
scheme actually plays a role in another wait state category, this
being the PCI retry overhead. If the buffers are full then the
target must issue a retry before sinking new data from the PCI
bus. 

t

 

dev

 

= DEVSEL assertion
t

 

tw

 

 = TRDY wait cycles
N

 

r

 

= Number of retries
t

 

ro

 

= Retry overhead

The equation for 

 

C'

 

 then becomes;

 

C'

 

 = t

 

Cmin

 

 + t

 

ap

 

 + t

 

gd

 

 + t

 

iw

 

 + t

 

dev

 

 + t

 

tw

 

 + t

 

sd

 

 + t

 

tad

 

 + (N

 

r

 

 • t

 

ro

 

)
Lets take an example case. A master wants to transfer 512

bytes to a target. Lets assume the target has medium DEVSEL#
assertion (one idle cycle between the assertion of FRAME# and
the assertion of DEVSEL#), inserts no wait states on TRDY#,
asserts STOP~# at 256 bytes, and has to retry the master one
time to finish flushing the buffer. The master has a one cycle
delay from GNT# assertion to an address phase, it inserts 1 wait
state for every 8 data transfers, and has a 2 cycle delay to negate
FRAME# when STOP# is asserted. Assume that the arbiter
keeps the master parked on the bus, and that the masters latency
timer is programmed to handle this type of transfer.   The
minimum number of cycles to transfer 512 bytes would be 128.
There are 3 address phases to account for, the first to start the
transaction, the second after being disconnected at 256 bytes,
and the third because the master got retried. There are 2 grant

Ar
256

64 2+( ) 30
9–×10•

------------------------------------------------=
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delay cycles that must be accounted for which correspond to the
second and third address phases. There are 14 IRDY# wait
states, 3 cycles of DEVSEL# forced delay, 0 TRDY# wait
states, 3 cycles of STOP# delay for the disconnect, 3 cycles of
STOP# delay for retry, and 0 cycles for the third STOP#
assertion due to the fact that the master would already be
negating FRAME#. There are 2 turn-around cycles after STOP#
is asserted. Note that we took the retry and folded that overhead
into the STOP# delay, the turn-around delay, and the DEVSEL#
assertion. With these numbers put into the equation it can be
shown that this master/target performance is 108MBytes/S. 

 

Aw

 

 

 

≈

 

 108 MBytes/S 

To calculate an estimated performance number of a system
using the MPC106 a system designer would have to know all
the information in the example above. When the MPC106 is
acting as a master on the PCI bus it has a 1 cycle delay from
seeing GNT# asserted to it and the assertion of FRAME#. The
MPC106 never inserts wait states on IRDY# and has a 1 cycle
delay from the assertion of STOP# to the negation of FRAME#
if doing a burst. If STOP# is asserted while FRAME# is already
negated there is no penalty.   When the MPC106 is acting as a
target on the PCI bus it uses the fast DEVSEL# timing, this
means that there is no forced delay due to DEVSEL# assertion.
The MPC106 has 0 wait states on TRDY# for writes but will
disconnect every 32 bytes. For reads the number of wait states
depends on memory speed. 

TABLE 5 and TABLE 6 represent some estimated numbers
for a system using the MPC106 as a target. Since these are best
case simulated numbers there are some inherent assumptions
made. First, there is no arbitration overhead. Second, there is no
other traffic in the system which avoids contention for system
memory. Third, the PCI master inserts 0 wait states on IRDY#.
Finally, PCI is running at 33Mhz and the processor bus is
running at 66Mhz. Some memory timing assumptions are listed
here for reference. A 60ns DRAM was simulated with 8-4-4-4
timing and 70ns DRAM simulated with 9-5-5-5 timing, 50ns
EDO DRAM with 7-2-2-2 timing and 60ns EDO DRAM with
8-3-3-3 timing. In TABLE 5, Spec_Rd reflects the setting of the
configuration bit that enables speculative reads. In TABLE 6,
FB2B reflects the setting of the configuration bit that enables
fast back to back PCI cycles.

 

TABLE 5 Read Throughput

 

Memory
Spec_Rd = 0 Spec_Rd = 1

 

With 
Disconnects

Without 
Disconnects

With 
Disconnects

Without 
Disconnects

 

100% L1 Hit 57 MB/S 60 MB/S N/A N/A

100% L2 Hit 57 MB/S 60 MB/S 79 MB/S 85 MB/S

70ns DRAM 54 MB/S 57 MB/S 74 MB/S 76 MB/S

60ns DRAM 60 MB/S 63 MB/S 78 MB/S 82 MB/S

60ns EDO 60 MB/S 63 MB/S 78 MB/S 84 MB/S

50ns EDO 64 MB/S 67 MB/S 80 MB/S 85 MB/S

Aw
512

128 3 2 14 3 0 6 2+ + + + + + +( ) 30
9–×10•

--------------------------------------------------------------------------------------------------------------=

 

 POWERPC PLATFORM SPECIFICATION 
COMPLIANCE

 

The MPC106 is the first Motorola bridge chip to be PowerPC
Platform specification compliant. That is, it meets the
requirements specified in the architecture document for I/O
bridges and memory controllers in the PowerPC Platform
specification . The PowerPC Platform specification allows
systems to be designed and built that can be used with a variety
of common Operating Systems (O/S's) because the O/S's can be
written to a standard interface. It also allows systems to
differentiate themselves, yet still support the application and
O/S software written for other compliant systems. 

There are several aspects to the PowerPC Platform
specification, the most significant ones being the Address Map
definition, the Processor and Memory Architecture
specification, the I/O bridge specification, the Interrupt
Controller requirements, the Run-Time Abstraction Services
definitions, the Non-Volatile Memory specification, the I/O
device requirements, the Error and Event Notification
specification, and the Power Management options. Of these
apsects, the MPC106 is affected by four of them, the Address
Map, the I/O bridge specification, the Memory Architecture,
and in a limited way by the Power Management options and the
Error Notification specification.

 

Address Map

 

The Address Map of the PowerPC Platform specification is
designed to be flexible enough to support systems from
portables to servers and has optional features to help support
legacy x86 software and emulation of x86 code. The Address
Map defines five types of areas which are System Memory,
Peripheral Memory, Peripheral I/O, System control, and
Undefined or Reserved. The System Memory area refers to
memory, typically a form of dynamic random access memory,
which is used for temporary storage of programs and data being
used by the processor. The Peripheral Memory area refers to the
range of addresses that are assigned to the Host Bridge (an I/O
bus that is connected to the processor bus) to be used by devices
in the memory space of the I/O bus that is generated by the Host
Bridge. The Peripheral I/O space is similar to the Peripheral
Memory space except that it refers to the address range used by
devices in the I/O space of the I/O bus generated by the Host
Bridge. The System Control area refers to the range of
addresses which contain the system ROM and other system
dependent code and data such as the firmware and Run-time
Abstraction Services.

The MPC106 implements the System Memory space from
address 0x0000_0000 to 0x3FFF_FFFF, or 1 Gbyte in size. This
is because the MPC106 supports a maximum of 1 Gbyte of

 

TABLE 6 Write Throughput

 

Memory
With 

Disconnects

Without Disconnects

FB2B = 0 FB2B = 1

 

70ns DRAM 85 MB/S 91 MB/S 88 MB/S

60ns DRAM 100 MB/S 96 MB/S 99 MB/S

60ns EDO 100 MB/S 108 MB/S 119 MB/S

50ns EDO 100 MB/S 108 MB/S 119 MB/S
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DRAM or EDO DRAM and the PowerPC Platform

specification requires that the first System Memory area must

begin at address 0x0 and be contiguous. The Top of System

Memory (0x3FFF_FFFF) for the MPC106 could have been

programmable as allowed by the PowerPC Platform

specification, but in the interest of address decode speed from

the processor address bus, it is fixed at 0x7FFF_FFFF, or 2

Gbytes-1. Accesses from the processor that are to an address

less than 0x7FFF_FFFF, but greater than the actual amount of

real, physical system memory, generate an error that can be

reported to the processor.

The Peripheral Memory space of the MPC106 is from

0x8000_0000 to 0xFDFF_FFFF, or 2 Gbytes - 32 MBytes in

size. The starting and ending addresses are not configurable

because the MPC106 tries to maximize the amount of address

space that devices may use without sacrificing address decode

performance for accesses to System Memory.

The Peripheral I/O space begins immediately after the

Peripheral Memory space and is from address 0xFE00_0000 to

0xFEBF_FFFF, or 12 MBytes in size. The first 8 MBytes of the

Peripheral I/O space are programmable to be either contiguous,

or discontiguous in 32 byte chunks that are aligned on 4KByte

boundaries.

The System Control area ranges from 0xFEC0_0000 to

0xFFFF_FFFF. The range from 0xFEC0_0000 to

0xFEFF_FEFF is used for configuring the MPC106 and other

devices in the system except for the processor. The range from

0xFF00_0000 to 0xFFFF_FFFF is interpreted by the MPC106

as ROM space, which in the MPC106 can be either controlled

by the MPC106 or treated like a normal PCI transaction

depending on the system configuration. 

In addition to the requirements for the five major sections of

the Address Map, the primary Host Bridge in the system, which

the MPC106 is intended to be, has the following optional

address ranges, the Compatibility holes and the Initial Memory

Alias spaces. 

The Compatibility holes are to be used by software that needs

compatibility with PC systems. The first Compatibility hole, the

I/O-hole, is used for PCI initiated transactions. It is an address

range from 0x000A_0000 to 0x000F_FFFF, or 640KByte to

1MByte-1. When enabled, the Host Bridge will not respond to

PCI initiated transactions with addresses in the hole address

range. The other Compatibility hole, the processor hole, is used

for processor initiated transactions. It exists from address range

0x000A_0000 to 0x00BF_FFFF, or 640KByte to 768KByte-1.

When enabled, processor initiated transactions to the processor

hole address range will not go to System Memory, but instead

will be sent to the PCI bus. The MPC106 implements both holes

and each is programmable whether it is enabled or not.
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The Initial Memory Alias spaces are areas in the Peripheral
Memory space and allow accesses to the first 16 MBytes of
System Memory from a different address range on the PCI bus,
and allow accesses to the first 16 MBytes of Peripheral Memory
from the processor. The MPC106 implements both of the
aliases. The system-memory-alias as implemented on the
MPC106, when enabled, allows devices on PCI to access
system memory that is at address 0x0000_0000 to
0x00FF_FFFF by using addresses 0xFD00_0000 to
0xFDFF_FFFF. The peripheral-memory-alias on the MPC106
allows the processor to access Peripheral Memory that is
located at 0x0000_0000 to 0x00FF_FFFF by using addresses
0xFD00_0000 to 0xFDFF_FFFF. The peripheral-memory-alias
on the MPC106 is always enabled. The reason for these
additional address ranges is to allow compatibility with devices
and software that expect the compatibility holes that are
described above. The memory alias spaces provide mechanisms
to still access memory that is located in the address holes, but at
an aliased address. This enables the use of legacy devices and
code in PowerPC Platform specification compliant systems.
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PowerPC Platform specification also defines a set of changes
in the system architecture that are intended to improve the
performance of emulation of current PC software. These
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changes are a Top of Emulated Memory, the I/O-hole must be
enabled, System Memory that exists above the Top of Emulated
Memory where emulator code can reside that is not accessible
from I/O devices, the system-memory-alias must be disabled,
and an exception-relocation register to define where exceptions
can be relocated to in System Memory.

The Top of Emulated Memory defines an address below
which the System Memory matches that of a PC being
emulated. The System Memory above the Top of Emulated
Memory is accessible by the processor to run the emulation
software. That System Memory is not accessible by I/O devices,
and transactions to it by I/O devices will not be accepted by the
MPC106. The system-memory-alias is disabled to prevent
accidental modification of either the emulated memory or the
emulator code itself by I/O devices. The io-hole is enabled to
allow I/O bus master and third party DMA accesses to legacy
devices such as VGA.

The exception-relocation-register is used to map accesses by
the processor to addresses 0xFFF0_0000 to 0xFFFF_FFFF to
System Memory. This is needed to allow fast access to
exception vectors by the processor. Usually, the PowerPC
microprocessors are programmed to access the exception
vectors at address offset 0x0, but in emulation of a PC, address
0x0 is used as System Memory for applications. This means
that the processor needs to be set to access the exception vectors
at offset 0xFFF0_0000, but this is a ROM address which is a
slow access. The exception-relocation-register function then is
to map accesses to the exception vectors to the faster System
Memory. The MPC106 implements all of the above features.

I/O Bridge Requirements

The requirements for the primary I/O bridges in the PowerPC
Platform specification are mainly restrictions and clarifications
over what is specified in the PCI Local Bus Specification. These
clarifications deal primarily with data buffering and transaction
ordering.

The first buffering requirement is that Host Bridges which
include buffers must make sure that these are transparent to
software. The MPC106 complies with this by keeping all
transactions from the processor to I/O in order. The only
exception to this is if store gathering is enabled in the MPC106.
If store gathering is enabled, the MPC106 will potentially take a
number of sequential writes from the processor to PCI and
generate one PCI transaction. The MPC106 also recognizes the
eieio and sync instructions from the processors. The MPC106
will flush all of its buffers upon receiving one of these
transactions and will not grant the bus to the processor until all
buffers are flushed.

The first ordering requirement is that data from a DMA read
(I/O initiated) must be allowed to complete prior to a processor
Load or Store operation that was queued previously. The PCI
interface of the MPC106 handles this requirement by having
independent master and target state machines. That is, the data
for the DMA read is being handled by the target state machine
and the Load or Store operation is being handled by the master
state machine. These state machines operate independent of
each other, so the DMA read completion is not dependent on
any other transaction.

The next buffering/ordering requirement is that during a
proceesor Load operation, the Host Bridge must not prevent a
subsequent DMA (I/O initiated) write from being posted in the
Host Bridge. The MPC106 meets this requirement by having
separate buffers for processor reads from PCI and PCI writes to
System Memory so there are not resource conflicts.

The third ordering rule is that a DMA read or write from an
I/O device to system Memory must not be passed to the
processor side of the Host Bridge before the data for a previous
I/O DMA write has been flushed to the processor side. The
MPC106 handles this requirement by keeping all snoops to the
processor due to PCI initiated transactions in order. This does
not mean that data is written or read from memory in the same
order that its transaction occurred. That is not a requirement
because all the MPC106 buffers are compared with incoming
transactions to make sure that coherency is kept. In other words,
once a transaction from PCI to memory has been snooped to the
processor and any copybacks due to the snoop have been
completed, then the buffer in the MPC106 is effectively System
Memory.

The other I/O bridge requirements are the ability to run in
either Big-Endian or Little-Endian mode and the ability to
support a PCI Interrupt Acknowledge cycle by providing a
1-byte address that the processor can read to generate an
Interrupt Acknowledge on the PCI bus. The MPC106 handles
the Endian requirement by keeping System Memory in the
same format that the processor keeps its caches. That is,
Big-Endian format in Big-Endian mode and in PowerPC
Little-Endian format in Little-Endian mode. The conversion to
true Little-Endian occurs at the MPC106's PCI interface, and
the method of the conversion is dependent on the mode that the
MPC106 is operating in. The MPC106 provides the Interrupt
Acknowledge address at address 0xFEF0_0000 in the System
control area. Also, in order to speed up the decode of the
processor initiated read to the Interrupt Acknowledge address,
the MPC106 decodes any processor read in the address range
from 0xFEF0_0000 to 0xFEFF_FFFF0 as an Interrupt
Acknowledge cycle.

Error Notification and Power Management Options

The PowerPC Platform specification specifies how the system
is to handle error and event notification and any power
management that the system wishes to do. The MPC106 has
features designed in to help the system meet these
specifications. The MPC106 provides a set of error notification
registers that contain information about errors detected by the
MPC106. These registers include the address of the transaction
that caused the error, the transaction type that caused the error,
and the specific type of error that was detected. The MPC106
detects the following errors: PCI, L2 cache, and memory parity
errors, accesses to non-existent System Memory, illegal
transactions from the processor, ECC errors, and system errors
reported by PCI. Once an error is detected, software can read
the MPC106’s notification registers to get more information
about the specific error. The MPC106 also provides a set of
power management registers that control the level of activity in
the MPC106. By programming the registers in various ways,
the MPC106 can be put into power management states that vary
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from shutting off the clock internally to the MPC106 to only
shutting off internal state machines and waiting for a system
transaction that needs servicing to wake up.

Figure 5  MPC106 die photo.

 SUMMARY

The MPC106 is the first PowerPC Platform specification
compliant Motorola bridge chip. It meets all of the requirements
specified in the architecture document of the PowerPC Platform
specification for I/O bridges and memory controllers. It also
supports some optional features, such as power management,
error notification, and emulation performance enhancement.
The MPC106 is a high performing chip set. It has optimized
processor accesses, a fast L2 cache castout algorithm, and page
mode memory accessing. It also greatly utilizes the PCI
bandwidth, speeds up read accesses with the speculative read
mode, and speeds up all accesses in systems that don’t require
hardware-enforced coherency by supporting the no-snoop
option. The MPC106 is flexible enough to be used in a wide
range of systems, from lap tops to low end servers. The
performance features will enable the design of high performing
PowerPC Platform specification compliant systems that will
support a variety of common Operating Systems.
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