
© Freescale Semiconductor, Inc., 2012. All rights reserved.

Freescale Semiconductor
Safety Manual

Document Number: MPC5675KSM
Rev. 1, 12/2012

Safety Manual for Qorivva MPC567xK
Devices Supported:
MPC5673K
MPC5674K
MPC5675K

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 2

Table of Contents
1 Preface .5

1.1 Related documents .6
1.2 Vocabulary .7

2 General information .7
2.1 Assumed conditions of operation7
2.2 Safety function .7
2.3 Safe state .8
2.4 Single-point Fault Tolerant Time Interval and Process

Safety Time. .9
2.5 Latent-FTTI for latent faults. .11
2.6 Failure handling. .13

3 Functional safety concept .14
3.1 Faults .14
3.2 Failures .15
3.3 General functional safety concept.18

3.3.1 Sphere of Replication - Lockstep Mode (LSM) .21
3.3.2 SoR – DPM .22

4 Hardware requirements on system level.22
4.1 Assumed functions by separate circuitry 23

4.1.1 High impedance outputs23
4.1.2 External Watchdog (EXWD) 24
4.1.3 Power Supply Monitor (PSM).24
4.1.4 Error Out Monitor (ERRM).25

4.2 Optional hardware measures on system level 27
4.2.1 PWM output monitor (PWMA)27

5 Software requirements on system level28
5.1 Disabled modes of operation .29

5.1.1 Debug mode .29
5.1.2 Test mode .30

5.2 MPC567xK modules .30
5.2.1 Fault Collection and Control Unit (FCCU)30
5.2.2 Reset Generation Module (MC_RGM) 35
5.2.3 Self Test Control Unit (STCU)36
5.2.4 Temperature Sensor (TSENS).37
5.2.5 Software Watchdog Timer (SWT) 38
5.2.6 Redundancy Control Checking Unit (RCCU). . .39
5.2.7 Cyclic Redundancy Checker Unit (CRC)39
5.2.8 Internal RC Oscillator (IRCOSC)41
5.2.9 Frequency-Modulated PLL (FMPLL)42
5.2.10 Clock Monitor Unit (CMU)43
5.2.11 Mode Entry (MC_ME) .44
5.2.12 Power Management Controller (PMC).44
5.2.13 Memory Protection Unit (MPU)46
5.2.14 Memory Management Unit (MMU) 47
5.2.15 Performance Monitor Counter (PMC) 48
5.2.16 Built-in Hardware Self Tests (BIST)50
5.2.17 Error correction (ECC, ECSM).51
5.2.18 Interrupt Controller (INTC).54
5.2.19 Semaphore Unit (SEMA4)55
5.2.20 Enhanced Direct Memory Access (eDMA) 55

5.2.21 Periodic Interrupt Timer (PIT). 56
5.2.22 System Status and Configuration 

Module (SSCM) . 56
5.2.23 Flash memory . 56
5.2.24 Cross Triggering Unit (CTU). 60
5.2.25 Fault injection tests. 63
5.2.26 SRAM. 63
5.2.27 Glitch filter . 63
5.2.28 Register Protection module (REG_PROT). . . . 64
5.2.29 External Bus Interface (EBI). 64
5.2.30 Multi-port DDR DRAM controller (MDDRC) . . . 65
5.2.31 Wake-Up Unit (WKPU) / External NMI 65
5.2.32 Crossbar Switch 2 (XBAR2). 66
5.2.33 Analog to Digital Converter (ADC) 66

5.3 I/O functions . 68
5.3.1 Digital inputs. 69
5.3.2 Digital outputs . 75
5.3.3 Analog inputs . 85
5.3.4 Other requirements . 93

5.4 Communications . 94
5.4.1 Redundant communication. 94
5.4.2 Fault-tolerant communication protocol 94

5.5 Additional configuration information 95
5.5.1 Call stack . 95
5.5.2 MCU configuration . 97

6 Failure rates and FMEDA . 108
6.1 Mission profile . 108
6.2 Overview . 109

7 Provisions against dependent failures. 111
7.1 Causes of dependent failures 111
7.2 Measures against dependent failures 112

7.2.1 Physical isolation . 112
7.2.2 Environmental conditions 112
7.2.3 Failures of common signals 113

7.3 CMF avoidance on system level 114
7.3.1 I/O pin/ball configuration. 114
7.3.2 Modules sharing PBRIDGE 122
7.3.3 External timeout function 122

8 Additional information . 123
8.1 Safety function pseudo-code 123

8.1.1 Flash memory . 124
8.1.2 <module>_SWTEST_REGCRC. 126
8.1.3 CTU . 131
8.1.4 Digital inputs. 144
8.1.5 Digital outputs . 147
8.1.6 Analog inputs . 152

8.2 Checks and configurations . 154
9 Acronyms and abbreviations . 156
10 Document revision history . 158

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 3

List of Figures
Figure 1. Safe stateMCU of the MPC567xK.9
Figure 2. Fault tolerant time interval for single-point faults10
Figure 3. Fault Tolerant Time Interval for latent faults 12
Figure 4. Faults .15
Figure 5. Common Cause Failures .16
Figure 6. Common Mode Failures .16
Figure 7. Cascading Failures .17
Figure 8. MPC567xK block diagram .18
Figure 9. Functional safety-related connection to 

external circuitry. .23
Figure 10. Logic scheme of the core voltage detectors 45
Figure 11. Logic scheme of the 3.3 V voltage detectors.46
Figure 12. SRAM Integration in LSM .53
Figure 13. SRAM integration in DPM .54
Figure 14. Double Digital Input and Double PWM input70
Figure 15. Double Read Encoder Input 70
Figure 16. CTU operating modes: triggered a) and sequential b)74
Figure 17. Digital Outputs with redundancy and read back 76
Figure 18. Single Write Digital Output With Read Back77
Figure 19. Single Write PWM Output With Read Back78
Figure 20. Double Write Digital Output .79
Figure 21. Double Write PWM Output .79
Figure 22. Single Read Analog Input configuration 86
Figure 23. Double Read Analog Inputs configuration87
Figure 24. Implementation of ADC_SWTEST_TEST190
Figure 25. ADC_SWTEST_TEST1 (open detection) 90
Figure 26. Implementation of ADC_SWTEST_TEST291
Figure 27. ADC_SWTEST_TEST2 (short detection) 91
Figure 28. Series of acquired analog values.92
Figure 29. BGA473 adjacency .115
Figure 30. Code example: timeout .123
Figure 31. Code example: FLASH_SW_ECCTEST (definitions)124
Figure 32. Code example: FLASH_SW_ECCTEST125
Figure 33. Code example: CRC initialization 126
Figure 34. TCD structures configuration and upload 127
Figure 35. Code example: TCD_ADC configuration in SRAM .128
Figure 36. Code example: first structure upload to eDMA129

Figure 37. <module>_SWTEST_REGCRC flow diagram 130
Figure 38. Code example: CTU initialization 131
Figure 39. Code example: 

CTU_HWSWTEST_ADCCOMMAND 132
Figure 40. Configuration for sequential mode example 1 133
Figure 41. Code example: CTU initialization 134
Figure 42. Code example: eTimer initialization 135
Figure 43. Code example:

CTU_HWSWTEST_TRIGGEROVERRUN. 136
Figure 44. Configuration for sequential mode example 2 136
Figure 45. Timing for sequential mode example 2 137
Figure 46. Code example: eTimer initialization (seq.) 138
Figure 47. Code example: eTimer initialization (seq.) 139
Figure 48. Code example: CTU initialization (seq.) 140
Figure 49. Code example: 

CTU_SWTEST_TRIGGERTIME (seq.) 141
Figure 50. Code example: Etimer initialization (triggered). . . . 141
Figure 51. Code example: CTU initialization (triggered) 142
Figure 52. Timing of CAPT1 and CAPT2 values 142
Figure 53. Code example: 

CTU_SWTEST_TRIGGERTIME (trig.). 143
Figure 54. Code example: CTU_HWSWTEST_TRIGGERNUM143
Figure 55. Code example: CTU_HW_CFGINTEGRITY 144
Figure 56. Code example: ETIMERI_SWTEST_CMP. 145
Figure 57. Code example: GPI_SWTEST_CMP. 146
Figure 58. Code example: GPODW_SWAPP_WRITE 147
Figure 59. Code example: GPOIRB_SWTEST_CMP 148
Figure 60. Code example: GPOERB_SWTEST_CMP 148
Figure 61. PWM output signal and Timing 149
Figure 62. Code example: PWMRB_SWTEST_CMP 150
Figure 63. Code example: PWMDW_SWAPP_WRITE. 151
Figure 64. Code example: ADC_SWTEST_TEST1 152
Figure 65. Code example: ADC_SWTEST_TEST1 153
Figure 66. Code example: ADC_SWTEST_TEST2 153
Figure 67. Code example: ADC_SWTEST_TEST2 154
Figure 68. Code example: ADC_SWTEST_CMP 154

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 4

List of Tables
Table 1. FCCU mapping of critical faults31
Table 2. FCCU mapping of non-critical faults 33
Table 3. PMC Monitored Supplies .45
Table 4. Data pattern used by the ECC logic test59
Table 5. Mapping of test flash memory values to STAWxR . . .67
Table 6. Digital inputs software tests .71
Table 7. CTU software tests .75
Table 8. Digital outputs software tests.80
Table 9. Analog inputs software tests88

Table 10. Effects of reset . 99
Table 11. Mission profiles. 108
Table 12. Temperature profile for Mission profile 1 108
Table 13. Temperature profile for Mission profile 2 108
Table 14. Module distribution over FMEDAs 109
Table 15. Physical pin displacement on internal die 115
Table 16. Acronyms and abbreviations 156
Table 17. Revision history . 158

Preface

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 5

1 Preface
This document discusses requirements for the use of the MPC567xK Microcontroller Unit (MCU) in
functional safety relevant applications requiring high functional safety integrity levels.

It is intended to support system and software engineers using the MPC567xK available features as well as
achieving additional diagnostic coverage by software measures.

This document shall not imply conformance of the MPC567xK according to ISO 26262 or IEC 61508.
Although the MPC567xK architecture is in large part based on an MCU which was certified, there are
architectural differences, and the development of the MPC567xK was not assessed according to
ISO 26262 or IEC 61508.

Several measures are prescribed as safety requirements whereby the measure described was assumed to be
in place when analyzing the functional safety of this Microcontroller Unit (MCU). In this sense,
requirements in the Safety Manual (SM) are driven by assumptions concerning the functional safety of the
system that will integrate the MPC567xK in accordance with the section “Safety Element out of Context”
in ISO 26262-10.

Example: Safety requirement: Before executing any safety function, the FMPLLs requires configuration
to use the external oscillator (XOSC) as their source clock.

Example: Safety requirement under certain preconditions: If the system requires robustness regarding
catastrophic CMFs (such as, issues with the MPC567xK external power supply) and robustness regarding
systematic faults, system level measures are to be implemented.

NOTE
Requirements (or requirements under certain preconditions) are marked by
a tag of the form “SM_nnn” at the beginning of the requirement, and are
terminated with an “end”. Both of these tags are enclosed within square
brackets for easy recognition. These tags could be used to allow importing
the requirements into safety traceability management tools.

For the use of the MCU this means that if a specific safety manual requirement is not fulfilled, it has to be
rationalized that an alternative implementation is at least similarly efficient concerning the functional
safety requirement in question (for example, provides same coverage, reduces the likelihood of Common
Mode Failure (CMF) similarly well, and so on) or the estimation of an increased failure rate (SPF, RF,
MPF, DU …) and reduced metrics (SFF: Safe Failure Fraction, SPFM: Single-Point Fault Metrics, LFM:
Latent Fault Metric) due to the deviation has be specified.

This document also contains guidelines on how to configure and operate the MPC567xK for functional
safety relevant applications requiring high functional safety integrity levels. These guidelines are preceded
by one of the following text statements:

• Implementation hint

• Recommended

• Example

• Safety requirement

• Safety requirement under certain preconditions

MPC567xK Safety Manual, Rev. 1

Preface

Freescale Semiconductor 6

• Rationale

These guidelines are considered to be useful approaches for the specific topics under discussion. The user
will need to use discretion in deciding whether these measures are appropriate for their applications.

This document is valid only under the assumption that the MCU is used in functional safety applications
requiring a fail-silent or a fail-indicate MCU. A fail-operational mode of the MPC567xK is not described.

This document is targeting high functional safety integrity levels. For functional safety goals which do not
require high functional safety integrity levels, system integrators will need to tailor the requirements for
their specific application.

It is assumed, that the user of this document is in general familiar with the MPC567xK device, ISO 26262,
and IEC 61508 standards.

1.1 Related documents
This sections lists all the documentation mentioned in this Safety Manual:

• IEC 61508: IEC 61508 Functional safety of electrical/electronic/programmable electronic
safety-related systems, international standard, ed. 2.0, April 2010

• ISO 26262: ISO 26262 Road vehicles - Functional safety, November 2011

• Qorivva MPC5675K Microcontroller Reference Manual (Document Number: MPC5675KRM,
Rev. 7, December 2011)

• Qorivva MPC5675K Microcontroller Data Sheet (Document Number: MPC5675K, Rev. 6,
February 2012)

• MPC567XK Mask Set Errata for Mask 0N72D (Document Number: MPC567XK_0N72D,
Rev. 12, April 2012)

• Enhanced Signal Processing Extension and Embedded Floating-Point Version 2 Auxiliary
Processing Units Programming Interface Manual (Document Number: SPE2PIM, Rev. 1.0-1:
Based on Specifications SPE2rev 1.0 and EFP2rev 1.3, October 2011)

• Application note, MPC5675K Test and Shadow Flash Parameters for ADC Self Test, MBIST, and
LBIST (Document Number: AN4422, Rev. 0, February 2012)

• e200z760n3 Power Architecture Core Reference Manual (Document Number: e200z760RM,
Rev. 0, June 2010)

• FMEDA

— Core_FMEDA

— Clock_FMEDA

— Flash_FMEDA

— SRAM_FMEDA

— Power_Supply_FMEDA

— Peripheral_Failurerates

• Addressing the Challenges of Functional Safety in the Automotive and Industrial Markets, White
Paper, October 2011

General information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 7

1.2 Vocabulary
For the purposes of this document, the vocabulary defined in ISO 26262-1 and IEC 61508-4 apply to this
document.

Specifically, the following terms apply.

• System: functional safety-related system that both implements the required functional safety goals
necessary to achieve or maintain a Safe statesystem for the equipment under control (control system)
and is intended to achieve, on its own or with other Electrical/Electronic/Programmable Electronic
functional safety-related systems and other risk reduction measures, the necessary functional
safety integrity for the required safety functions.

• System integrator: person who is responsible for the system integration.

• Element: part of a subsystem comprising a single component or any group of components (for
example, hardware, software, hardware parts, software units) that performs one or more element
safety functions (functional safety requirements).

• Trip time: the maximum time of operation of the MCU without switching to power down state.

• Functional safety requirement: system level environmental requirement relevant to achieve
functional safety in the specific application under consideration (condition of use).

2 General information
The MPC567xK is designed to be used in automotive or industrial applications which need to fulfill
functional safety requirements as defined by functional safety integrity levels (for example, ASIL D of
ISO 26262 or SIL 3 of IEC 61508).

The MPC567xK is considered a Type B subsystem (“complex”, see IEC 61508-2, section 7.4.4.1.3) with
HFT = 0 (Hardware Fault Tolerance), and may be used in any mode of operation (see IEC 61508-4, section
3.5.16).

2.1 Assumed conditions of operation
Safety requirement: [SM_001] This document is only valid if the recommended operating conditions
given in the Qorivva MPC5675K Microcontroller Data Sheet are maintained. [end]

Safety requirement: [SM_002] This document is only valid if the recommended production conditions
given in the MPC567xK quality agreement are maintained. [end]

Safety requirement: [SM_003] The latest device errata shall be taken into account during system design,
implementation, and maintenance. For a functional safety-related device such as the MPC567xK, this also
concerns functional safety-related activities such as system functional safety concept development. [end]

2.2 Safety function
Given the application independent nature of the MPC567xK, no general safety function can be specified.
Therefore, this document specifies a safety function being application independent for the majority of

MPC567xK Safety Manual, Rev. 1

General information

Freescale Semiconductor 8

applications. This application independent safety function would have to be integrated into a complete
(application dependent) item. Application independent safety functions include:

• Read Instructions out of flash memory, buffer these within instruction cache, execute instructions,
read data from RAM or flash memory, buffer these in data cache, process data, and write back
result data into RAM.

• (Optional) Writing to flash memory EEPROM is in general not part of the safety function, as it is
performed in a safe and controlled maintenance environment and the flash memory EEPROM
content validated multiple times before bringing back to operation. Only intermittent fault (non DC
Fault) for example, due to weak programming might cause a safety thread but is a maintenance
issue in principle and not a random fault field issue.

• (Optional) Reading data from SRAM or flash memory EEPROM, buffering data in DMA FIFO,
and writing data to SRAM or flash memory EEPROM by DMA engine.

• (Optional) Receiving external interrupt signals, branching instruction execution to interrupt service
routine.

2.3 Safe state
A Safe state of the system is named Safe statesystem whereas a Safe state of the MPC567xK is named
Safe stateMCU. A Safe statesystem of a system is an operating mode without an unreasonable probability of
occurrence of physical injury or damage to the health of persons. A Safe statesystem may be the intended
operating mode or a mode where it has been disabled.

Likewise, a Safe stateMCU of the MPC567xK is by definition one of following operation modes (see
Figure 1):

a) Operating correctly

b) Explicitly indicating an internal error (FCCU_F[0:1])

c) Reset

d) Completely unpowered

e) Safe Mode (functional safety relevant outputs of the MCU are forced to a high impedance state
due to MC_ME_SAFE_MC[PDO] = 1, no active output for example, tristate).

General information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 9

Figure 1. Safe stateMCU of the MPC567xK

Safety requirement: [SM_004] The system transitions itself to a Safe statesystem when the MPC567xK
explicitly indicates an internal error (FCCU_F[0:1]). [end]

Safety requirement: [SM_005] The system transitions itself to a Safe statesystem when the MPC567xK is
in reset state. [end]

Safety requirement: [SM_006] The system transitions itself to a Safe statesystem when the MPC567xK is
completely unpowered. [end]

Safety requirement: [SM_007] The system transitions itself to a Safe statesystem when the MPC567xK
has no active output (for example, tristate). [end]

2.4 Single-point Fault Tolerant Time Interval and Process Safety
Time

The single-point Fault Tolerant Time Interval (FTTI)/Process Safety Time (PST) is the time span between
a failure that has the potential to give rise to a hazardous event and the time by which counteraction has to
be completed to prevent the hazardous event occurring. It is used to define the sum of worst case fault
indication time and time for execution of corresponding countermeasures (reaction). Figure 2 shows the
FTTI for a single-point fault occurring in the MCU (Figure 2a) with an appropriate functional safety

correct

element

input

communication

correct output

wrong

element

input

communication

wrong output

a) Correct operation

FCCU_F[0:1]

b) Explicitly indicating an internal error

wrong

element

input

communication

wrong
output

d) Completely unpowered

no

element

input

communication

no output

e) Tristated outputs

wrong

element

input

communication

RESET

c) Reset

wrong output

MPC567xK Safety Manual, Rev. 1

General information

Freescale Semiconductor 10

mechanism to handle the fault (Figure 2b). Without any suitable functional safety mechanism, a hazard
may appear after the FTTI elapsed (Figure 2c).

PST in IEC 61508 is the equivalent of FTTI in ISO 26262. Whenever single-point fault tolerant time
interval or FTTI is mentioned in this document, it shall be read as PST for IEC 61508 applications.

Figure 2. Fault tolerant time interval for single-point faults

Fault indication time is the time it takes from the occurrence of a fault to switching into Safe stateMCU (for
example, indication of that failure by driving the error out pins, forcing outputs of the MCU to a high
impedance state, or by assertion of reset).

Fault indication time has five components, two of which are influenced by configuration settings:
recognition + internal processing + external indication + software cycle + software execution.

Each component of fault indication time is described as follows:

• Diagnostic test interval: is the interval between on-line tests (for example, software based self
test) to detect faults in a functional safety-related system. This time depends closely on the system
implementation (for example, software).

— Software cycle time of software based functional safety mechanisms. This time depends
closely on the software implementation.

• Fault detection time is the maximum of the detection time of all involved functional safety
mechanisms. The three mechanisms with the longest time are:

— ADC1 recognition time is a very demanding hardware test in terms of timing. The self-test
requires the ADC conversion to complete a full test. A single full test takes at least 70 µs2.

1.ADC recognition time is relevant only if ADC is used by the safety function.
2.This value takes into account the steps needed to run the three ADC hardware self-tests.

Emergency Operationitem
or Safe statesystem

Safe stateMCU
MCU normal

operation MCU failure operation

(MCU)
fault detection time

fault detection

(MCU)
fault reaction time

(MCU)
fault indication time

(item)
fault reaction

time

longest possible failure operation

item normal
operation item failure operation

item normal
operation

possible

time

b)

a)

c)

Fault Tolerant Time Interval (FTTI) of the safety
goal regarding single-point faults

Single-point fault*

*) not all failure
measures are visible
on item level
(controlled faults)
e.g. ECC-correction
of single bit

hazard

General information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 11

— Recognition time related to the FMPLL loss of clock: it depends on how the FMPLL is
configured. It is approximately 20 µs.

— Software execution time of software based functional safety mechanisms. This time depends
closely on the software implementation.

• Fault reaction time is the maximum of the reaction time of all involved functional safety
mechanisms consisting of internal processing time and external indication time:

— Internal processing time to communicate the fault to the FCCU lasts maximum 10 RC clock
cycles (RC is the internal safe clock with nominal frequency of 16 MHz).

— External indication time to notify an observer about the failure external to the MCU. This
time depends on the indication protocol configured in the Fault Collection and Control Unit
(FCCU):

— Dual Rail protocol and time switching protocol

— FCCU configured as “fast switching mode”: indication delay is maximum 64 µs. As
soon as FCCU receives a fault signal, FCCU reports the failure to the system.

— FCCU configured as “slow switching mode”: an indication delay could occur. The
maximum delay is equal to period of the error out signal (FCCU_CFG.FOP). This
parameter requires to be configured equal to its minimum which is 128 µs.

— Bi-stable protocol: indication delay is maximum 64 µs. As soon as the FCCU receives a
fault signal, it reports the failure to the system.

If the configured reaction to a fault is an interrupt an additional delay (interrupt latency) can occur until
the interrupt handler is able to start executing (for example, higher priority IRQs, XBAR contention,
register saving, and so on).

If the configured reaction to a fault is the forcing outputs of the MCU to a high impedance state (Safe
Mode) an additional delay (Safe Mode Request Timer) may occur until the outputs transit into Safe Mode
(for example, tristate).

The sum of the MCU fault indication time and system fault reaction time shall be less than the FTTI of the
functional safety goal.

2.5 Latent-FTTI for latent faults
The Latent Fault Tolerant Time Interval (L-FTTI) is the time span between a latent fault that has the
potential to coincidently show up with other latent faults and give rise to a hazardous multiple-point event
and the time by which counteraction has to be completed to prevent the hazardous event occurring. It is
used to define the sum of respective worst case fault indication time and time for execution of
corresponding countermeasure. Within this time frame the safety element out of context (SEooC) shall be
considered as unsafe. Figure 3 shows the L-FTTI for multiple-point faults in a system.

There is no equivalent to L-FTTI in IEC 61508.

MPC567xK Safety Manual, Rev. 1

General information

Freescale Semiconductor 12

Figure 3. Fault Tolerant Time Interval for latent faults

Latent fault indication time is the time it takes from the occurrence of a multiple-point failure to when the
indication of that failure is visible by driving the error out signals, forcing outputs of the MCU to a high
impedance state (Safe Mode), or by assertion of reset.

Fault indication time has five components, two of which are influenced by configuration settings:
recognition + internal processing + external indication + software cycle + software execution.

Each component of fault indication time is described as follows:

• Diagnostic test interval: is the interval between on-line tests (for example, software based self
test) to detect faults in a functional safety-related system that has a specified diagnostic coverage.
This time depends closely on the system level implementation (for example, software).

— Software cycle time of software based functional safety mechanisms. This time depends
closely on the software implementation.

• Fault detection time is the maximum of the detection time of all involved functional safety
mechanisms. The mechanisms with the longest time are:

— Single bit corrected permanent hardware SRAM fault – This fault is only controlled (corrected)
it is not reported (not detected) to the operator of the system. Therefore, it is a latent triple fault
scenario, as ECC has a reduced capability to detect triple bit faults. The L-FTTI is in the range
of 1×109h-1  2×105 years for a permanent single bit fault, or  20 years continuous operation
for 10000 faults.

— Software execution time of software based functional safety mechanisms. This time depends
closely on the software implementation.

Emergency Operationitem
or Safe statesystem

Safe stateMCU
MCU failure

(MCU)
fault detection time

(MCU)
fault indication time

fault reaction
time

longest possible failure operation

failure operation

hazard

time

b)

a)

c)

Fault Tolerant Time Interval (FTTI)

latent fault*

*) fault not infringing
the safety for itself,
only together with
an additional fault
(multiple fault)

operationMCU normal operation

normal operation

**) probability of multiple-point fault
infringing safety function is significant
e.g. 1/1000 of the total failure rate

of the safety goal regarding
multiple-point faults

multiple-point fault
detection interval of

the safety goal

Fault Tolerant Time Interval (L-FTTI) of the
safety goal regarding Latent Faults

normal operation

fault detection

(MCU)
fault reaction time

multiple-point fault**

General information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 13

• Fault reaction time

— Internal processing time to communicate the fault to the RCCU lasts maximum 10 RC clock
cycles (RC is the internal safe clock with nominal frequency of 16 MHz).

— External indication time to notify an observer about the failure external to the MCU. This
time depends on the indication protocol configured in the Fault Collection and Control Unit
(FCCU):

— Dual Rail protocol and time switching protocol

— FCCU configured as “fast switching mode”: indication delay is maximum 64 µs. As
soon as FCCU receives a fault signal, FCCU reports the failure to the system.

— FCCU configured as “slow switching mode”: an indication delay could occur. The
maximum delay is equal to period of the error out signal (FCCU_CFG.FOP). This
parameter configured to be configured equal to its minimum which is 128 µs.

— Bi-stable protocol: indication delay is maximum 64 µs. As soon as the FCCU receives a
fault signal, it reports the failure to the system.

In general, internal processing time, indication time, and execution time are negligible for multiple-point
failures since the L-FTTI is significantly larger than typical processing, indication, and execution times.

The sum of the MPC567xK latent fault indication and system latent and multiple-point fault reaction times
shall be less than the L-FTTI of the functional safety goal.

2.6 Failure handling
Failure handling can be split into two categories:

• Handling of failures before enabling the system level safety function (for example,
during/following the MCU initialization). These errors are required to be handled before the
system enables the safety function, or in a time shorter than the respective FTTI or L-FTTI after
enabling the safety function.

• Handling of failures during runtime with repetitive supervision while the safety function is
enabled. These errors are to be handled in a time shorter than the respective FTTI or L-FTTI.

Safety requirement: [SM_008] Single-point and latent fault diagnostic measures shall complete
operations (including fault reaction) in a time shorter than the respective FTTI or L-FTTI or alternatively
single-point and latent fault diagnostic measures shall complete operations (including fault reaction)
before enabling system level safety function. [end]

Recommendation: It is recommended to identify startup failures before enabling system level safety
functions.

A typical failure reaction regarding power-up/start-up diagnostic measures is not to initialize and start the
safety function and instead provide failure indication to the operator/user.

MPC567xK Safety Manual, Rev. 1

Functional safety concept

Freescale Semiconductor 14

3 Functional safety concept
Failures are the main impairment to functional safety:

• A systematic failure is manifested in a deterministic way to a certain cause (systematic fault), that
can only be eliminated by a change of the design process, manufacturing process, operational
procedures, documentation, or other relevant factors. Thus measures against systematic faults are
reduction of systematic faults for example, implementing and following adequate processes.

• A random hardware failure can occur unpredictably during the lifetime of a hardware element and
follows a probability distribution. Thus, measures reducing the likelihood of random hardware
faults is either the detection and control of the faults during the lifetime, or reduction of failure
rates. A random hardware failure is caused by either a permanent fault (for example, physical
damage), an intermittent fault, or a transient fault. Permanent faults are unrecoverable. Intermittent
faults are for example, faults linked to specific operating conditions or noise. Transient faults are
for example, particles (alpha, neutron) or EMI-radiation. An affected configuration register can be
recovered by setting the desired value or by a power cycle. Due to a transient fault an element may
be switched into a self destructive state (for example, single event latch up) and therefore may
cause permanent destruction.

3.1 Faults
The following random faults may generate failures, which may lead to the violation of a functional safety
goal. Citations are according to ISO 26262-1. Random hardware faults occur at a random time, which
results from one or more of the possible degradation mechanisms in the hardware.

• Single-Point Fault (SPF):
A SPF is “a fault in an element that is not covered by a safety mechanism” and that results to a
single-point failure “which leads directly to the violation of a safety goal”. Figure 4a shows a SPF
inside an element, which generates a wrong output. The equivalent in IEC 61508 to Single-Point
Fault is named Random Fault. Whenever a SPF is mentioned in this document, it is to be read as
a random fault for IEC 61508 applications.

• Latent Fault (LF):
A LF is a “multiple-point fault whose presence is not detected by a safety mechanism nor perceived
by the driver”. A LF is a fault which does not violate the functional safety goal(s) itself, but it leads
in combination with at least one additional independent fault to a dual- or multiple-point failure,
which then leads directly to the violation of a functional safety goal. Figure 4b shows a LF inside
an element, which still generates a correct output. No equivalent in IEC 61508 to LF is named.

• Residual Fault (RF):
A RF is a “portion of a fault that by itself leads to the violation of a safety goal”, “where the portion
of the fault is not covered by a functional safety mechanism”. Figure 4c) shows a RF inside an
element, which - although a functional safety mechanism is set in place - generates a wrong output,
as this particular fault is not covered by the functional safety mechanism.

• Dual-point fault (DPF):
A DPF is an “individual fault that, in combination with another independent fault, leads to a
dual-point failure” which leads directly to the violation to a goal. Figure 4d shows two LF inside
an element, which generates a wrong output.

Functional safety concept

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 15

• Multiple-point fault (MPF):
A MPF is an “individual fault that, in combination with other independent faults, leads to a
multiple-point failure” which leads directly to the violation of a functional safety goal. Unless
otherwise stated multiple-point faults are considered as safe faults and are not covered in functional
safety concept of the MPC567xK.

• Safe Fault (SF):
A SF is a “fault whose occurrence will not significantly increase the probability of violation of a
safety goal”. Safe faults are not covered in this document. Single-point faults, residual faults or
dual-point faults are not safe faults.

Figure 4. Faults

SPFs shall be detected within the FTTI. Latent Faults (dual-point faults) shall be detected within the
L-FTTI. In automotive applications L-FTTI is in general accepted to be once per typical automotive trip
time (Ttrip) by test routines (for example, BIST after power-up). This reduces the accumulation time of
latent faults from life-time of the product Tlife to Ttrip.

3.2 Failures
• Common Cause Failure (CCF):

CCF is a coincidence of random failure states of two or more elements in separate channels of a
redundancy element leading to the defined element failing to perform its intended safety function
resulting from a single event or root cause (chance cause, non-assignable cause, noise, Natural
pattern, …). Common Cause Failure causes the probability of multiple channels (N) having a
failure rate to be larger than single channel

N (redundant element > single channel
N).

SPF
input wrong

item

element

input

wrong
output

item

element

RF safety
measure

failure
undetected

input correct

item

element

LF

input wrong

item

element

LF
LF

a) Single-Point Fault (SPF)

c) Residual Fault (RF) d) Dual-Point Fault (DPF)

b) Latent Fault (LF)

output

output

output

MPC567xK Safety Manual, Rev. 1

Functional safety concept

Freescale Semiconductor 16

Figure 5. Common Cause Failures

• Common Mode Failure (CMF):
CMF is a subset of CCF. A a single root cause leads to similar coincidental erroneous behavior
(with respect to the safety function) of two or more (not necessarily identical) elements in
redundant channels, resulting in the inability to detect the failures.
Figure 6 shows three elements within two redundant channels. One single root cause (CMF A or
CMF B) leads to undetected failures in the primary channel and in one of the elements of the
redundant channel.

Figure 6. Common Mode Failures

• Cascading Failure (CF):
CFs occur when local faults of an element in a system ripple through interconnected elements
causing another element or elements of the same system and within the same channel to fail.
Cascading failures are dependent failures that are not common cause failures. Figure 7 shows two
elements within a single channel, to which a single root cause leads to a fault (fault 1) in one

element

input failure b

channel 2

fault2

element

input failure a

channel 1

fault1

CCF

element

input
failurefault2

input
failure

element

CMF A

fault1 fault1’

element

remedial actionfault2’
comparison

CMF B

primary channel

secondary channel

Functional safety concept

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 17

element resulting in a failure (failure a) causing a second fault (fault 2) within the second element
(failure b).

Figure 7. Cascading Failures

element

input
failure a

channel 1

fault1

element

failure b
channel 1

fault2

MPC567xK Safety Manual, Rev. 1

Functional safety concept

Freescale Semiconductor 18

3.3 General functional safety concept
Figure 8 shows the block diagram of the MPC567xK.

Figure 8. MPC567xK block diagram

DMA_1

ADC – Analog-to-digital converter
BAM – Boot assist module
CMU – Clock monitoring unit
CRC – Cyclic redundancy check unit
CTU – Cross triggering unit
DSPI – Deserial serial peripheral interface
EBI – External bus interface
ECC – Error correction code
ECSM – Error correction status module
eDMA – Enhanced direct memory access controller
FCCU – Fault collection and control unit
FEC – Fast Ethernet controller
FlexCAN – Controller area network controller
FlexPWM – Pulse width modulator module
FMPLL – Frequency-modulated phase-locked loop
I2C – Inter-integrated circuit controller
INTC – Interrupt controller

IRCOSC – Internal RC oscillator
JTAG – Joint Test Action Group interface
MC – Mode entry, clock, reset, & power modules
mDDR – Mobile double data rate dynamic RAM
PBRIDGE – Peripheral bridge
PDI – Parallel data interface
PIT – Periodic interrupt timer
PMU – Power management unit
RC – Redundancy checker
RTC – Real time clock
SEMA4 – Semaphore unit
SIUL – System integration unit Lite
SSCM – System status and configuration module
STM – System timer module
SWT – Software watchdog timer
TSENS – Temperature sensor
XOSC – Crystal oscillator

ECSM_0
STM
INTC

Crossbar switch (XBAR_2)

MMU

D-CACHE

e200z7d e200z7d

Crossbar switch (XBAR_1)

Memory protection unit

PBRIDGE

JTAG
Nexus

FlexRay

PBRIDGE

S
IU

L

M
C

W
ak

eU
p

A
D

C

A
D

C

X
O

S
C

B
A

M

S
S

C
M

S
ec

on
da

ry
 P

LL

F
M

P
LL

IR
C

O
S

C

C
M

U

C
M

U
C

T
U

P
IT

F
C

C
U

F
le

xP
W

M

F
le

xP
W

M

eT
im

er

eT
im

er

eT
im

er

F
le

xC
A

N

F
le

xC
A

N

LI
N

F
le

x

LI
N

F
le

x

D
S

P
I

D
S

P
I

D
S

P
I

C
R

C

C
M

U

SEMA4

T
S

E
N

S

PDI

A
D

C

A
D

C

C
T

U

F
le

xP
W

M

LI
N

F
le

x

LI
N

F
le

x

F
le

xC
A

N

F
le

xC
A

N

mDDR

I2 C I2 C I2 C

C
R

C

Crossbar switch (XBAR_0)

Core_0 Core_1

I-CACHE

DMA_0 FEC

PFLASHC PFLASHC

RC

ECSM_1
STM
INTC

SEMA4

RC

SRAM with ECC Logic
RC

RC

RC

EBI

SRAM with ECC Logic

Memory protection unit

PBRIDGE

MMU

D-CACHE

I-CACHE

Functional safety concept

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 19

Functional Safety integrity measures are as follows:

• Replication of IP: A dual core architecture reduces the need for component duplication at the
system level, and lowers overall system level complexity.

• For the dual cores and their closely related periphery, functional safety is improved by a lockstep
approach. Any deviation in the output of the two cores is detected by hardware and signaled as a
possible failure.

• Error correction or detection, or both, for flash memory and SRAM to reduce the effect of transient
faults (data and address domain) and permanent faults in integrated volatile and non volatile
memory.

• Safety measure to validate error correction circuitry of ECC modules in real time.

• Error correction or detection for cache and cache TAGS to control the majority of transient faults
and permanent faults.

• The generation and distribution of clock and power are supervised by dedicated monitors.

• Dedicated March built-in self-test circuitry for every SRAM module (48 MBIST modules)
detecting address decoding faults, stuck-at faults, and transition faults with a high level of
coverage. Reduced coverage is provided for coupling faults (for example, shorts and bridging
faults), delay faults (such as, serial resistance), and stuck open faults (such as, resistive) of word
line and bit line select drivers.

• Dedicated CRC built-in self-test circuitry for flash memory modules detecting address decoding
faults, stuck-at faults, transition faults, coupling faults (for example, shorts and bridging) and delay
faults (such as, serial resistance). Stuck-open faults (such as, resistive) of word line and bit line
select drivers have a lower level of coverage.

• Dedicated test circuitry to identify weak faults (such as, drift of memory cells) in flash memory.

• Programmer interface to the scan chain Design For Test measure (Logical Built-In Self-Test
(LBIST)). This LBIST allows setting and observing every flip-flop in an integrated circuit. Pattern
and signature generators are included to allow for flexible vector count and diagnostic coverage.

• An integrated state machine is used to test the internal structural elements of the analog to digital
converter (ADC). It follows the principal that internally applies twelve different voltage levels
using the internal digital to analog converter (DAC).

• The ADC has integrated watchdogs to detect timing faults in the ADC.

• Pre-sampling circuitry enabling to detect open faults on ADC inputs and multiplexers.

• Hardware FIFO to enable time redundancy (oversampling) for ADC inputs.

• Multiple instantiations of CAN protocol controller (FlexCAN) supporting listen only mode that
enables validation of messages received and transmitted using the multiplexed CAN bus.

• Diverse instantiations of timer and PWM modules (eTimer, FlexPWM, respectively) supported by
hardware Cross Trigger Unit (CTU) synchronization circuits.

• Hierarchical memory protection (system MPU, core MMU) to reduce the effects of interference in
the address domain with respect to hardware faults and software encapsulations.

• Diverse instantiations of clock generation (quartz based PLL clock and RC based oscillator).

• Safety Measures granting Boot ROM (BAM) not inferring to the functional safety.

• Safety measures granting debug modules not inferring to functional safety.

MPC567xK Safety Manual, Rev. 1

Functional safety concept

Freescale Semiconductor 20

• Multiple instantiations of high speed core buses, peripheral buses and bridges allowing detection
of time, control, and data domains.

• Multiple instantiations of DMA to allowing safe DMA operation.

• Multiple instantiations of OS timer to enable safe OS operations.

• Protection of critical registers to support coverage of software and hardware faults.

• Frequency metering to improve the precision of the Internal RC Oscillator (IRCOSC) to improve
diagnostic coverage of clock supervision.

• Individual slew rate control for pads. This allows for stronger I/O drive for safety critical systems
and weaker drive for non-safety critical signals.

• Multiple watchdogs that have independent time-bases and time-windows to monitor proper
program execution.

• Integrated measures to statistically monitor the type and number of instructions executed (logical
control flow supervision - performance monitor).

• Multiple instances of an interrupt module that detects faults in the control and time domains.

• Multiple instances of hardware CRC modules supporting application level signature measures (for
example, safety protocol for serial communication protocols).

• The Fault Collection and Control Unit (FCCU) is responsible for collecting and reacting to failure
notifications.

• The Reset Generation Module (MC_RGM) replicates the reaction to failure notification for a set
of critical failures.

• Risk of CMFs are reduced by:

— spatial separation of diagnostic and mission channels (core domain, I/O domain).

— buffering critical signals that physically cross non-critical channels.

— redundant monitoring of supply voltages and clocks.

— different synthesize constraints of mission and diagnostic channel elements.

— redundantly comparing replicated modules.

— separating redundant clock sources in the time domain (different frequencies).

• The functional safety of the periphery is ensured by application-level (system-level) measures
(such as connecting one sensor to different I/O modules, sensor validation by sensor fusion, etc.).

• Safety measures to detect erroneous test mode activation.

• Usage of internal (and external) watchdogs or timeout measures.

• Hardware semaphore unit that supports software encapsulation and improve data consistency.

• Dedicated mechanisms are provided to check the functionality of each error reaction path (such as
by application controlled fault injection).

• Redundant fault signal (time domain, data domain, and/or spatial domain).

• Signature

Both cores can operate in either one of two distinct operating modes: Lock-Step Mode (LSM) or
Decoupled Parallel Mode (DPM). In DPM, the two channels of the MCU work independently. Automatic
hardware checks for equal operation between the two channels are disabled in DPM. When in DPM,

Functional safety concept

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 21

system level software measures are needed to achieve adequate functional safety integrity (for example,
by implementing reciprocal comparisons).

The operating mode (LSM or DPM) on the MPC567xK is determined by the LSM_DPM user option bit
in the shadow block of the flash memory, and is configured to the appropriate mode for the system level
functional safety concept (see “Selecting LSM or DPM” section of the “Operating Modes” chapter in the
Qorivva MPC5675K Microcontroller Reference Manual).

As LSM is transparent to the system level (for example, to application software) specific requirements
must be fulfilled to improve functional safety integrity in case the device is intended to operate in LSM
(see Section 5.2.22, System Status and Configuration Module (SSCM)).

The MPC567xK microcontroller support only static configuration at power-on (either LSM or DPM).

3.3.1 Sphere of Replication - Lockstep Mode (LSM)

The Sphere of Replication (SoR) contains all hardware elements which are replicated for functional safety
reasons The replication is to detect permanent, dormant, latent and transient faults. The following modules
are included in the SoR:

• e200z7 Core (including Memory Management Unit)

• Enhanced Direct Memory Access (eDMA)

• Interrupt Controller (INTC)

• Crossbar Switch (XBAR)

• Memory Protection Unit (MPU)

• Flash Memory Controller (PFlashC)

• Static RAM Controller (SRAMC)

• System Timer Module (STM)

• Software Watchdog Timer (SWT)

• Peripheral Bridge (PBRIDGE)

In LSM mode each member of such a pair executes the same operations or transactions as its partner
resulting in lockstep behavior, where both cores and their corresponding peripherals are in synchronicity.
The test for equal execution is checked on the boundary of the SoR by the redundancy Control Checker
Units (RCCU).

Thus the RCCUs implement a modified fault isolation in a way that they detect but not prevent the
propagation of a non-common mode failure at the point where the two redundant channels are merged into
a single actuator or recipient.

Isolation of the overall system is then achieved by the Fault Collection and Control Unit (FCCU) signaling
an error, thereby allowing the device or application to react appropriately.

In order to simplify application software, the software executes transparently on both cores of the
MPC567xK and application sees only one logical core.

MPC567xK Safety Manual, Rev. 1

Hardware requirements on system level

Freescale Semiconductor 22

3.3.2 SoR – DPM

The SoR contains all hardware elements which are replicated for functional safety reasons The replication
is to detect permanent, dormant, latent and transient faults. The following modules are included in the SoR:

• e200z7 Core

• Enhanced Direct Memory Access (eDMA)

• Interrupt Controller (INTC)

• Crossbar Switch (XBAR)

• Memory Protection Unit (MPU)

• Flash memory controller (PFlashC)

• Static RAM Controller (SRAMC)

• System Timer Module (STM)

• Software Watchdog Timer (SWT)

• Peripheral Bridge (PBRIDGE)

• Static Random Access Memory (SRAM)

• Semaphore Unit (SEMA4)

In this mode, each CPU core executes code independently. This mode of operation configures the chip into
a symmetric multi-core processor. When in this mode, the redundancy checkers are disabled, and the
replicated peripherals are available at a different set of addresses. The SRAM is split in half and relocated.
In DMP mode, the hardware Semaphore module becomes available. Functional safety integrity has to be
achieved by system level measures. system level measures requires implementing three different classes
of measures:

• Avoidance of shared resources (reduce dependability): system should not use both replications of
replicated resources in a single channel for the safety function. A possible measure would be
exclusive usage of one of the replicated modules in each channel (for example, SRAM_0 is only
used by CPU_0 and SRAM_1 is only used by CPU 1.

• Comparing the results: system should implement the compare of the different channel data. A
possible measure application may to implementing reciprocal comparison by application software.
Semaphore Unit (SEMA4) may be used to control access to reciprocal data.

• Separation of resources (reduce interference): system should configure MPU, MMU or other
hardware measures to disable accesses to replicated resources of different replication sphere. Only
exception may be a small SRAM section to read reciprocal data (only read access) from other
channel (for example, I/O input, I/O output, calculation results). The Semaphore Unit (SEMA4)
may be used to control access to reciprocal data set.

4 Hardware requirements on system level
This section lists necessary or recommended measures on the system level for the MPC567xK to achieve
the functional safety goal(s).

The MPC567xK offers an integrated functional safety architecture using dual-core lockstep CPU (LSM),
a variety of replicated function blocks, several self-test units and other elements to detect faults. By these

Hardware requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 23

means, SPFs and LFs can be detected with a high diagnostic coverage. However, not all common mode
failures may be detected. In order to detect failures, which may not be detected by the MPC567xK itself,
it is assumed that separate circuitry is used to bring the system into Safe statesystem in such cases.

Figure 9 depicts a simplified application schematic for a functional safety relevant application in
conjunction with a separate IC (only functional safety-related elements shown). The MPC567xK is
supplied with its required supply voltages (1.2 V, 3.3 V and opt. 5 V). Although for most applications the
1.2 V for digital core supply is generated by an external ballast transistor from 3.3 V supply, internal
ballast transistor of the MPC567xK can be used as well. Voltages generated within the separate IC need to
be monitored for over voltage (over voltage supervision).

The separate integrated circuit also monitors the state of the error out signals FCCU_F[n] (error monitor).
Through a communication interface (for example, SPI), the MPC567xK repetitively triggers the watchdog
of the separate IC. In case of a failure (for example, watchdog not serviced correctly), reset output is
asserted LOW to reset the MPC567xK. A fail-safe output is available to control or deactivate any fail-safe
circuitry (for example, power switch).

Figure 9. Functional safety-related connection to external circuitry

4.1 Assumed functions by separate circuitry
This section describes separate components supporting the usage of the MPC567xK for application
requiring high functional safety integrity levels.

Failure rates of external services are only included for specific circuitries (clock, 1.2 V supply) in the
FMEDA of the MPC567xK and have to be included in the system FMEDA by the system integrator.

4.1.1 High impedance outputs

Rationale: In order to bring the functional safety-critical outputs to such a level, that a Safe statesystem is
achieved.

BCTRL

3.3V

ballast

VDD_HV

option

3.3V/5V
VDD_LV

VDD_HV_ADR

RESET

FCCU_F[0]
(FCCU_F[1])

SPI (or alternative)

External IC

overvoltage
supervision

error
monitor

watchdog

Fail safe output
(e.g. power switch)

1.2V

MPC567

MPC567xK Safety Manual, Rev. 1

Hardware requirements on system level

Freescale Semiconductor 24

Implementation hint: If the Safe stateMCU is “Completely unpowered” and “No active output (tristate)”
is not compliant to system-level Safe statesystem, a possible system-level countermeasure may be to place
pull-up or pull-down resistors to match the two sets of Safe states.

4.1.2 External Watchdog (EXWD)

Implementation hint: If the Safe stateMCU (completely unpowered and no active output (tristate)) is not
compliant to system level Safe statesystem, possible system level countermeasures can be implemented
using an external timeout to match the two sets of Safe states. A timeout may be used to switch to
Safe statesystem in case the Safe stateMCU completely disables proper MCU operation. Section 7.3.3,
External timeout function describes this measure in details.

Safety requirement under certain preconditions: [SM_031] If the system requires robustness regarding
catastrophic CMFs (such as, issues with the MPC567xK external power supply) and robustness regarding
systematic faults, system level measures are to be implemented. [end]

Recommendation: Implement using separate element (separate silicon substrate) measures to prevent or
detect catastrophic CMFs (such as, issues with the MPC567xK external power supply on system).

Implementation hint: An external timeout (EXWD) may be a measure detecting catastrophic CMFs, such
as failure of the MPC567xK external power supply and systematic failures. If a failure is detected, the
external timeout (watchdog) function (EXWD) switches the system to a Safe statesystem within the FTTI.

The timeout (watchdog) may be triggered periodically by the MPC567xK within the functional safety
relevant software. The trigger may be discrete signal(s) or message object(s). If within a timeout period
not triggered, a failure is detected by the external timeout (watchdog) function which switches the whole
system to a Safe statesystem within the FTTI (for example, the EXWD disconnects the MPC567xK from
the power supply, or the communication messages are invalidated by disabling the physical layer driver).

The implementation of the communication between the MPC567xK and the separate device can be chosen
as desired. The timeout (watchdog) can be triggered by communication via (examples):

• serial link (SPI),

• toggling I/O (GPIO),

• periodic message frames (FlexCAN, FlexRay, Fast Ethernet),

• toggling FCCU_F[0], FCCU_F[1] error out signals from the FCCU

4.1.3 Power Supply Monitor (PSM)

Supply voltage above the specified operational range might cause permanent damage to the MPC567xK
even if kept in reset. Therefore it is either required in case of over voltage to de-energize the MPC567xK
or to decommission/replace the MPC567xK after an over voltage event (continuos disable safety
function).

Safety requirement under certain preconditions: [SM_032] Measures maintaining system level the
Safe statesystem during and after any supply voltage above the specified operational range are required.
The Qorivva MPC5675K Microcontroller Data Sheet provides the specified operating voltage range to be
maintained. [end]

Hardware requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 25

Recommendation: On the system level, in order to avoid a situation where an over-voltage will be
supplied to the MPC567xK, permanently disable (Safe statesystem) the system when an over-voltage is
recognized.

Implementation hint: A separate and independent device may provide an over voltage monitor for the
MPC567xK external 3.3 V supplies. If the power supply is above the recommended operating voltage
range of the MPC567xK, the MPC567xK is to be kept powerless and the power supply monitor switches
the system to a Safe statesystem within the FTTI and maintain it in Safe statesystem (Overvoltage protection
with functional safety shut-off or a switch-over to a second power supply unit).

In case that over voltages can be completely inhibited by design of the power supply, over voltage
monitoring is dispensable.

Over voltage on 1.2 V core supply may be detected by the MPC567xK itself. But system level measure
may be required to maintain the Safe statesystem in case an over voltage cause destructive damages within
the MCU.

4.1.4 Error Out Monitor (ERRM)

If the MPC567xK signals an internal failure via its error out signals (FCCU_F[0] and optionally
FCCU_F[1]), the system cannot rely on the integrity of the MPC567xK outputs for safety functions. If an
error out is indicated, the system must transition to and remain in Safe statesystem. Depending on its
functionality, the system might disable or reset the device as a reaction to the indicated error out (see the
Safety requirements in Section 2.3, Safe state).

The system integrator can choose between two different methods to interface to the FCCU:

• Both FCCU signals connected to the separate device

• Only a single FCCU signal connected to the separate device

Both FCCU configurations work properly with all the supported error out protocols. Refer to the Qorivva
MPC5675K Microcontroller Reference Manual for a list of supported protocols.

Recommendation: Using a correctly configured FCCU to report failure detection is recommended to
fulfill the system level requirements regarding FTTI.

Rationale: To monitor the error out signals for correct functionality of the device.

The system (for example, ECU) may not rely on any output I/O other than FCCU_F[0] and FCCU_F[1],
when those signals indicate an error.

4.1.4.1 Both FCCU signals connected to separate device

In this configuration the separate device continuously monitors the output of the FCCU. Thus it can detect
if the FCCU does not work properly.

This configuration may not require any dedicated software support.

Rationale: To check the integrity of the FCCU and FCCU signal routing on the system level.

MPC567xK Safety Manual, Rev. 1

Hardware requirements on system level

Freescale Semiconductor 26

Implementation hint: If both error out signals (FCCU_F[0] and FCCU_F[1]) are connected to a separate
device, the separate device may check both signals, taking into account that FCCU_F[0] = FCCU_F[1].

Monitoring the error output signals through an asynchronous combinatorial logic (for example, XOR gate)
can generate some glitches. Synchronous sampling or asynchronous oversampling these signals reduces
the likelihood of glitches.

4.1.4.2 Single FCCU signal connected to separate device

A single signal, FCCU_F[0] (or FCCU_F[1]), is connected to the separate device.

If a fault occurs, the FCCU communicates it to the separate device through the FCCU_F[0] (or
FCCU_F[1]) signal.

The functionality of FCCU_F[0] (or FCCU_F[1]) can at least be checked in the following manner:

• FCCU_F[0] (or FCCU_F[1]) output read back (internal connection) in case of voltage domain
coding.

• FCCU_F[0] (or FCCU_F[1]) output connected externally to a normal GPIO in case of voltage
domain coding.

• FCCU_F[0] (or FCCU_F[1]) output uses a time domain coding (for example, is active for a
deterministic time interval once per deterministic time period).

The system integrator is asked to choose which solution fits the system level functional safety requirement.

The advantage of a single FCCU_F[n] signal being used instead of using both FCCU_F[n] signals as in
the previous section, is the lack of necessity for a separate device to be used for comparing the FCCU_F[n]
signals.

4.1.4.2.1 Single FCCU signal connected to separate device using voltage domain
coding

Recommendation: If a single signal, FCCU_F[0] or FCCU_F[1], is connected to a separate device not
applying a time domain coding, the correct operation of this signal is to be checked before executing any
safety function.

Rationale: To check the integrity of the FCCU error out I/O.

To verify the functionality of an FCCU_F[n] signal, a fault may be injected and the behavior of the pin
may be checked by the other error out signal, or GPIO. It’s possible to change the polarity of the error out
signal by configuring the FCCU_CFG[FCCU_CFG.PS] bit. Other methods for checking the functionality
of FCCU_F[0] (or FCCU_F[1]) may be implemented.

Since FCCU is monitoring the system, it is sufficient to check FCCU_F[0] (or FCCU_F[1]) within the
L-FTTI (for example, at power-up) in order to reduce the risks of latent faults. It is recommended that
FCCU_F[n] be checked once before the system begins performing the safety relevant function.

If the system is using the MPC567xK in a single error output signal mode, the application software
configures the signals and pads neighboring the FCCU_F[0] (or FCCU_F[1]) to use a lower drive strength.

Hardware requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 27

Using a lower drive strength on the GPIO near FCCU_F[0] (or FCCU_F[1]) will result in the higher
current strength of FCCU_F[n] to effect the logic level of the neighboring GPIO in the event of a short
circuit. Software may configure the slew rate for the relevant GPIO in the Pad Configuration Register
(PCR).

4.1.4.2.2 Single FCCU signal line connected to separate device using time domain
coding

Rationale: Decode the time domain coding.

Implementation hint: If a single signal line FCCU_F[0], or FCCU_F[1], is connected to a separate device
applying a time domain coding (for example, a decoder), a window timeout or windowed watchdog
function, is good practice.

A time domain coding of FCCU_F[0] (or FCCU_F[1]) signal may be implemented by periodically
injecting a fault within a determined time interval. An external window timeout (window watchdog) is
triggered by this time domain coding. In case of an unintended faults, the window watchdog is triggered
not within its window and a respective unintended fault signaled.

Since FCCU is a monitor, it is sufficient to implement a time domain interval in the range of L-FTTI. It is
recommended to toggle FCCU_F[0] (or FCCU_F[1]) signal once before the system begins performing the
safety relevant function.

4.2 Optional hardware measures on system level
As I/O operations are highly application dependant, functional safety assessments are not effective on the
MPC567xK level. Functional safety of I/O modules and peripherals may be assessed on system level. The
following sections provide examples of possible functional safety mechanisms regarding some I/O
operations.

Safety requirement under certain preconditions: [SM_033] When data communication is used in the
implementation of a safety function, then system level functional safety mechanisms are required to
achieve the necessary functional safety integrity of communication processes. [end]

Recommendation: System level measures to detect or avoid transmission errors, transmission repetitions,
message deletion, message insertion, message resequencing, message corruption, communication delay
and message masquerade improves the robustness of communication channels.

4.2.1 PWM output monitor (PWMA)

Parts of the integrated FlexPWM and eTimer do not provide the functional safety integrity IEC 61508
series and ISO 26262 requires for high functional safety integrity targets.

Safety requirement under certain preconditions: [SM_034] When FlexPWM outputs are used in the
implementation of a safety function suitable system level functional safety integrity measures may be
required to monitor these signals. [end]

Recommendation: System level measures to detect or avoid erroneous PWM output signals improve the
safety integrity of the PWM channels.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 28

Implementation hint: If the FlexPWM outputs are used for a safety critical function, the PWM output
may be monitored by system level measures (software, hardware).

Monitoring can be implemented explicitly by monitoring the PWM signal directly by a separate device.
An alternative approach monitors implicitly the PWM signal, by implementing an indirect PWM feedback
loop, for example, measuring average current flow of full bridge driver. This approach may use diverse
implemented input modules for example, the analogue to digital converter.

The distinctive PWM features that are to be managed by the system level measures are:

• Dead-time may need to be always positive and greater than the maximum value between TON and
TOFF of the inverter switches.

• Open GPIO and short to supply or ground may need to be detected. This can be detected for
example, by an MCU external feedback loop to a timer module of the MPC567xK capable to
perform input capture functionality (for example, eTimer).

The system must be switched to Safe statesystem if the MPC567xK detects an error.

To reduce the likelihood of erroneous control (for example, a motor control application with dead-time
requirements to reduce the likelihood of short circuits destroying the motor) in functional safety
application using I/O to control an actuator with short FTTI, the functional safety requires system level
supervision if the maximum fault indication time and fault reaction time of the MPC567xK exceeds the
FTTI of the actuators.

If the PWM signals drive switches of a power stage (for example, bridge driver), the eTimer may not be
fast enough to detect a dead-time fault because its fault indication time is often greater than the time
required to avoid destruction of the power stage.

5 Software requirements on system level
This section lists required or recommended measures when using the individual components of the
MPC567xK.

Given the application independent nature of the MPC567xK, no general safety function can be specified.
To define a specific safety function the MPC567xK would have to be integrated into a complete
(application dependent) system. Nevertheless, it is possible to define abstract element safety functions and
safety integrity functions:

• An element safety function is used to implement (or control) a functional safety means with
available hardware.

• A safety integrity function (often reductively called diagnostic measures) is to improve the
probability of successful execution of a functional safety means.

It is nevertheless possible to ignore the required measures if equivalent measures to manage the same
failures are included instead.

The modules covered by the SoR reach a very high diagnostic coverage (DC) without additional dedicated
measures at application or system level.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 29

5.1 Disabled modes of operation
The system level and application software must ensure that the functions described in this section are not
activated while running functional safety-relevant operations.

5.1.1 Debug mode

The debugging facilities of the MCU pose a possible source of failures in case they activate during the
operation of functional safety-relevant applications. They can halt the cores, cause breakpoints to hit, write
to core registers and the address space, and activate boundary scan. The MCU may not enter debug mode
to reduce the likelihood of interference with the normal operation of the application software. The state of
the JCOMP signal determines whether the system is being debugged or whether the system operates in
normal operating mode. When JCOMP is logic low, the JTAGC TAP controller is kept in reset for normal
operating mode. When it is logic high, the JTAGC TAP controller is enabled to enter debug mode. On the
system level, measures must be taken to ensure that JCOMP is not be asserted by external sources to avoid
entering debug mode. The activation of debug mode is supervised by the FCCU, and it signals a fault
condition when debug mode is entered. If the FCCU recognizes erroneous activation of debug mode,
JTAG signals will no longer recognize any input as being legal debug commands.

Safety requirement under certain preconditions: [SM_067] If modules like SWT, STM, DSPI, PIT,
FLEXRAY, FlexCAN, are functional safety relevant, it is required that application software configures the
respective module to continue execution in debug mode and to not 'freeze' operation when in debug mode.
[end]

Rationale: To improve robustness regarding erroneous activation of Debug mode.

Implementation hint: in Debug mode, the FRZ bit in the STM_CR register controls operation of the
Software Watchdog Timer (SWT). If the FRZ bit is cleared ('0'), the SWT counter continues to run in
Debug mode.

In Debug mode STM_CR[FRZ] controls operation of the System Timer Module (STM) counter. If the
STM_CR[FRZ] = 0, the counter continues to run in Debug mode.

The DSPI_MCR[FRZ] controls Deserial Serial Peripheral Interface (DSPI) behavior in the debug mode.
If DSPI_MCR[FRZ] = 0, the DSPI continues all active serial transfers when the device in the debug mode.

The FlexCAN_ MCR[FRZ] bit controls FlexCAN Module behavior in the debug mode. If the FRZ bit is
cleared ('0'), the FlexCAN Module continues communication (not affected by debug mode) when the
device in the debug mode.

The FR_ MCR[FRZ] bit controls FlexRay Communication Controller (FLEXRAY) behavior in the debug
mode. If the FRZ bit is cleared ('0'), the FLEXRAY Module continues communication (not affected by
debug mode) when the device in the debug mode.

In Debug mode, PITMCR[FRZ] controls operation of the Periodic Interrupt Timer (PIT) counter. If the
PITMCR[FRZ] = 0, the counter continues to run in Debug mode.

When the MCU is in debug mode, the External Bus Interface (EBI) behavior is unaffected and remains
operating as EBI module was configured. No specific action is required by application software.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 30

The Interrupt Controller (INTC) operation in debug mode is identical to its operation in normal mode. No
specific action is required by application software.

In Debug mode, DMACR[EDBG] controls operation of the Enhanced Direct Memory Access (eDMA). If
DMACR[EDBG] = 0, the ipg_debug input is ignored by the eDMA, and eDMA continues normal
operation in Debug mode.

When eTimer_CTRL3[DBGEN] = 00, the Enhanced Motor Control Timer (eTimer) continues normal
operation while the device is in debug mode.

When FlexPWM_CTRL2[DBGEN] = 1, the Motor Control Pulse Width Modulator Module (FlexPWM)
continues to run while the device is in debug mode.

5.1.2 Test mode

Several mechanisms of the MCU can be circumvented in test mode which endangers the functional safety
integrity.

Safety requirement: [SM_010] Test mode is used for comprehensive factory testing and is not validated
for normal operational usage. Test mode may not be used in normal operating mode without an explicit
agreement by Freescale. [end]

Recommendation: Disable test mode by system level software measures.

Implementation hint: The VPP_TEST pin is for testing purposes only, and has to be tied to GND in
normal operating mode. From a system level point of view, measures must ensure that the VPP_TEST pin
is not asserted to VDD during boot to avoid entering test mode. The activation of test mode is supervised
by the FCCU and it signals a fault condition when test mode is entered.

5.2 MPC567xK modules
Recommendation: It is recommended to periodically check the contents of configuration registers (more
than 10 registers) of modules attached to PBRIDGE_n by application measures to detect faults in the
PBRIDGE.

5.2.1 Fault Collection and Control Unit (FCCU)

The FCCU offers a hardware fail safe channel to collect faults and to bring the device into a Safe stateMCU
when a failure has occurred.

All faults detected by hardware measures are reported to the central Fault Collection and Control Unit
(FCCU). It monitors critical control signals and collects all errors. Depending on the particular fault, the
FCCU puts the device into the accordingly configured Safe stateMCU. This prevents fault propagation
(cascading faults) to system level. Only hardware configuration of the FCCU may be required by
application software. No CPU intervention is required for collection and control operation.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 31

The FCCU offers a systematic approach to fault collection and control. It is possible to configure the
reaction for each fault source separately. The distinctive features of the module are:

• Collection of redundant hardware checker results (for example, the RCCU. See Section 5.2.6,
Redundancy Control Checking Unit (RCCU))

• Collection of error information from modules whose behavior is essential with respect to the
functional safety goal

• Configurable and graded fault control:

— Internal reactions

— No reset reaction

— IRQ

— Functional Reset

— MPC567xK Safe Mode entered

— External reaction (failure is reported to the outside world via output signal(s) FCCU_F[n])

Two classes of faults are identified based on the criticality and the related reactions:

• critical faults

• non-critical faults

Table 1 lists sources for critical faults to be signalled to the FCCU and the type of issued reset.

Table 1. FCCU mapping of critical faults

Critical
Fault

Source
Supported

Mode
Signal description

Functional
reset

CF[0] RCCU0[0] LSM Cores out of lock long

CF[1] RCCU1[0] LSM Cores out of lock long

CF[2] RCCU0[1] LSM DMA Multiplexer out of lock long

CF[3] RCCU1[1] LSM DMA Multiplexer out of lock long

CF[4] RCCU0[2] LSM PBRIDGEs out of lock long

CF[5] RCCU1[2] LSM PBRIDGEs out of lock long

CF[6] RCCU0[3] LSM Bus master interface of FlexRay communication controller
crossbar switch (XBAR) out of lock

long

CF[7] RCCU1[3] LSM Bus master interface of FlexRay communication controller
crossbar switch (XBAR) out of lock

long

CF[8] RCCU0[4] LSM SRAM arrays out of lock long

CF[9] RCCU1[4] LSM SRAM arrays out of lock long

CF[10] RCCU0[5] LSM, DPM PFLASHC out of lock long

CF[11] RCCU1[5] LSM, DPM PFLASHC out of lock long

CF[12] RCCU0[6] LSM Bus slave interface of external bus interface (EBI) and DRAM
controller (DRAMC) crossbar switch (XBAR) out of lock

long

CF[13] RCCU1[6] LSM Bus slave interface of external bus interface (EBI) and DRAM
controller (DRAMC) crossbar switch (XBAR) out of lock

long

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 32

Table 2 lists all sources for non-critical faults to be signalled to the FCCU and the type of issued reset.

CF[14] SWT_0 LSM, DPM Software watchdog timer not triggered appropriately long

CF[15] SWT_1 LSM, DPM Software watchdog timer not triggered appropriately long

CF[16] ECSM_NCE_0 LSM, DPM Flash memory/SRAM ECC non-correctable error (dual and
multiple bit fault)

long

CF[17] ECSM_NCE_1 LSM, DPM Flash memory/SRAM ECC not able to correct fault (not
correctable error due to dual and multiple bit fault)

long

CF[18] ADC_CF_0 LSM, DPM Analogue to digital converter Internal self-test delivers
incorrect result (if configured as critical faults)

—

CF[19] ADC_CF_1 LSM, DPM Analogue to digital converter Internal self-test delivers
incorrect result (if configured as critical faults)

—

CF[20] STCU LSM, DPM Build in Self-test (LBIST, MBIST) delivers incorrect result (if
configured as critical faults)

—

CF[21] Reserved

CF[22] SSCM_XFER_ER
R

LSM, DPM SSCM transfer error occurred during STCU configuration
loading phase

—

CF[23] LSM_DPM_ERR_0 LSM, DPM MCU mode switched between LPM and DPM during runtime
(application active)

long

CF[24] LSM_DPM_ERR_1 LSM, DPM MCU mode switched between LPM and DPM during runtime
(application active)

long

CF[25] RCCU0[7] LSM Bus master interface of crossbar switch 2 (XBAR 2) to
crossbar switch (XBAR) out of lock

long

CF[26] RCCU1[7] LSM Bus master interface of crossbar switch 2 (XBAR 2) to
crossbar switch (XBAR) out of lock

long

CF[27] STCU LSM, DPM Wrong configuration of STCU as Self-Test Control Unit is
active during application

long

CF[28] DFT_0 LSM, DPM Reserved for internal test logic monitoring Combination of
functional safety critical signals from Test Control Unit (TCU)

long

CF[29] DFT_1 long

CF[30] DFT_2 long

CF[31] DFT_3 long

CF[32] CFlash_0 LSM, DPM Code flash memory detected fault during initialization —

CF[33] CFlash_1 LSM, DPM Code flash memory detected fault during initialization —

CF[34] DFlash_0 LSM, DPM Data flash memory detected fault during initialization —

CF[35] ADC_CF_2 LSM, DPM Analogue to digital converter Internal self-test delivers
incorrect result (if configured as critical faults)

—

CF[36] ADC_CF_3 LSM, DPM Analogue to digital converter Internal self-test delivers
incorrect result (if configured as critical faults)

—

CF[37] JTAG/NEXUS LSM, DPM Combination of functional safety critical signals from JTAG
and NEXUS Port Controller

long

Table 1. FCCU mapping of critical faults (continued)

Critical
Fault

Source
Supported

Mode
Signal description

Functional
reset

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 33

Table 2. FCCU mapping of non-critical faults

Non-critical
fault

Source Signal description Functional reset

NCF[0] Core_0 watchdog Core_0 watchdog prewarning status (p_wrs_core0[0]) long

NCF[1] Core_1 watchdog Core_1 watchdog prewarning status (p_wrs_core1[0]) long

NCF[2] FM_PLL_0 Frequency modulated phase lock loop 0 (FMPLL_0)
detected loss of lock

long

NCF[3] FM_PLL_1 Frequency modulated phase lock loop 1 (FMPLL_1)
detected loss of lock

long

NCF[4] CMU_0 Clock monitoring unit detected a loss of external
oscillator (XOSC) clock

long

NCF[5] CMU_0 Clock monitoring unit detected a system clock (Sysclk)
frequency being out of range

long

NCF[6] CMU_1 Clock monitoring unit detected a motor control clock
(MOTC_CLK) frequency out of range

long

NCF[7] CMU_2 Clock monitoring unit detected a FlexRay clock
(FRPE_CLK) frequency out of range

long

NCF[8] ECSM_ECN_0 ECC 1-bit error correction notification —

NCF[9] ECSM_ECN_1 ECC 1-bit error correction notification —

NCF[10] ADC_NCF_0 ADC_NCF_0: Analogue to digital converter Internal
self-test delivers incorrect result (if configured as non
critical faults)

—

NCF[11] ADC_NCF_1 ADC_NCF_1: Analogue to digital converter Internal
self-test delivers incorrect result (if configured as non
critical faults)

—

NCF[12] STCU_NCF MBIST or LBIST delivers incorrect result (if configured
as non critical faults)

—

NCF[13]

Reserved

NCF[14]

NCF[15]

NCF[16]

NCF[17]

NCF[18]

NCF[19] FLEXR_ECN ECC 1-bit error correction notification from static RAM
(LRAM, DRAM) memory array of FlexRay protocol
controller

—

NCF[20] FLEXR_NCE ECC not correctable error notification from static RAM
(LRAM, DRAM) memory array of FlexRay protocol
controller (combination of LRAM and DRAM ECC errors)

—

NCF[21] MC_ME Software device reset (reset request originated by
MC_ME)

—

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 34

The FCCU has two external signals, FCCU_F[0] and FCCU_F[1]. In Safe mode, critical errors are
reported on these signals. When the device is in reset or unpowered, these outputs are tristated.

FCCU_F[n] are intended to be connected to an independent device which continuously monitors these
signals. If a failure is detected, the separate device switches to and maintains the system to a
Safe statesystem condition within the FTTI. (for example, the separate device disconnects the MPC567xK
device from the power supply).

5.2.1.1 Initial checks and configurations

Besides the possible initial configuration, no CPU intervention is necessary for fault collection and fault
reaction.

Safety requirement: [SM_011] System level measures may configure the FCCU to enable all reactions
related to faults of peripherals used by the item safety function. [end]

Rationale: Maintain the device in the Safe statesystem in case of failure.

Implementation hint: The FCCU fault path is enabled by configuring FCCU registers (for example,
FCCU_CF_CFG0, FCCU_NCF_CFG0, FCCU_CFS_CFG0, FCCU_NCFS_CFG0, FCCU_NCF_TOE0,
and so on).

When a Clock Monitoring Unit (CMU) monitors a FMPLL that is not used, or is not used for functional
safety critical modules, error masking and limited internal reaction can be tolerated.

External reaction of the FCCU is always enabled and can not be disabled.

NCF[22]

ReservedNCF[23]

NCF[24]

NCF[25] ADC_NCF_0 ADC_NCF_2: Analogue to digital converter Internal
self-test delivers incorrect result (if configured as non
critical faults)

—

NCF[26] ADC_NCF_1 ADC_NCF_3: Analogue to digital converter Internal
self-test delivers incorrect result (if configured as non
critical faults)

—

NCF[27]

Reserved

NCF[28]

NCF[29]

NCF[30]

NCF[31]

Table 2. FCCU mapping of non-critical faults (continued)

Non-critical
fault

Source Signal description Functional reset

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 35

Safety requirement under certain preconditions: [SM_035] If the outputs of the system I/O’s need to
be forced to a high impedance state upon entering safe mode, MC_ME_SAFE_MC[PDO] is to be set to 1.
[end]

If the MPC567xK signals an internal failure via its error out signals (FCCU_F[0:1]), the system can no
longer trust the MPC567xK outputs used within the safety function. If an error is indicated, the system has
to be able to remain in Safe statesystem without any additional action from the MPC567xK. Depending on
its functionality, the system might disable or reset the MPC567xK as a reaction to the indicated error out.

5.2.1.2 Runtime checks

Safety requirement under certain preconditions: [SM_036] In case MCU switching continuously
between a standard operation state and the reset state or Fault State without any device shutdown does not
meet the Safe statesystem, item level measures must be implemented. [end]

Implementation hint: Software may be implemented to reduce the likelihood of cycling between a
functional and a fault state. For example, in case of periodic non critical faults, the software could clean
the respective status and periodically move the device from fault state to normal state. This looping may
be avoided.

To prevent permanent cycling between a functional state and a fault state, software will keep track of
cleaned faults, stop cleaning and stay in a Safe stateMCU instead in case of inacceptable high frequency of
necessary fault cleaning. The limit for the number and frequency of clearances is application dependent.
This may only be relevant in case continuous switching between a standard operation state and reset state
as a failure condition is not a Safe statesystem.

5.2.2 Reset Generation Module (MC_RGM)

A redundant fault notification path is achieved through the use of the Reset Generation Module
(MC_RGM) and the Fault Collection and Control Unit (FCCU).

Detected critical errors are forwarded independently to Reset Generation Module (MC_RGM) and Fault
Collection and Control Unit (FCCU). Additionally, the state of the MC_RGM is forwarded to the FCCU
and the FCCU forward an additional reset request to the MC_RGM. This decreases the likelihood of
common mode failures on the functional safety path and it ensures reaction to failures in all cases. Even if
FCCU would fail, a reset would be generated by MC_RGM to enter Safe stateMCU.

NOTE
Safe mode and reset use the MC_RGM as a common shared resource and
therefore prone to cascading faults and are not independent channels to
communicate an fault.

5.2.2.1 Initial checks and configurations

Safety requirement: [SM_012] It is good practice to configure a second failure notification channel to
communicate critical application faults redundantly. [end]

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 36

Recommendation: To have a redundant notification path, both MC_RGM and FCCU may be configured
to react to critical application faults.

Rationale: To have two notification paths in case of an error.

Implementation hint: To enable critical events to trigger a reset sequence, MC_RGM_FERD shall be set
to zero. If particular events are excluded, MC_RGM_FEAR shall be configured to generate an alternate
request in these cases.

To trigger a reset of the device by software, the MC_ME_MCTL[TARGET_MODE] shall be used.
Writing MC_ME_MCTL[TARGET_MODE] = 0000b causes a functional reset, and writing
MC_ME_MCTL[TARGET_MODE] = 1111b causes a destructive reset.

Recommendation: It is recommended that the peripheral access control in the PBRIDGE_n be configured
by application software to prohibit access to the MC_RGM_PRST[n] (individual module reset
programming model).

5.2.3 Self Test Control Unit (STCU)

The STCU executes built in self test (LBIST, MBIST) and gives reaction to detected faults by triggering
a Non-Critical Fault (NCF) to the FCCU (see Chapter 50 “Self-Test Control Unit (STCU)” in the Qorivva
MPC5675K Microcontroller Reference Manual for details).

5.2.3.1 Initial checks and configurations

The STCU does not require any configuration performed by application software.

Safety requirement under certain preconditions: [SM_037] When built in self test (for example,
LBIST, MBIST, ADBIST) circuits of the MPC567xK are used as functional safety integrity measure (for
example, to detect random faults, latent fault detection, and single-point fault detection) in a functional
safety system, functional safety integrity measures on system level shall be implemented ensuring STCU
integrity during/after STCU initialization but before executing a safety function. [end]

Rationale: The STCU’s correct behavior shall be verified by checking the expected results by software.

Implementation hint: System (application) level software shall carry out checking of STCU for ensuring
STCU integrity. See the section 50.1.2 “Integrity software operations” within Chapter 50 “Self-Test
Control Unit (STCU)” chapter in the Qorivva MPC5675K Microcontroller Reference Manual for details.

Implementation hint: The Integrity software shall confirm that all MBISTs and LBISTs finished
successfully with no additional errors flagged.

This software confirmation prevents a fault within the STCU itself from incorrectly indicating that the
built in self-test passed.

This is an additional functional safety layer since the STCU propagates the LBIST/MBIST and internal
faults using the CF signals of the FCCU. So, reading STCU_LBS, STCU_LBE, STCU_MBSL,
STCU_MBSH, STCU_MBEL, STCU_MBEH and STCU_ERR registers helps to increase the STCU
auto-test coverage.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 37

Implementation hint: The STCU shall be configured (for example, in test flash memory) to execute the
LBIST and MBIST before activating the application safety function (see section 50.4.3.2 “STCU
Configuration Register (STCU_CFG)” in Chapter 50 “Self-Test Control Unit (STCU)” and section 8.2.5
“Test sector” in Chapter 8 “Flash Memory” of the Qorivva MPC5675K Microcontroller Reference
Manual). Also, the application note MPC5675K Test and Shadow Flash Parameters for ADC Self Test,
MBIST, and LBIST (Document Number: AN4422) describes the test flash memory addresses to enable
LBIST and MBIST during power-up (destructive reset).

5.2.4 Temperature Sensor (TSENS)

Recommendation: To reduce the likelihood of common mode failure(s), the effects of increasing
temperature, for example, due to random hardware fault(s), may be controlled on system level.

Recommendation: The potential for over-temperature operating conditions need to be reduced by
appropriate system level measures. Possible measures could include:

• Actuation of the functional safety shut-off via thermal fuse.

• Several levels of over-temperature sensing and alarm triggering.

• Connection of forced-air cooling and status indication.

Implementation hint: A temperature sensor monitors the substrate temperature to detect
over-temperature conditions before they cause common mode failure (for example, faults due to
over-temperature causing identical erroneous results from both cores). The maximum operating junction
temperature is specified in the device data-sheet. The sensor output is forwarded to the analog acquisition
channel for measurement (temperature sensor mapped to channel 15 of ADC_0). As no redundant
temperature sensor is implemented, respective item level measures may be required to verify the integrity
of the measured temperatures to detect possible malfunctions of the sensor itself.

5.2.4.1 Initial checks and configurations

Recommendation: If using the temperature sensor as common mode fault measure, during or after
initialization but before executing any safety function the temperature sensor shall be read by software and
rationalize if temperature is plausible and within operational temperature range.

However, nothing prohibits reading the temperature sensor during execution of the safety function
(application run time).

Rationale: A means of assessing functionality of the temperature sensor

Implementation hint: Temperature sensor reading can be validated by implementing an additional
temperature sensor on item level. Reading the temperature value of both sensors and comparing these two
if being in the same temperature range would enable detection of latent faults of temperature sensor.

Safety requirement under certain preconditions: [SM_038] If using the internal temperature sensor and
an external temperature sensor as common mode fault measure, to improve common mode failure(s)
robustness, the temperature reading should not use the same analog to digital converter (ADC) to reduce
common resources shared for the two temperate measurement channels. [end]

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 38

5.2.4.2 Runtime checks

Rationale: To detect over-temperature potentially causing common mode faults

Implementation hint: The temperature should be acquired by software within FTTI during the safety
function being active (application run time) to improve the functional safety integrity regarding common
mode faults (over temperature). In case of a temperature not within the operational range, application
software shall switch the item to a Safe statesystem.

To set a proper threshold the system integrator shall consider the temperature sensor accuracy (see the
Qorivva MPC5675K Microcontroller Data Sheet, and the Qorivva MPC5675K Microcontroller Reference
Manual for the on TSENS_n implementation in relation to the ADC).

5.2.5 Software Watchdog Timer (SWT)

The Software Watchdog Timer (SWT) is a peripheral module that can prevent system lockup in situations
such as software getting trapped in a loop or if a bus transaction fails to terminate. The objective of the
SWT is to detect an erroneous program sequence. The refresh of the software watchdog timer occurs
within a specified timeout period. If not, according to SWT configuration, a reset can be generated
immediately or the SWT can first generate an interrupt and re-initialize the SWT with the timeout period.
Only if the service sequence is not written before the second consecutive timeout, the SWT generates a
reset.

The SWT down counter is always driven by the IRCOSC clock.

Two service procedures are available:

• a fix service sequence represented by a write of two fix values (0xA602, 0xB480) to the SWT
service register. Writing the service sequence reloads the internal down counter with the timeout
period.

• The second is based on a pseudo-random key computed by the SWT every time it is serviced and
which is written by the software on the successive write to the service register. The watchdog can
be refreshed only if the key calculated in hardware by the watchdog is equal to the key provided
by software which may calculate the key in one or more procedure/tasks (so called signature
watchdog).

5.2.5.1 Runtime checks

Rationale: To detect an erroneous program sequence

Implementation hint: Control flow monitoring can be implemented using SWT. However, other control
flow monitoring approaches that do not used the SWT may also be used. In case using SWT, it shall be
enabled and configuration registers shall be hard-locked against manipulation by application software. The
SWT time window settings shall be set to a value less than the FTTI. Detection latency shall be smaller
than FTTI. During/after initialization but before executing any safety function any safety function, the
software shall check that the SWT is enabled by checking the SWT control register (SWT_CR).

To enable the SWT and to hard-lock the configuration register, the WEN and HLK flags of the SWT
control register (SWT_CR) shall be asserted. The timeout register (SWT_TO) shall contain a 32-bit value

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 39

that represents a timeout less than the FTTI. If Windowed mode and Keyed Service mode (two
pseudorandom key values used to service the watchdog) are enabled, it is possible to reach a temporal and
logical flow monitoring.

5.2.6 Redundancy Control Checking Unit (RCCU)

The task of the RCCU unit is to perform a cycle-by-cycle comparison of the outputs of the modules
included in the SoR. The SoR is the logical part of the device that contains all the modules that are
replicated for functional safety reasons. The RCCU is able to detect any mismatch between the outputs of
two replicated modules. The error information is forwarded to the Reset Generation Module (MC_RGM)
and to the Fault Collection and Control Unit (FCCU). The RCCUs are automatically enabled when
MPC567xK is in the LSM mode.

5.2.6.1 Initial checks and configurations

The use of the RCCU is indispensable. This is automatically managed by the MPC567xK device. RCCU
cannot be disable by application software.

5.2.7 Cyclic Redundancy Checker Unit (CRC)

The CRC module offloads the CPU in computing a CRC checksum. The CRC has the capability to process
two interleaved CRC calculations. The CRC module may be used to detect erroneous corruption of data
during transmission or storage. The CRC takes as its input a data stream of any length and calculates a
32-bit output value (signature). The contents of the configuration registers of the functional safety-related
modules shall be checked within the FTTI.

5.2.7.1 Runtime checks

Parts of the MCU configuration registers do not provide the functional safety integrity IEC 61508 series
and ISO 26262 requires for high functional safety integrity targets. This relates to systematic faults, for
example, in the application software, as also regarding random faults, for example, single event upsets.

Safety requirement: [SM_014] System level measures verifies the content of the MCU configuration
registers of the modules involved with the safety function to detect erroneous corruption of the content.
[end]

The CRC module offloads the CPU in computing a CRC checksum. The CRC has the capability to process
two different CRC calculations at the same time.

Rationale: To check the integrity of the module configuration.

Implementation hint: The CRC module offloads the CPU in computing a CRC checksum. The CRC has
the capability to process two different CRC calculations at the same time. To verify the content of the MCU
configuration registers of the modules involved with the safety function, the CRC module may be used to
calculate a signature of the content of the registers and compare this signature with a value calculated
during development.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 40

Alternatively, the CPU could be used instead of the CRC module to check that the value of the
configuration registers have not changed. However, using the CRC module is more effective.

Implementation hint: The CRC module could be used to detect data corruption during transmission or
storage. The CRC takes as its input a data stream of any length and calculates a 32-bit signature value.

Implementation hint: The expected CRC of the configuration registers of the modules involved with the
safety function shall be calculated offline. When the safety function is active (application run time), the
same CRC value shall be calculated by the CRC module within the FTTI. To unload the CPU, the eDMA
module can be used to support the data transfer from the registers under check to the CRC module. The
result of the runtime computation is then compared to the predetermined value.

The application shall include detection, or protection measures, against possible faults of the CRC module
only if the CRC module is used as safety integrity measure or within the safety function.

Implementation hint: An alternative approach would use the DMA to reinitiation the content of the
configuration registers of the modules involved with the safety function within the respective FTTI when
the safety function is active (application run time). This approach may require additional measures to
detect permanent failures (not fixed by reinitiation).

5.2.7.1.1 Implementation details

The eDMA and CRC modules should be used to implement these safety integrity measures to unload the
CPU.

NOTE
Caution: The signature of the configuration registers is computed in a
correct way only if these registers do not contain any volatile status bit.

5.2.7.1.1.1 <module>_SWTEST_REGCRC

The following safety integrity functions for register configuration checks are used in this document:

• ETIMER0_SWTEST_REGCRC

The eTimer_0 configuration registers are read and a CRC checksum is computed. The checksum
is compared with the expected value.

• ETIMER1_SWTEST_REGCRC

The eTimer_1 configuration registers are read and a CRC checksum is computed. The checksum
is compared with the expected value.

• ETIMER2_SWTEST_REGCRC

The eTimer_2 configuration registers are read and a CRC checksum is computed. The checksum
is compared with the expected value.

• SIUL_SWTEST_REGCRC

The configuration registers of the SIUL are read and a CRC checksum is computed. The checksum
is compared with the expected value.

• FLEXPWM0_SWTEST_REGCRC

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 41

The FlexPWM_0 configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

• FLEXPWM1_SWTEST_REGCRC

The FlexPWM_1 configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

• FLEXPWM2_SWTEST_REGCRC

The FlexPWM_2 configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

• ADC0_SWTEST_REGCRC

The ADC_0 configuration registers are read and a CRC checksum is computed. The checksum is
compared to the expected value.

• ADC1_SWTEST_REGCRC

The ADC_1 configuration registers are read and a CRC checksum is computed. The checksum is
compared to the expected value.

• ADC2_SWTEST_REGCRC

The ADC_2 configuration registers are read and a CRC checksum is computed. The checksum is
compared to the expected value.

• ADC3_SWTEST_REGCRC

The ADC_3 configuration registers are read and a CRC checksum is computed. The checksum is
compared to the expected value.

5.2.8 Internal RC Oscillator (IRCOSC)

The IRCOSC has a nominal frequency of 16 MHz, but a frequency accuracy of ± 6 % (after trimming)
over the full voltage and temperature range has to be taken into account. It does not require any external
crystal. Functional safety-related modules which use the clock generated by the internal RC oscillator are:
FCCU, CMU, and SWT. In rare case of RC clock failure, these modules stop working.

5.2.8.1 Initial checks and configurations

The frequency meter of the CMU_0 shall be exploited to check the availability and frequency of the
internal IRCOSC. This feature allows to measure the IRCOSC frequency using the external oscillator
clock as known one (IRC_SW_CHECK).

Safety requirement: [SM_015] The IRCOSC frequency is measured and compared to the expected
frequency of 16 MHz ( 6 % accuracy). This test is performed after power-up before executing any safety
function. CMU_CSR[FSM] flag is checked and is reset to 0 when enabling the safety function. [end]

Rationale: To check the integrity of the IRCOSC

Please refer to section “Frequency meter” in the Qorivva MPC5675K Microcontroller Reference Manual.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 42

NOTE
If the IRCOSC is not operating due to a fault, the measurement of the
IRCOSC frequency will never complete and the CMU_CSR[FSM] flag will
remain set. The application may need to manage detecting this condition.
For example, implementing a software watchdog which monitors the
CMU_CSR[FSM] flag status.

5.2.8.2 Runtime checks

Recommendation: To increase the fault detection, this functional safety integrity measure can be
executed once per FTTI.

5.2.9 Frequency-Modulated PLL (FMPLL)

MPC567xK consists of two Frequency-Modulated Phase-Locked-Loops (FMPLL) to generate high speed
clocks. Each FMPLL provides a loss of lock error indication that is routed to the MC_RGM and the FCCU
(NCF[2], NCF[3]). In case of no lock, the “system clock” can be driven by the RC oscillator, a FMPLL
fault is considered as a Non-Critical Fault. Glitches which may appear on the crystal clock are filtered
(low-pass filter) by the FMPLL. The FMPLL dedicated to the system clock is a modulated PLL to reduce
EMI and it’s clock is distributed to the processing hardware elements. The auxiliary clock from the second
FMPLL is instead distributed to the peripherals that require precise timing (FlexRay, eTimer, FlexPWM)
and it’s clock is not modulated.

Since in case of fault the “system clock” can be driven by the IRCOSC, a FMPLL fault is considered as a
Non-Critical Fault (NCF).

Implementation hint: The pll_fail output are measured (FMPLL_0_CR[PLL_FAIL_MASK] = 0 and
FMPLL_1_CR[PLL_FAIL_MASK] = 0). To enable the MC_RGM input related to FMPLL loss of clock,
the registers MC_RGM_FERD and MC_RGM_FEAR shall be configured.

5.2.9.1 Initial checks and configurations

After system reset, the external crystal oscillator is powered down and the FMPLL deactivated. Software
shall enable the oscillator.The MPC567xK uses after system reset the internal RC oscillator clock
(IRCOSC) as clock source (see “Oscillators” chapter in the Qorivva MPC5675K Microcontroller
Reference Manual and Section 5.2.8, Internal RC Oscillator (IRCOSC)).

Safety requirement: [SM_016] Before executing any safety function, a high quality clock (low noise, low
likelihood for glitches) based on an external clock source shall be configured as the system clock of the
MPC567xK. [end]

Rationale: Since the IRCOSC is used by the CMUs as reference to monitor the output of the two PLLs,
it cannot be used as input of these PLLs.

Implementation hint: The FMPLLs shall be configured to be used the external oscillator (XOSC) as a
clock reference or an external provided clock reference. In general MC_CGM_AC3_SC[SELCTL] and
MC_CGM_AC4_SC[SELCTL] shall be set to ‘1’.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 43

Safety requirement under certain preconditions: [SM_039] When clock glitches endanger the system
level functional safety integrity measure respective functional safety relevant modules shall be clocked
with a FMPLL generated clock signal, as the PLL includes respective filters to reduce the likelihood of
clock glitches due to external disturbances. Alternatively a high quality external clock having low noise
and low likelihood of clock glitches shall be used. [end]

Rationale: To reduce the impact of glitches stemming from the external crystal and its hardware
connection to the MCU.

Implementation hint: This requirement is fulfilled by appropriately programming the Clock Generation
Module (MC_CGM) and Mode Entry Module (MC_ME).

During/after initialization but before executing any safety function, application software has to check that
the MPC567xK uses the FMPLL clock as “system clock” (PLL_SW_CHECK).

Implementation hint: Application software can check the current “system clock” by checking the
MC_ME_GS[S_SYSCLK] flag. MC_ME_GS[S_SYSCLK] = 4 indicates that the FMPLL clock is being
used as the system clock.

5.2.10 Clock Monitor Unit (CMU)

The main task of the CMU is to supervise the integrity of various clock sources. The following clocks in
the MPC567xK are supervised by three CMUs:

• system FMPLL

• secondary FMPLL

• 16 MHz internal RC oscillator (IRCOSC)

• external crystal oscillator (XOSC)

All three CMUs use the IRCOSC (16 MHz internal oscillator) as the reference clock for independent
operation from the monitored clocks. Their purpose is to check for error conditions due to:

• loss of clock from external crystal (XOSC)

• loss of reference (IRCOSC)

• PLL clock out of a programmable frequency range (frequency too high or too low)

• loss of PLL clock

The three CMUs supervise the frequency range of various clock sources. In case of abnormal behavior, the
information is forwarded to the FCCU as non-critical faults:

• CMU_0 monitors the clock signal of the SoR (NCF[5]) and the clock from the crystal oscillator
(NCF[4])

• CMU_1 monitors the clock signal used by the Motor Control related peripherals (for example,
eTimer, FlexPWM, CTU and ADC) (NCF[6])

• CMU_2 monitors the clock signal for the protocol engine of the FlexRay module, FlexCAN and
other parts requiring non-modulated frequency (NCF[7])

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 44

5.2.10.1 Initial checks and configurations

Safety requirement: [SM_017] The following supervisor functions are required: [end]

• Loss of external crystal oscillator clock

• FMPLL frequency higher than the (programmable) upper frequency reference

• FMPLL frequency lower than the (programmable) lower frequency reference

Rationale: To monitor the integrity of the clock signals

Recommendation: CMU may be used for each clock that is used by a functional safety relevant module.
Application software shall check that the CMUs are enabled and their faults managed by the FCCU.

Implementation hint: In general, the following two application-dependent configurations shall be
executed before CMU monitoring can be enabled.

• The first configuration is related to the crystal oscillator clock (XOSC_CLK) monitor of CMU_0.
Software configures CMU_0_CSR[RCDIV] to select an IRCOSC divider. The divided IRCOSC
frequency is compared with the XOSC_CLK.

• The second configuration is related to other clock signals being monitored. The high frequency
reference (CMU_n_HFREFR_A[HFREF_A]) and low frequency reference
(CMU_n_LFREFR_A[LFREF_A]) is configured depending on the SoR (CMU_0), motor control
related peripherals (CMU_1) and FlexRay (CMU_2) clock frequencies.

Once the CMUs are configured, clock monitoring will be enabled when software writes
CMU_n_CSR[CME_A] = 1.

5.2.11 Mode Entry (MC_ME)

Safety requirement under certain preconditions: [SM_065] If application uses Low Power (LP) mode,
it is required to monitor the duration in LP mode. If the system does not wake up within a specified period,
the system will be reset by the monitoring circuitry. [end]

Implementation hint: The SWT may provide the time monitoring.

Safety requirement under certain preconditions: [SM_066] If application uses Low Power (LP) mode,
it is required that application software performs a test of entry and exit to and from LP mode at startup.
[end]

Rationale: To overcome faults in the wakeup and interrupt inputs to the MC_ME if the application uses
Low Power mode.

5.2.12 Power Management Controller (PMC)

The Power Management Controller (PMC) manages the supply voltages for all modules on the device.
This unit includes the internal regulator and ballast for the logic power supply (1.2 V) and a set of voltage
monitors. Particularly, it embeds low voltage detectors (LVD) and high voltage detectors (HVD). If one of
the monitored voltages goes below (LVD) or above (HVD) a given threshold, a destructive reset is initiated
to control erroneous voltages before these cause a common mode failure.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 45

The supplies monitored by the PMC are summarized in Table 3.

• Flash memory (VDDFLASH) – LVD_VDDFLASH1 (LVD_FLASH)

• I/O (VDDIO) – LVD_VDDIO1

• Analogue to digital converter (VDDADC) - LVD_VDDDADC1

• VREG (VDDREG) – LVD_VDDREG1

• 1.2 V digital core supply (VDD)

— LVD_VDD1

— HVD_VDD1

Over voltage of any 3.3 V supply shall be monitored externally being described in Section 4.1.3, Power
Supply Monitor (PSM).

5.2.12.1 1.2 V supply supervision

Voltage detectors LVD_VDD and HVD_VDD monitor the digital (1.2 V) core supply voltage for over and
under voltage in relation to a reference voltage. Figure 10 depicts the logic scheme of the voltage detectors.
In case the core main voltage detector detects over or under voltage during normal operation of the
MPC567xK, a destructive reset is triggered.

Figure 10. Logic scheme of the core voltage detectors

By this means, a failing external ballast transistor (stuck-open, stuck-closed) is also detected.

Safety requirement under certain preconditions: [SM_040] When the system requires respective
robustness regarding 1.2 V over voltage failures, the external VREG mode is preferably selected. The
internal VREG mode uses a single pass transistor and, therefore, over voltage can not be shut off
redundantly. [end]

1. Abbreviations used in the Chapter 44 “Power Management Controller (PMC)” section of the Qorivva MPC5675K Microcontroller
Reference Manual.

Table 3. PMC Monitored Supplies

Detector Type Detector Name Voltage Monitored Comments

Flash memory LVD LVD_VDDFLASH 3.3 V flash memory
supply

—

I/O LVD LVD_VDDIO 3.3 V I/O supply —

VREG LVD LVD_VDDREG 3.3 V VREG supply —

Core main LVD LVD_VDD 1.2 V core supply —

Core main HVD HVD_VDD 1.2 V core supply —

HVD_VDD
LVD_VDD

to MC_RGM
(destructive reset)1.2V supply

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 46

Rationale: To enable system level measures to detect or shut down the supply voltage in case of an
destructive (multiple-point faults) 1.2 V over voltage incident.

Implementation hint: To reduce the likelihood of destructive damage due to a stuck-closed external
ballast transistor (item/system level component), it may be necessary to implement two ballast transistors
sequential as a system level functional safety integrity measure. This will load the regulator with two
ballast transistors. In order to use two ballast transistor a ~ 30 % Cg (or smaller, transistor gate capacity)
should be selected. Alternative the digital (1.2 V) core supply voltage may be monitored externally and
the power supply shut-down in case of an over voltage. Alternatively an external 1.2 V HVD may detect
over voltage and shut down the 3.3 V supply voltage.

Safety requirement: [SM_019] Parts of the voltage detectors LVD_VDD and HVD_VDD monitoring the
digital (1.2 V) core supply voltage for over and under voltage may not provide the functional safety
integrity IEC 61508 series and ISO 26262 requires for high functional safety integrity targets as no
functional safety integrity measures to detect latent faults within voltage detectors LVD_VDD and
HVD_VDD is integrated. System level functional safety assessments have to validate this is compliant to
the item level functional safety requirements and respectively if required add additional item level
functional safety integrity measures. [end]

5.2.12.2 3.3 V supply supervision

Voltage detectors LVD_VDDIO, LVD_VDDVREG, and LVD_VDDFLASH monitor the 3.3 V supply for
under voltage in relation to a reference voltage. Figure 11 depicts the logic scheme of the voltage detectors.
In case a single LVD detects under voltage during normal operation of the MPC567xK, a destructive reset
is triggered.

Figure 11. Logic scheme of the 3.3 V voltage detectors

Safety requirement: [SM_020] Parts of the voltage detectors LLVD_VDDIO, LVD_VDDVREG, and
LVD_VDDFLASH monitoring the supply voltage for under voltage may not provide the functional safety
integrity IEC 61508 series and ISO 26262 requires for high functional safety integrity targets as no
functional safety integrity measures to detect latent faults within voltage detectors LVD_VDD and
HVD_VDD are integrated. System level functional safety assessments have to validate this is compliant
to the item level functional safety requirements and respectively if required additional item level functional
safety integrity measures may be implemented. [end]

5.2.13 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) provides hardware access control for all memory references
generated in a device. Using preprogrammed region descriptors that define memory spaces and their
associated access rights for each XBAR bus master (cores, DMAs, FlexRay protocol controller, Fast
Ethernet protocol controller), the MPU concurrently monitors all system bus transactions (including those

LVD
(in module)

to MC_RGM
(destructive reset)

3.3V supply

reference voltage

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 47

initiated by the eDMA, fast Ethernet protocol controller, or FlexRay protocol controller) and evaluates the
appropriateness of each transfer.

Memory references that have sufficient access control rights are allowed to complete, while references that
are not mapped to any region descriptor or have insufficient rights are terminated with a protection error
response. The MPU implements a set of program-visible region descriptors that monitor all system bus
addresses. The result is a hardware structure with a two-dimensional connection matrix, where the region
descriptors represent one dimension and the individual system bus addresses and attributes represent the
second dimension.

5.2.13.1 Initial checks and configurations

Safety requirement under certain preconditions: [SM_041] If DPM is selected, system level functional
safety integrity measures will cover replicated bus masters, modifying the replicated resources may be
required. [end]

Safety requirement under certain preconditions: [SM_042] If non-replicated bus masters (for example,
FlexRay and FEC) are used, system level functional safety integrity measures must cover bus operations
to reduce the likelihood of replicated resources being erroneously modified. [end]

Rationale: Access restriction is protection against unwanted read/write accesses to some predefined
memory mapped address locations.

Implementation hint: The MPU shall be used to ensure that only authorized software routines can
configure modules and all other bus masters (eDMA, core, FlexRay protocol controller, Ethernet protocol
controller) can access only their allocated resources according to their access rights. For the non-replicated
master FlexRay, a correct MPU setup is highly recommended.

5.2.14 Memory Management Unit (MMU)

The software managed first level (L1) unified Memory Management Unit (MMU) provides the virtual to
physical address translation. The Power ISA embedded category architecture defines that a process ID
(PID) value is associated with each effective address (instruction or data) generated by the processor. At
the Power ISA embedded category level, a single PID register within each core (replicated) is defined as
a 32-bit register, and it maintains the value of the PID for the current process. This PID value is included
as part of the virtual address in the translation process (PID0). For the e200z7 MMU, the PID is 8 bits in
length. The most-significant 24 bits are not implemented and read as 0. The p_pid0[0:7] interface signals
indicate the current process ID. An operating system may restrict access of a process (PID) to virtual pages
by selectively granting permissions for user mode read, write, and execute, and supervisor mode read,
write, and execute on a per page basis. These permissions can be set up for a particular system (for
example, program code might be execute-only, data structures may be mapped as read/write/no-execute)
and can also be changed by the operating system based on application requests and functional safety
policies. The MMU provides a hardware access control for all memory references generated in a core.
Using preprogrammed region descriptors that define memory spaces and their associated access rights for
each process identifier or task identifier (PID), the MMU monitors all core transactions (excluding those
initiated by the eDMA, Ethernet protocol controller, or FlexRay protocol controller) and evaluates the
appropriateness of each transfer.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 48

Memory references that have sufficient access control rights are allowed to complete, while references that
are not mapped to any region descriptor or have insufficient rights are terminated with a protection error
response. The MMU implements a set of program-visible region descriptors that monitor all addresses
within a core. The result is a hardware structure with a two-dimensional connection matrix, where the
region descriptors represent one dimension and the individual system bus addresses and attributes
represent the second dimension.

The MMU may be used to encapsulate (address domain) software routines having different functional
safety integrity levels. As the MMU controls accesses using the PID, routines owing different PID are
controlled not to interfere in the address range (resources).

5.2.14.1 Initial checks and configurations

Access restriction at the MMU level is protection against unwanted read/write accesses to some predefined
memory mapped address locations by specific software routines (processes).

Safety requirement under certain preconditions: [SM_043] Software routines developed according to
the requirements of different ASIL requirements must be included in the address domain to reduce the
likelihood of interference between each other. This is especially true if software with no requirement to
comply with ISO 26262 (QM) is executed together with software requiring a high safety integrity. [end]

Rationale: Access restriction at the MMU level is protection against unwanted software (process)
read/write accesses to some predefined memory mapped address locations.

Recommended: The MMU may be used to ensure that only authorized software routines (processes) can
configure modules and access private resources. All other software routines can access only their allocated
resources according to their access rights.

5.2.15 Performance Monitor Counter (PMC)

The performance monitor counter registers (PMC0, PMC1, PMC2, PMC3) are 32-bit counters that can be
programmed to generate overflow event signals when they overflow. Each counter is enabled to count up
to 128 core events. The performance monitor interrupt is triggered by an enabled condition or event. The
enabled condition or events defined for the core may be a PMCn overflow condition occurs. Events able
to be counted:

• Processor cycles: Every processor cycle not in waiting, halted, stopped states and not in a debug
session.

• Instructions completed: Every completed instructions. 0, 1, 2, or 3 per cycle.

• Instruction words fetched: Fetched instruction words. 0, 1, or 2, 3, or 4 per cycle. (note that an
instruction word may hold 1 or 2 instructions, or 2 partial instructions when fetching from a VLE
page)

• Branch instructions completed: Completed branch instructions, includes branch and link type
instructions

• Branch and link type instructions completed: Completed branch and link type instructions

• Conditional branch instructions completed: Completed conditional branch instructions

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 49

• Taken Branch instructions completed: Completed branch instructions which were taken. Includes
branch and link type instructions.

• Taken Conditional Branch instructions completed: Completed conditional branch instructions
which were taken.

• Load instructions completed: Completed load, load-multiple type instructions

• Store instructions completed: Completed store, store-multiple type instructions

• Integer instructions completed: Completed simple integer instructions

• Multiply instructions completed: Completed Multiply instructions

• Divide instructions completed: Completed Divide instructions

• Number of return from interrupt instructions: Includes all types of return from interrupts

• Cycles decode stalled due to no instructions available: No instruction available to decode

• Cycles issue stalled: Cycles the issue buffer is not empty but no instructions issued

• Cycles branch issue stalled: Branch held in decode awaiting resolution

• Cycles execution stalled waiting for load data: load stalls

• Interrupts taken

• External input interrupts taken

• Watchdog timer interrupts taken

• Watch point occurs: assertion of jd_watchpt0 detected

• External input interrupt latency cycles: Instances when the number of cycles between request for
interrupt asserted (but possibly masked/disabled) and redirecting fetch to external interrupt vector
exceeds threshold.

• …

Performance counter enable the quantification of interferences (CPU performance domain) of different
processes running simultaneously on the cores. The performance counter may be used to encapsulate (core
performance domain) software routines having different functional safety integrity levels. As the
performance counter quantify the interference of a running task with other pseudo parallel executed task
(for example, interrupts) the interference in the CPU performance domain may be monitored for example,
by the operating system.

Performance counter enable to trace characteristic signature of functional safety relevant processes. This
enables the implementation of a logic flow control based on instruction statistics. Deterministic counter
event may for example, be used to generate the signature (pseudo random number) to trigger the on-chip
watchdog.

5.2.15.1 Initial checks and configurations

Safety requirement under certain preconditions: [SM_044] Software routines developed according to
the requirements of different ASIL requirements shall be encapsulated in address domain to reduce the
likelihood of interference. This is specifically true if QM software is executed together with software
requiring high safety integrity. [end]

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 50

Rationale: CPU performance monitoring is protection against unwanted software (process) core
performance interference due to resource conflicts.

Recommendation: The performance counter may be used to ensure that functional safety relevant
software routines (processes) get assigned to an appropriate CPU performance within the time slot
assigned to.

Implementation hints: Performance counter may be used to monitor the correct statistical instruction
count of the individual program sections. The correct statistical instruction pattern of the individual
program sections is monitored using hardware (performance counter) and compared to expected values by
software.

5.2.16 Built-in Hardware Self Tests (BIST)

Built-in hardware self-test (BIST) or built-in test (BIT) is a mechanism that permits circuitry to test itself.
Hardware supported BIST is used to speed-up self-test and reduce the CPU load. As hardware assisted
BIST is often destructive, it shall be executed ahead or after a reset (destructive reset or external reset).

Not every fault expresses itself immediately. For example, a fault may remain unnoticed if a component
is not used or the context is not causing an error or the error is masked.

If faults are not detected over a long time (latent faults), they can pile up once they propagate. ISO 26262
requires 90% latent-fault metric for ASIL D, 80% for ASIL C, and 60% for ASIL B. Typically hardware
assisted BIST is therefore used as safety integrity measure to detect latent faults.

The MPC567xK is equipped with a Built-in hardware self-test:

• System SRAM (MBIST, executed at boot-time, latent fault measure)

• Logic (LBIST, executed at boot-time, latent fault measure)

• ADC (PBIST, executed during boot or executed at least once per FTTI), latent fault measure and
single-point failure measure)

• Flash memory array integrity self check (executed at boot-time, latent fault measure)

• Flash memory margin read (executed after every programming operation or executed at least once
per FTTI, latent fault measure and single-point failure measure)

• Flash memory: ECC logic check (executed at least once per FTTI, single-point failure measure)

Boot-time test (MBIST, LBIST) are performed after the occurrence of a destructive or external reset,
unless they are disabled. All boot-time tests are executed before application software enables a safety
function. If failed, chip will remain in Safe stateMCU.

All tests may be performed without dedicated external test hardware.

The following safety integrity measure validates the ECC fault signalling and is executed by software to
detect single-point faults, although no built-in hardware support is used.

• Flash memory: ECC Fault Report Check: Software is required to read from the flash memory a set
of test patterns (provided by Freescale) to test the integrity of faults reported by the ECC logic and
captured in the ECSM and FCCU (shall be performed once per FTTI).

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 51

5.2.16.1 MBIST

The SRAM BIST test (MBIST) runs during initialization (during boot), but some software actions are
required (see Section 5.2.3, Self Test Control Unit (STCU)).

5.2.16.2 LBIST

The logic BIST test (LBIST) runs during initialization (during boot), but software actions are required (see
Section 5.2.3, Self Test Control Unit (STCU)).

5.2.16.3 Flash memory array integrity self check

The flash memory array integrity self check runs in flash memory user test mode and is initiated by
software and the result is checked by software (see Chapter 5.2.23, “Flash memory”).

5.2.16.4 Flash memory margin read

The flash memory margin reads may be activated to increase the sensitivity of the array integrity self
check. It may be enabled in flash memory user test mode and is initiated by software (see
Section 5.2.23.3.1, FLASH_SW_ECCREPORT).

5.2.16.5 Flash memory ECC logic check

The flash memory ECC logic check runs in flash memory user test mode. It is executed in software and
supported by hardware (see Section 5.2.23.3.2, FLASH_SW_ECCTEST).

5.2.16.6 Flash memory ECC fault report check

The flash memory ECC fault report check is executed in software (refer to Chapter 5.2.23, “Flash
memory”).

5.2.16.7 Peripheral Built-In Self-Test (PBIST)

The ADC BISTs run during initialization (during boot) and optionally during normal operation, but
software actions are required run those tests (see Section 5.2.33, Analog to Digital Converter (ADC)).

5.2.17 Error correction (ECC, ECSM)

On MPC567xK, no dedicated ECC module exists, since ECC functionality is located in or near the
different memory modules and might vary slightly depending on the needs (and size) of the storage. It is
used to detect data corruption in memory and (for SRAM only) address corruption.

The ECC module can correct all single-bit errors (single-bit error correction, SEC), detects all dual-bit
faults (double-bit error detection, DED), and detects several multiple bits errors (affecting more than two
bits). For system SRAM, addressing information is included in the calculation and evaluation of the ECC
to also detect addressing failure of the SRAM arrays. Detected single-bit addressing failures are not
corrected. Instead, they are treated and reported as detected multi-bit faults.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 52

The following ECC protection is available:

• 64 bits of flash memory are protected by 8 bits for ECC

• 32 bits of SRAM and 16 address lines are protected by 7 bits for ECC

ECC is automatically calculated during memory write accesses and is checked and faults care corrected
while reading memory.

In case there is a SBE due to data corruption, the ECC module corrects the read data. Optionally, an
interrupt for checking the address of last corrected data can be generated. The corresponding information
is stored in the Error Correction Status Module (ECSM). The ECSM controls the ECC configuration and
reporting for the platform memories (flash memory and SRAM).

If there is a double-bit (or detected multiple-bit) fault, both the FCCU and MC_RGM modules assert the
error out signal(s), then reset the MPC567xK.

The ECC module may be source of single-point faults (erroneous modification of fault free data) or latent
fault (no correction in case of a single-bit data fault). For this reason, SRAM ECC modules are
implemented redundantly (multiple instances), for example, integrated in the redundant Static RAM
Controller (SRAMC).

The flash memory module ECC algorithm supports the following features to include catastrophic fault
models:

• All ‘0’s

— Error—The All 0 error algorithm detects as a Double-bit ECC error any word in which all
72 bits (code flash memory) or 39 bits (data flash memory) are all 0.

• All ‘1’s

— No Error—The All 1 no error algorithm detects as valid any word read on a just erased sector
in which all 72 bits (code flash memory) or 39 bits (data flash memory) are all 1. This option
allows performing a blank check after a sector erase operation.

NOTE
Errata e3452: If a double-bit ECC error is encountered when reading the
data flash memory, a functional reset will occur if the next data flash
memory access is a program (irrespective of the length of time between the
data read causing the ECC error and the program attempt). If another
location in the data flash memory is read (which does not generate an ECC
error) before attempting to program the data flash memory, the reset does
not occur. This only impacts programming operations - an erase after a
double-bit ECC error will not generate a reset.

NOTE
As the ECC module protecting the flash memory is not replicated.
Respective functional safety mechanisms implemented in software are
required to achieve an appropriate diagnostic coverage regarding
single-point and latent faults.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 53

NOTE
In LSM, SRAM accesses are received by both SRAM controllers
simultaneously. Both SRAMC correct erroneous single bit and detect dual
and multiple bit faults independently (dual channel).

NOTE
In DPM, in case core 0 only accesses SRAM_0 and core 1 accesses only
SRAM 1, SRAM accesses of the two channels are received by different
SRAM controllers independently. Both SRAMC correct erroneous single
bit and detect dual and multiple bit faults independently (dual channel).

Figure 12. SRAM integration in LSM

NOTE
In DPM, SRAM accesses are handled by completely replicated circuitries.

XBAR_0

Memory Protection Unit

Slave port

SRAMC_0

ADWDCTRRD

A_AD A_WD A_CTR A_RD

CTR
WD
AD

CS0;CS0
ADD

Dec 0

WD CTR

AD

CS

SRAM
Array 0

RM 0 RM 1

RD

CS_1

CS_0

RC Checker
SRAMC

AD WD CTR RD

A_ADA_WDA_CTRA_RD

CTR
WD
AD

CS0;CS1
ADD

Dec 1

WDCTR

AD

CS

SRAM
Array 1

RD

CS_0

CS_1

ECSM_0
ECC status

in
te

rr
up

t

Replicated IP, checker unit
Replicated IP

IP not replicated

XBAR_1

Memory Protection Unit

Slave port

SRAMC_1

RD Read data

WD Write data

A_RD Arrays read data

A_WD Arrays write data

RM_0 Read multiplexer 0

RM_1 Read multiplexer 1

AD Address

CTR Control

A_CTR Array control (including byte enables)

CS_0 Chip select for lower SRAM address range

CS_1 Chip select for upper SRAM address range

A_AD Array address

ECC control

INTC_0

ECC status

ECC control
ECSM_1

in
te

rr
up

t

INTC_1

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 54

Figure 13. SRAM integration in DPM

5.2.17.1 Runtime checks

5.2.18 Interrupt Controller (INTC)

As INTC is a replicated module, no software action is required to detect faults within this module.

No specific hardware protection is provided to reduce the likelihood of spurious or missing interrupt
requests, which may be caused for example, by Electromagnetic Interface (EMI) on the interrupt lines, bit
flips in the interrupt registers of the peripherals, or a fault in the peripherals.

5.2.18.1 Runtime checks

Safety requirement under certain preconditions: [SM_070] Applications that are not resilient against
spurious or missing interrupt requests may need to include detection or protection measures on system
level. [end]

XBAR_0

Memory Protection Unit

Slave port

SRAMC_0

ADWDCTRRD

A_AD A_WD A_CTR A_RD

CTR
WD
AD

CS 0

WD CTR

AD
SRAM
Array 0

RM 0 RM 1

RD

RC Checker
SRAMC

AD WD CTR RD

A_ADA_WDA_CTRA_RD

CTR
WD
AD

CS 1

WDCTR

AD
SRAM
Array 1

RD

Inactive IP
Replicated IP

XBAR_1

Memory Protection Unit

Slave port

SRAMC_1

RD Read data

WD Write data

AD Address

A_RD Arrays read data

A_WD Arrays write data

A_AD Array address

CTR Control

A_CTR Array control (including byte enables)

CS 0 Chip select for lower SRAM address

CS 1 Chip select for upper SRAM address

RM 0 Read multiplexer 0

RM 1 Read multiplexer 1

unused signal

ECSM_0
ECC status

in
te

rr
up

t

ECC control

INTC_0

ECC status

ECC control
ECSM_1

in
te

rr
up

t

INTC_1

 0

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 55

Rationale: To manage spurious or missing interrupt requests.

Implementation hint: A possible way to detect spurious interrupts is to check corresponding interrupt
status in the interrupt status register (polling) of the related peripheral before executing the Interrupt
Service Routine (ISR) service code.

5.2.19 Semaphore Unit (SEMA4)

Semaphore modules are only used in DPM. Failures of the SEMA4 module may cause unwanted interrupts
in LSM.

Each SEMA4 unit is connected to both replicated INTC modules. This means that even in LSM when
SEMA4 units are not used, a corrupted SEMA4 could trigger continuous interrupts to both INTCs. To
reduce the likelihood of this failure the INTC should have the SEMA4 interrupt masked (IRQ 247
(SEMA4_0) and 248 (SEMA4_1)).

5.2.19.1 Initial checks and configurations

Safety requirement under certain preconditions: [SM_048] To improve the strength of common mode
faults, application software may mask the SEMA4 interrupts by programming the interrupt controller to
reduce the likelihood of spurious interrupts if LSM is activated. [end]

5.2.20 Enhanced Direct Memory Access (eDMA)

As eDMA is a replicated module, no software action is needed to detect faults inside this module.

5.2.20.1 Runtime checks

Safety requirement under certain preconditions: [SM_049] Applications that are not resilient to
spurious, or missing functional safety relevant, eDMA requests may include detection or protection
measures on system level. [end]

Rationale: To manage spurious or missing eDMA transfer requests.

Implementation hint: The methodology to satisfy this requirement is application dependent. Two
possible implementations which satisfy these requirements are:

• Counting the number of eDMA transfers triggered inside a control period and comparing this value
with the expected one.

• If the eDMA is used to manage the analog acquisition with the Cross-Triggering Unit (CTU) and
ADC, the number of the converted ADC channels is saved in the CTU FIFO together with the
acquired value. The eDMA transfers this value from the CTU FIFO to a respective SRAM location.
Spurious or missing transfer requests can be detected by comparing the converted channel with the
expected one.

Safety requirement under certain preconditions: [SM_050] Applications that are not resilient to
spurious, or missing functional safety relevant, eDMA requests can not use the PIT module to trigger
functional safety-relevant eDMA transfer requests. [end]

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 56

Rationale: To reduce the likelihood of a faulty PIT (which is not redundant) from triggering an unexpected
eDMA transfer.

5.2.21 Periodic Interrupt Timer (PIT)

5.2.21.1 Runtime checks

Recommendation under certain preconditions: When using PIT module, the PIT module should be
used in such a way that a possible functional safety relevant failure is detected by the Software Watchdog
Timer (SWT).

Rationale: To catch possible PIT failures.

Recommendation under certain preconditions: When the PIT is used in a safety function, a checksum
of its configuration registers may be calculated and compared with the expected value to check that the
PIT configuration is correct.

Rationale: To check that the PIT remains at its expected configuration.

5.2.22 System Status and Configuration Module (SSCM)

5.2.22.1 Initial checks and configurations

Recommendation: Since the software integrated in the BAM has not been developed in an ISO 26262 or
IEC 61508 compliant development process, system level measure must be taken to ensure system integrity
or disable use of the BAM.

Rationale: Since BAM code was neither developed nor qualified according to the IEC 61508-4 or
ISO 26262-6, any execution of the BAM, or part of it, needs to be inhibited or validated by appropriate
measures.

Implementation hint: Execution of BAM code may be supervised (inhibited) by writing
SSCM_ERROR[PAE] = 1. Each access to the BAM memory area then produces an exception.

Safety requirement: [SM_022] During and after initialization but before executing any safety function,
the application software needs to read SSCM_STATUS[LSM] and to confirm that the device runs in
respective Mode (LSM: SSCM_STATUS[LSM] = 1, decoupled parallel Mode:
SSCM_STATUS[LSM] = 0). [end]

5.2.23 Flash memory

To support the detection of latent faults in the flash memory array and addressing logic, the integrity of the
logic used for flash memory programming requires integrity validation. So, the ECC logic and the array
integrity self check need to be enabled by software.

This array integrity self check and the ECC logic test is based on hardware circuits integrated in the flash
memory control logic. An array integrity self check calculates a MISR signature over the array content and

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 57

thus validates the content of the array as well as the decoder logic. The calculated MISR value depends on
the array content and must be validated by application software.

The array integrity self check and the ECC logic check must be executed on each program flash memory
block used. Additionally, the ECC logic check must be executed for the data flash memory.

The ECC logic test calculates a MISR signature over test vectors and, thus, validates the correct function
of the ECC logic. The calculated MISR value must be validated by application software.

5.2.23.1 Initial checks and configurations

Safety requirement: [SM_023] Before executing any safety function, a flash memory array integrity self
check should be executed. The calculated MISR value is dependent on the array content and, therefore,
has to be validated by system level application software. [end]

Rationale: To check the integrity of the flash memory array content.

Implementation hint: This test may be started by application software: its result may be validated by
reading the corresponding registers in the flash memory controller after it has been finished (see “Array
integrity self check” section in the “Flash memory” chapter of the Qorivva MPC5675K Microcontroller
Reference Manual).

5.2.23.2 Runtime checks

Safety requirement: [SM_024] When programming the flash memory, the corresponding software driver
must validate that the flash memory was programmed correctly. [end]

Rationale: To check that the written data is coherent with the expected data.

Implementation hint: The programming of flash memory may be validated by checking the value of
C90FL_MCR[PEG] (FLASH_SW_READBACK). Furthermore, the data written may be read back, then
checked by software if identical to the programmed data. The data the read back may be executed in
Margin Read Enable mode (C90FL_UT0[MRE] = ‘1’). This enables to validate the programmed data
using read margins more sensitive to weak programme or erase status. This requires two separate checks,
one with read margin sensitive to weak programming (C90FL_UT0[MRE] = ‘1’ and
C90FL_UT0[MRE] = ‘0’) and another with read margin sensitive to weak erasing
(C90FL_UT0[MRE] = ‘1’ and C90FL_UT0[MRE] = ‘1’).

The flash memory SEC/DED only contains data but no addresses (please refer to Chapter 5.2.17, “Error
correction (ECC, ECSM)”). Therefore, a flash memory ECC logic test must be implemented by
application software.

Safety requirement: [SM_025] A flash memory ECC logic test (FLASH_SW_ECCTEST) must be
executed within the FTTI. This validates the (digital) logic within the flash memory that is responsible for
detecting and correcting faults (ECC logic) in the data that is read. [end]

Rationale: The intention of this test is to assure that correct data is not accidently modified, and single bit
errors are correctly updated.

Implementation hint: Software can check ECC logic by providing appropriate test patterns to the input
of ECC logic, 32 bits of data and 7 bits of ECC parity bits. Software may validate that the ECC provides

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 58

the correct action (correction, detection). A test interface enables software to force the output of the ECC
(see the “ECC logic check” chapter in the Qorivva MPC5675K Microcontroller Reference Manual and
Section 5.2.23.3.2, FLASH_SW_ECCTEST).

NOTE
ECC logic check does not transmit any detected fault information to the
RCCU, and so on.

Safety requirement: [SM_026] Flash memory ECC failure reporting has to be executed within the FTTI
to validate if detected ECC faults are communicated properly to the FCCU and other necessary modules.
[end]

Rationale: The intention of this test is to assure that failure detection is correctly reported.

Implementation hint: It consists of reading a set of data words from flash memory having erroneous ECC
bits programmed. Respective ECSM register content may be validated by software (see Section 5.2.23.3.1,
FLASH_SW_ECCREPORT).

5.2.23.3 Implementation details

5.2.23.3.1 FLASH_SW_ECCREPORT

The goal of the FLASH_SW_ECCREPORT is to ensure high coverage of the faults in ECC logic fault
signalling and communication with minimum performance penalty to application software.

The MPC567xK flash memory has no hardware support to inject ECC faults (fake faults) which are
reported to the FCCU. Therefore data with ECC pattern not matching to the data has to be programmed
into flash memory. A suitable program flash memory location separated from any used data has to be
selected, to avoid non intended reads from this ECC test location. Preferable a location within the shadow
space of the flash memory is used to avoid erasing of the test pattern during update of program flash
memory.

The procedure to program and test a pattern with a single-bit injected fault, then be corrected may be:

1. Write 0000_0000_0000_0001h to the program flash memory test location.

2. Write 0000_0000_0000_0000h to the same program flash memory test location without going
through an erase operation. Ignore the programming error message.

3. Subsequent reads from this program flash memory test location will report single-bit error
correction if appropriately enabled by C90FL_UT0[SBCE] = 1.

In order to avoid unintended reads from this ECC test location a suitable second program flash memory
location, separated from any used data (including the previous single-bit test location), is to be selected.
Preferable a location within the shadow space of the flash memory is used to avoid erasing of the test
pattern during update of program flash memory. The procedure to program and test a pattern with a
double-bit injected fault to be detected is:

1. Write 0x0000_0000_0000_0003 to the program flash memory test location.

2. Write 0000_0000_0000_0000h to the same program flash memory test location without going
through an erase operation. Ignore the programming error message.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 59

3. Subsequent reads from this program flash memory test location will report a double-bit error
detection by generating a machine check exception.

5.2.23.3.2 FLASH_SW_ECCTEST

The goal of the FLASH_SW_ECCTEST is to ensure high coverage of the faults in ECC logic with
minimum performance penalty to application software.

To give an estimation, the performance penalty of an implementation of this test is determined to be
176 s, which is less than 2 % of the available processing time considering a FTTI of 10 ms.

The MPC567xK flash memory has a UTEST (user-test) mode ECC logic check feature which can be
utilized for this ECC logic test. A data pattern with walking ‘0’ through data and ECC parity bits can be
applied during the ECC logic check procedure to achieve high fault coverage of the ECC logic and fast
execution.

5.2.23.3.2.1 Data pattern - walking ‘0’

To achieve the required diagnostic coverage data pattern with walking ‘0’ through data and ECC parity
bits may be used. Table 4 shows the data vectors.

It is important to note that for double-word data = FFFF_FFFF_FFFF_FFFFh, the correct ECC check bits
should be 0xFF. Therefore, every data vector in above data pattern, except the last one, contains a single-bit

Table 4. Data pattern used by the ECC logic test1

NOTES:
1 Each vector is a 72-bit ECC code-word.

Data vector number 8-bit ECC parity bits 64-bit data bits

0 0xFF 0xFFFF_FFFF_FFFF_FFFE

1 0xFF 0xFFFF_FFFF_FFFF_FFFD

2 0xFF 0xFFFF_FFFF_FFFF_FFFB

3 0xFF 0xFFFF_FFFF_FFFF_FFF7

4 0xFF 0xFFFF_FFFF_FFFF_FFEF

5 0xFF 0xFFFF_FFFF_FFFF_FFDF

6 0xFF 0xFFFF_FFFF_FFFF_FFBF

7 0xFF 0xFFFF_FFFF_FFFF_FF7F

… … …

62 0xFF 0xBFFF_FFFF_FFFF_FFFF

63 0xFF 0x7FFF_FFFF_FFFF_FFFF

64 0xFE 0xFFFF_FFFF_FFFF_FFFF

65 0xFD 0xFFFF_FFFF_FFFF_FFFF

… … …

71 0x7F 0xFFFF_FFFF_FFFF_FFFF

72 0xFF 0xFFFF_FFFF_FFFF_FFFF

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 60

ECC error and will result in a single-bit correction. These erroneous patterns have to be programmed into
flash memory and periodically read to identify correct function of the ECC logic.

5.2.23.3.2.2 UTEST mode ECC logic check

The procedure to use the UTEST mode ECC logic check is:

1. Write F9F9_9999h to UT0 to enable UTEST mode (UT0[UTE] will be set).

2. Write UT0[SBCE] to ‘1’ to enable single-bit error correction visibility.

3. Write UT0[EIE] to ‘1’.

4. Write UT0[DSI], UT1[DAI] and/or UT2[DAI] bits to provide the current data vector including the
double-word data and check bit values to be read. The data and check bit values are from the chosen
ECC test data pattern, i.e., walking ‘0’ pattern shown above.

5. Write double-word address to receive the data input in step 4 into the ADR register.

6. Reads the address stored in ADR register via BIU using a CPU instruction. The expected data, and
corrections or detections should be observed based on data written into the UT0[DSI], UT1[DAI]
and/or UT2[DAI] registers. MCR[EER] and MCR[SBC] will be checked to evaluate the status of
reads done.

7. Repeat steps 4 to 6 for all the data vectors in the proposed test data pattern.

8. Once completed, clear the UT0[EIE] bit to 0.

5.2.24 Cross Triggering Unit (CTU)

The CTU generates triggers based on input events (FlexPWMs, eTimers, and/or external GPIO).

The trigger can be caused by:

• A pulse

• An interrupt

• An ADC command (or a stream of consecutive commands)

• All of these

5.2.24.1 Runtime checks

Safety requirement: [SM_027] The CTU must be properly configured so output triggers are generated
within the desired time schedule with respect to the input event(s). [end]

Rationale: To reduce the likelihood of erratic output trigger generation.

For each trigger, a set of ADC commands and pulses to be generated can be defined.

If the application safety function includes the read of inputs synchronized with events (FlexPWMs,
eTimers, and external signals, or any combination), the system integrator can use the CTU module for this
purpose. The required software needed is listed in Section 5.2.24.2, Synchronize sequential read input.

For a detailed description on how the CTU works (triggered and sequential mode), its configuration and
use, refer to the Qorivva MPC5675K Microcontroller Reference Manual.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 61

5.2.24.2 Synchronize sequential read input

5.2.24.2.1 CTU_HWSWTEST_TRIGGERNUM

If the reload signal occurs before all the triggers are generated, an overrun indication is flagged and the
application software may have to handle the error indication.

Rationale: Tests if all the triggers configured within a control period have been generated and serviced.

Implementation hint: The Cross Triggering Unit Error Flag register (CTU_CTUEFR) shows information
about the overrun status.

When the CTU detects an error, an interrupt is generated. In the interrupt service routine, the value of the
Error Flag Register (CTUEFR) is tested for error condition. If any of the tested bits are valid (= 1, thus an
error occurred), appropriate actions may be required.

5.2.24.2.2 CTU_SWTEST_TRIGGERTIME

Application software configures one eTimer channel to capture the time at which each trigger event occurs.

In triggered mode, the time instant of each trigger within one control period is captured and stored in a
FIFO. Application software has to check the FIFO values against the expected ones according to CTU
configuration.

In sequential mode, an eTimer channel is used to check the correct time of a single trigger with respect to
the corresponding event.

Rationale: To check if triggers are generated at the correct time.

Implementation hint: Some eTimer inputs are internally connected to the CTU output. See “Enhanced
Motor Control Timer (eTimer)” in the Qorivva MPC5675K Microcontroller Reference Manual for details.

Implementation hint: eTimer capture register implements a two entry FIFO, but in CTU triggered mode
up to 8 time values need to be stored. To reduce the likelihood of FIFO overflow condition, eTimer can be
configured to trigger a eDMA transfer to move the captured value to specific RAM location.

In sequential mode, an eTimer channel may be needed to check the correct time of a single trigger with
respect to the corresponding event.

5.2.24.2.3 CTU_HWSWTEST_TRIGGEROVERRUN

This hardware mechanism checks if a new trigger occurs that requires an action by a subunit that is
currently busy. In this case, an overrun interrupt is generated and the application software handles the error
condition.

Over-run detection mechanism must be enabled by software during configuration of the CTU.

Rationale: Checks if a new trigger occurs that requires an action by a subunit (for example, ADC
command generator) that is currently busy.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 62

Implementation hint: To enable the over-run detection the CTU_CTUIR[IEE] is written with a 1. This
interrupt is shared between several sources of error. The application software can determine which
particular interrupt is represented by reading the CTU_CTUEFR.

5.2.24.2.4 CTU_HWSWTEST_ADCCOMMAND

The CTU stores in its internal FIFOs both the value provided by each ADC conversion and the channel
number. Application software checks the ADC channel number sequence against what is expected for each
FIFO. Moreover, invalid commands issued by the CTU are flagged and the corresponding error is handled
by the application software (not included in example code).

Rationale: To detect if the incorrect channel has been acquired, or if the incorrect ADC result FIFO is
selected.

Implementation hint: To enable detection of invalid commands, the CTU_CTUIR[IEE] flag needs to be
asserted. This interrupt is shared between several sources of error. They can be discriminated by reading
the CTUEFR register.

This safety integrity function is required only when reading analog signals.

5.2.24.2.5 CTU_SWTEST_ETIMERCOMMAND

Application software configures one channel of eTimer_0, eTimer_1 or eTimer_2 to count the number of
eTimer commands generated within a CTU control period and checks the number against the expected one.

Rationale: To check the correctness of the number of generated commands.

Implementation hint: Some eTimer inputs are internally connected to the CTU output. (see the Qorivva
MPC5675K Microcontroller Reference Manual for details).

5.2.24.2.6 CTU_HW_CFGINTEGRITY

This hardware mechanism ensures the consistency of the CTU configuration at the beginning of each CTU
control period.

The configuration registers are all double-buffered. If the configuration is only partial when the control
period starts, the previous configuration is used and an error condition is flagged, which is handled by the
application software.

Rationale: Ensures the consistency of the CTU configuration.

Implementation hint: The CTU uses a safe reload mechanism. The General Reload Enable (GRE) bit in
the Cross Triggering Unit Control Register (CTUCR) has to be used to detect partial or incomplete CTU
update. To enable the interrupt in case of error during reload, CTU_CTUIR[IEE] = 1. This interrupt is
shared between several sources of error. They can be discriminated by reading the CTUEFR register.
Alternatively, repetitive reading of MRS_RE is also possible.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 63

5.2.24.2.7 Other requirements for CTU module usage

Safety requirement: [SM_028] If the CTU is used to read an analog signal through the ADC, the software
must check the Invalid Command Error flag (CTU_CTUEFR[ICR]) after programming the ADC
command lists. [end]

Rationale: To check the presence of invalid commands.

5.2.25 Fault injection tests

It is possible to use fault injection (fake faults) to check the correct implementation of functional safety
mechanisms. Fault injection is provided primarily for software development and validation purposes.

Fault injection is mainly implemented in the FCCU. Each possible critical or non-critical fault input of the
FCCU (please refer to Table 1 and Table 2) can be triggered by software.

Additionally errors can be injected into Flexray SRAM and System SRAM to generate injected ECC
errors.

FLASH_SW_ECCREPORT (see Section 5.2.23.3.1, FLASH_SW_ECCREPORT) may be used to inject
ECC errors in program flash memory, and FLASH_SW_ECCTEST (see Section 5.2.23.3.2,
FLASH_SW_ECCTEST) may be used to inject faults in the ECC. However, FLASH_SW_ECCTEST
does not allow to forward injected faults to the FCCU.

5.2.26 SRAM

A multiple cell failure caused for example, by a neutron or alpha particle or a short circuit between cells
may cause three or more bits to be corrupted in an ECC-protected word. As result, either the availability
may be reduced or the ECC logic may perform an additional data corruption labeled as single bit
correction. This is prevented within the design of MPC567xK by the use of bit scrambling (column
multiplexing) which effects, that physically neighboring columns of the RAM array do not contain bits of
the same logical word but the same bit of neighboring logical words. Thus the information is logically
spread over several words causing only single bit faults in each word which can be correctly corrected by
the ECC. MPC567xK has a multiplexor factor of eight for its system RAM multiplexing adjacent analog
bit lines to an analog sense amplifier. It is always enabled and needs no configuration.

Safety requirement: [SM_069] It is required read at least four different addresses per RAM block within
the FTTI will occur. [end]

Rationale: To provide sufficient diagnostic coverage for column repair with ECC.

5.2.27 Glitch filter

An analog glitch filter is implemented on the reset signal of the MPC567xK. A selectable
(WKPU_NCR[NFE0]) analog glitch filter is implemented on the NMI-input. External interrupt sources
can be configured to be used with any chip GPIO. Interrupt sources (1 to 32) can be configured to have a
digital filter to reject short glitches on the inputs. These filters are used to reduce noise and transient spikes
in order to reduce the likelihood of unintended activation of the reset or the interrupt inputs.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 64

5.2.28 Register Protection module (REG_PROT)

The PowerPC architecture supports two levels of privilege for program execution: user mode and
supervisor mode. Only the supervisor mode allows the access to the entire CPU register set, and the
execution of a subset of instructions is limited to supervisor mode only. In user-mode, access to most
registers including system control registers is denied. It is intended that most parts of the software be
executed in user-mode so that the MPC567xK is protected from errant register changes made by other
user-mode routines.

In addition, all peripherals, processing modules and other configurable IP is protected by a REG_PROT
module, which offers a mechanism to protect address locations in a module under protection from being
written (for example, to handle the concurrent operation of software tasks with different or lower
functional safety integrity level). It includes the following levels of access restriction:

• A register cannot be written once Soft Lock Protection is set. The lock can be cleared by software
or by a system reset.

• A register cannot be written once Hard Lock Protection is set. The lock can only be cleared by a
system reset.

• If neither Soft Lock nor Hard Lock is set, the Register Protection module may restrict write
accesses for a module under protection to supervisor mode only.

5.2.28.1 Runtime checks

Recommendation: All configuration registers, and registers that are not modified during application
execution, are to be protected with a Hard Lock.

Rationale: Hard Lock is the last access protection against unwanted writes to some predefined memory
mapped address locations.

Implementation hint: Most of the off-platform peripherals have their own Register Protection module.
Register Protection address space is inside the memory space reserved for the peripherals (please, refer to
the “MPC567xK registers under protection” section of the Qorivva MPC5675K Microcontroller Reference
Manual). Each peripheral register that can be protected through the Register Protection module has a Set
Soft Lock bit reserved in the Register Protection address space. This bit is asserted to enable the protection
of the related peripheral registers. Moreover, the Hard Lock Bit (REG_PROT_GCR[HLB] = 1) should be
set for best write protection.

Recommendation: It is recommended that only hardware related software (OS, drivers) run in supervisor
mode.

5.2.29 External Bus Interface (EBI)

As parts of the external bus interface (EBI) of the MPC567xK do not provide the functional safety integrity
(external bus interface is not a replicated module) IEC 61508 series and ISO 26262 requires for high
functional safety integrity targets. Therefore system level measures are required.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 65

5.2.29.1 Runtime checks

Safety requirement under certain preconditions: [SM_054] When a functional safety functions relies
on the operation of the External Bus Interface, functional safety integrity measures must be implemented
on system level to achieve the required functional safety integrity. These measures shall provide functional
safety integrity regarding data domain (reducing the likelihood of data corruption) and control domain
(reducing the likelihood of address corruption and control faults). [end]

Rationale: To achieve the integrity of data written and read through the External Bus Interface.

Implementation hint: The eDMA and CRC modules may be used periodically, within the FTTI, to
calculate the CRC signature of non-volatile data stored in memory devices addressed by the EBI and
compare this with a expected value. Alternatively, data shall be stored redundantly, using different coding
schemes (for example, inverted bits). On every read operation redundant data are compared by the system
level application software.

5.2.30 Multi-port DDR DRAM controller (MDDRC)

As parts of the Multi-port DDR DRAM Controller (mDDR) of the MPC567xK do not provide the
functional safety integrity (external bus interface is not a replicated module) IEC 61508 series and
ISO 26262 requires for high functional safety integrity targets. Therefore system level measures are
required.

5.2.30.1 Runtime checks

Safety requirement under certain preconditions: [SM_055] When a functional safety functions relies
on the operation of the MCCRC, functional safety integrity measures shall be implemented on system level
to achieve the required functional safety integrity. These measures shall provide functional safety integrity
regarding data domain (reducing the likelihood of data corruption) and control domain (reducing the
likelihood of address corruption and control faults). [end]

Rationale: To achieve the integrity of data written and read through the MDDRC.

Implementation hint: The eDMA and CRC modules may be used to periodically within the FTTI
calculate the CRC signature of non volatile data stored in memory devices addresses by the MDDRC and
compare this with a expected value. Alternatively, data is stored redundantly, preferably using different
coding schemes (for example, inverted bits). On every read operation the redundant data are compared.

5.2.31 Wake-Up Unit (WKPU) / External NMI

Safety requirement under certain preconditions: [SM_068] If external NMI and Wake-up are used as
a safety mechanism, it is required to implement respective system level measures to detect latent faults
within WKPU. [end]

Rationale: To test the analog filter of the WKPU for external NMIs and wakeup events.

Implementation hint: To test the analog filter of the WKPU for external NMIs, application software may
configure the NMI during startup to cause only a critical interrupt, then trigger the external NMI and check
that the critical interrupt occurred.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 66

5.2.32 Crossbar Switch 2 (XBAR2)

As parts of the crossbar switch 2 (XBAR2) of the MPC567xK do not provide the functional safety integrity
(external bus interface is not a replicated module) IEC 61508 series and ISO 26262 requires for high
functional safety integrity targets. Therefore system level measures are required.

5.2.33 Analog to Digital Converter (ADC)

Parts of the Analog-to-Digital Converter (ADC) of the MPC567xK do not provide the functional safety
integrity IEC 61508 series and ISO 26262 requires for high functional safety integrity targets. Therefore
system level measures are required.

5.2.33.1 Initial checks and configurations

Safety requirement under certain preconditions: [SM_045] When Analog-to-Digital Converter (ADC)
of the MPC567xK are used in a safety function, suitable system level functional safety integrity measures
must be implemented after reset (external reset or destructive reset) before starting the respective safety
function to ensure ADC integrity. [end]

Recommendation: After reset (external reset or destructive reset), but before executing any safety
function, the following hardware BISTs of one or both ADC modules may be executed by the application
software to detect latent faults:

• RESISTIVE-CAPACITIVE SELF-TEST

• SUPPLY SELF-TEST

• CAPACITIVE SELF-TEST

Rationale: To check the integrity of the ADC modules

These tests can be executed in either of the following modes:

• CPU mode

• CTU mode

In CPU mode, the application software takes care of the hardware self-test activation and checks the test
flow and the timing.

In CTU mode, the CTU module takes care of the hardware self-test activation, flow monitoring, and
timing. It is important to note that in this operating mode, the CPU does not take part in running the
hardware self-test.

Hardware self-tests use analog watchdogs to check the outcome of self-test conversions. The reference
thresholds of these watchdogs are saved in the flash memory test sector.

Safety requirement under certain preconditions: [SM_046] Before running the ADC hardware
self-test, the system integrator must copy the reference thresholds from test flash memory into the
watchdog registers (STAWnR). [end]

Rationale: To set the correct threshold for the self-tests.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 67

Implementation hint: Table 5 shows mapping of the values stored in test flash memory to be copied into
the watchdog registers. Depending on the reference voltage used for the ADCs, ADCn_CAL W4 or
ADCn_CAL W5 is to be used for ADC_n_STAW0R.

Please refer to the “self-test analog watchdog” section of the “ADC” chapter and the “Test sector” section
of the “Flash Memory” chapter in the Qorivva MPC5675K Microcontroller Reference Manual for details.

Implementation hint: Since test flash memory cannot be read directly, the Test Flash Enable feature of
the SSCM may be exploited. This action is performed through the following steps:

1. If code is executed out of flash memory, CPU branches into RAM and executes code out of SRAM
memory.

2. Write SSCM_STCR[TFE] = 1.

3. Test sector is readable at the offset 0x0 of the flash memory address space (See “System Status and
Configuration Module (SSCM)” of the Qorivva MPC5675K Microcontroller Reference Manual).

4. Thresholds are copied from the Test sector to the respective register.

5. Write SSCM_STCR[TFE] = 0.

6. Code can continue execution out of flash memory.

NOTE
As the BAM is not developed following an ISO compliant software process,
system integrators are asked to avoid reading the test sector through the
BAM access method. Please refer to Chapter 5.2.22, “System Status and
Configuration Module (SSCM)” for details.

Table 5. Mapping of test flash memory values to STAWxR

Watchdog register
Name in test flash

memory
Address in test flash

memory
Remark

STAW3RH
ADCn_CAL W1

0x0010 / 0x0034 —

STAW3RL 0x0012 / 0x0036 —

STAW4RH
ADCn_CAL W2

0x0014 / 0x0038 —

STAW4RL 0x0016 / 0x003A —

STAW5RH
ADCn_CAL W3

0x0018 / 0x003C —

STAW5RL 0x000A / 0x003E —

STAW0RH
ADCn_CAL W4

0x000C / 0x0040 to be used if
VDD_HV_ADRn = 3.3 VSTAW0RL 0x000E / 0x0042

STAW0RH
ADCn_CAL W5

0x0020 / 0x0044 to be used if
VDD_HV_ADRn = 5 VSTAW0RL 0x0022 / 0x0046

STAW1ARH
ADCn_CAL W6

0x0024 / 0x0048 —

STAW1ARL 0x0026 / 0x004A —

STAW1BRH
ADCn_CAL W7

0x0028 / 0x004C —

STAW1BRL 0x002A / 0x004E —

STAW2R ADCn_CAL W8 0x002E / 0x0050 —

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 68

Safety requirement under certain preconditions: [SM_047] When using integrated self-test as the
functional safety integrity measure, the analog watchdog timer for CPU mode and CTU mode must be
enabled for the self-test. The programmable watchdog timeout is smaller than the FTTI. [end]

Rationale: To check the correct completion of the ADC self-test algorithms.

Implementation hint: Every hardware BIST is activated via a dedicated command sent to the ADC (see
“self-testing” section in the “ADC” chapter of the Qorivva MPC5675K Microcontroller Reference Manual
for details on implementing these tests).

The SUPPLY SELF-TEST is executed without interleaved conversion.

Due to its analog parts, the ADCs require additional tests implemented in software. Please refer to
Section 5.3.3, Analog inputs.

5.3 I/O functions
The integrity of functional safety relevant periphery is mainly ensured by application level measures (for
example, connecting one sensor to different I/O modules, sensor validation by sensor fusion).

Functional safety relevant peripherals are assumed to be used redundantly in some way. Different
approaches can be used, for example, by implementing replicated input (for example, connect one sensor
to two DSPIs or even connect two sensors measuring the same quantity to two ADCs) or by crosschecking
some I/O operations with different operations (for example, using sensor values of different quantities to
check for validity). Preferably, the replicated modules generate or receive the replicated data using
different coding styles (for example, inverted in the voltage domain or using voltage and time domain
coding for redundant channels). System integrators may choose the approach that best fits their needs.

Safety requirement under certain preconditions: [SM_056] No specific hardware measures have been
implemented to specifically reduce common mode failure(s) regarding replicated I/O peripherals. In case
system level requires specific robustness regarding common mode faults within the I/O peripheral system,
respective measures are required on system level. [end]

Rationale: To improve the common mode fault robustness of the I/O.

Implementation hint: Possible measures could use different coding schemes within each redundant I/O
channel (for example, inverted signals, different time periods).

Implementation hint: Possible measures could be using different replicated peripherals (for example,
eTimer_0, eTimer_1, or FlexPWM) to implement multiple independent and different channels.

Safety requirement under certain preconditions: [SM_057] Peripherals (for example, SIUL, FlexPWM
or the eTimer) used for the functional safety function must be configured properly before their usage. Any
misconfiguration prevents them from delivering the expected functionality. [end]

Rationale: To configure peripherals used by the safety functions and to reduce the likelihood of CMFs
caused by improper configuration of the peripherals.

Safety requirement under certain preconditions: [SM_058] When safety functions use digital GPIO,
the pads need to be configured by writing the appropriate values to the GPIOs corresponding SIUL_PCRn

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 69

(see the “System Integration Unit Lite (SIUL)” chapter in the Qorivva MPC5675K Microcontroller
Reference Manual). [end]

Rationale: To configure GPIO used by the safety functions and to reduce the likelihood of CMF caused
by improper configuration of the GPIO.

All accesses of Core_0 and DMA_0 use PBRIDGE_0 for every peripheral access. All access of Core_1
and DMA_1 use PBRIDGE_1. To reduce the possibility of CMFs, redundant channels must be read by
different spheres of replication (for example, by Core_0 and Core_1 or DMA_0 and DMA_1).

This is also required regarding configuration, replicated I/O functions have to be configured by replicated
masters (Core, DMA).

A single peripheral bus installed may be a source causing cascading faults in both processing channels.

5.3.1 Digital inputs

Safety requirement under certain preconditions: [SM_059] When safety functions use digital input,
system level functional safety mechanisms have to be implemented to achieve required functional safety
integrity. [end]

5.3.1.1 Hardware

Implementation hint: Functional safety digital inputs may to be acquired redundantly. To reduce the risk
of common mode failures, the redundant channels may not use GPIO adjacent to each other (refer to
Section 7.1, Causes of dependent failures).

• Double read operation of a digital input is implemented by two general purpose inputs (GPI) of the
SIUL unit. A comparison (by software) between the double reads detects an error (please refer to
Figure 14).

• A double read PWM input is implemented by using two modules as two channels. The functional
safety integrity is achieved by double reads and a software comparison. One channel is provided
by eTimer_0 and the other by eTimer_1 or eTimer_2. The usage of eTimer_1 and eTimer_2 is also
possible. Read PWM input means any input read related to signal transitions (rise or fall). This may
also include the time that the signal was high, low or both (please refer to Figure 14).

• A double read eTimer input is implemented by using two modules as two channels. The functional
safety integrity is achieved by double reads and a software comparison. One channel is provided
by eTimer_0 and the other by eTimer_1 or eTimer_2. The usage of eTimer_1 and eTimer_2 is also
possible. Read Encoder Input means any input read elated to signal transitions (rise or fall). This
may also include signals coming from an encoder (please refer to Figure 15).

For double read eTimer input, each signal, the SIUL can provide additional channels to support
interrupt-based reading for each signal.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 70

Figure 14. Double Digital Input and Double PWM input

Figure 15. Double Read Encoder Input

Implementation hint: If sufficient diagnostic coverage can be obtained by a plausibility check on a single
acquisition for a specific application, a plausibility check can replace a redundant acquisition.

Double PWM Input

ETC[x] ETC[y]

eTimer_0 eTimer_1

I I

I = Input

PBRIDGE_n

SIUL

I

Double Digitial Input

I

GPI[y]GPI[x]

PBRIDGE_n

eTimer_0

I

ETC[x]

eTimer_1

I

ETC[y]

SIUL

II

EIRQ[x] EIRQ[y]

PBRIDGE_nPBRIDGE_n

I = Input

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 71

5.3.1.2 Software

Digital inputs used for functional safety purposes are assumed to be input redundantly as described in this
section. Table 6 lists three element safety functions for input, the corresponding safety integrity functions
and their execution frequency. Alternative solutions with sufficient diagnostic coverage are possible.

5.3.1.2.1 Double Read Digital Inputs

Rationale: To check that the configuration of the two I/Os used correspond with the expected
configuration, to reduce the likelihood of CMF caused by incorrectly configured I/Os, and to check that
the two input values read are similar.

Implementation hint: Functional safety integrity is achieved by replicated reading and software
comparison by the processing function. The application can implement the tests
SIUL_SWTEST_REGCRC and GPI_SWTEST_CMP.

5.3.1.2.1.1 Implementation details

The only hardware element that can be used for the safety function is the general purpose I/O (GPIO).

Implementation hint: Every I/O that is not dedicated to a single function can be configured as GPIO. I/Os
that are dedicated to ADC are an exception to this rule, as they can only be configured as inputs.

NOTE
Caution: Redundant GPIO should be selected in a way that their signals are
not adjacent, which helps minimize the likelihood of CMFs.

5.3.1.2.1.2 SIUL_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

Table 6. Digital inputs software tests

Function Test Frequency

Double Read Digital Inputs
SIUL_SWTEST_REGCRC Once after programming

GPI_SWTEST_CMP Once for every acquisition

Double Read PWM Inputs

ETIMER0_SWTEST_REGCRC Once after programming

ETIMER1_SWTEST_REGCRC Once after programming

SIUL_SWTEST_REGCRC Once after programming

ETIMERI_SWTEST_CMP Once for every acquisition

Double Read Encoder Inputs

ETIMER0_SWTEST_REGCRC Once after programming

ETIMER1_SWTEST_REGCRC Once after programming

SIUL_SWTEST_REGCRC Once after programming

ENCI_SWTEST_CMP Once for every acquisition

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 72

5.3.1.2.1.3 GPI_SWTEST_CMP

This software test is used to execute the comparison between the double reads performed by the
independent channels, and reads the outputs sequentially. This allows any GPIO to be used, but could
result in a wrong result if the state of the input changes between reading the first and second inputs.

An alternative implementation would be to use the parallel data input registers (PGPDI) in the same way
that the GPODW_SWAPP_WRITE uses the output equivalent of these registers. This would allow the
inputs to be read at the same point in time but would restrict the GPIO that could be used.

5.3.1.2.2 Double Read PWM Inputs

The SIUL module may be configured (via the appropriate SIUL_PCRn) to provide configuration and input
direction of the input GPIO.

Rationale: To check that the configuration of the modules used by this safety function compare to the
expected configuration and to validate that the two sets of read data correlate.

Implementation hint: The software tests that the application may implement are:

• ETIMER0_SWTEST_REGCRC

• ETIMER1_SWTEST_REGCRC

• SIUL_SWTEST_REGCRC

In addition, the double reads shall be compared by the application with the implementation of the
following test:

• ETIMERI_SWTEST_CMP.

5.3.1.2.2.1 Implementation details

Rationale: To reduce the risk of cascading faults due to shared resources.

Implementation hint: The following hardware elements shall be used for the safety function:

• eTimer_0 channels

• eTimer_1 channels

The system integrator may select one channel from the eTimer_0 module and another from the eTimer_1.

5.3.1.2.2.2 ETIMERx_SWTEST_REGCRC and SIUL_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

5.3.1.2.2.3 ETIMERI_SWTEST_CMP

This test is used to execute the comparison between the double reads of PWM inputs performed by two
channels of different eTimer (for example, eTimer_0 and eTimer_1). The comparison may take into
account possible approximation because of different capturing of the asynchronous input signals.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 73

5.3.1.2.3 Double Read Encoder Inputs

Rationale: To reduce the risk of cascading faults due to shared resources.

Implementation hint: One channel may be addressed by one eTimer, and the second channel by a
different eTimer.

Rationale: To check that the configuration of the modules used by this safety function compare to the
expected one. To reduce the likelihood of a common mode failure caused by improper configuration of the
pads. To check that the two sets of read data compare properly.

Implementation hint: The SIUL is configured to forward one or two interrupt based event readings.

The application software shall implement the tests:

• ETIMER0_SWTEST_REGCRC

• ETIMER1_SWTEST_REGCRC

• SIUL_SWTEST_REGCRC

The application software shall implement the test ENCI_SWTEST_CMP, which compares signals
acquired from each channel.

5.3.1.2.3.1 Implementation details

Rationale: To reduce the risk of cascading faults due to shared resources.

Implementation hint: The following hardware elements may be used for the safety function:

• eTimer_0 channels

• eTimer_1 channels

• External interrupt via GPIO

The system integrator may select one channel from eTimer_0 and one from eTimer_1. The external
interrupt signals are optional.

5.3.1.2.3.2 ETIMERx_SWTEST_REGCRC and SIUL_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

5.3.1.2.3.3 ENCI_SWTEST_CMP

The ENCI_SWTEST_CMP test is used to compare the double reads performed by the eTimer channels 0
and 1 and/or the SIUL. The comparison may take into account approximation because of different captured
values of the asynchronous input signals and the execution of interrupt based event readings.
Approximation required by different behavior of the encoded inputs is handled at the application level.

5.3.1.2.4 Synchronize sequential read input

The synchronize sequential read input is implemented by the CTU, which generates the trigger for events
according to the triggered mode or the sequential mode.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 74

The CTU can be used if the synchronization of the reading of some inputs with some events is required
(FlexPWMs, eTimers, and external signals, or any combination).

Safety requirement under certain preconditions: [SM_053] If the CTU is part of an application safety
function, the system level functional safety integrity measures must be implemented to achieve required
integrity. [end]

Rationale: To validate the integrity of the CTU.

Implementation hint: The following mix of hardware mechanisms and software safety integrity measures
implemented at the application level provide respective functional safety integrity:

• CTU_HWSWTEST_TRIGGERNUM

• CTU_SWTEST_TRIGGERTIME

• CTU_HWSWTEST_TRIGGEROVERRUN

• CTU_HWSWTEST_ADCCOMMAND (only if the input is an analog signal)

• CTU_SWTEST_ETIMERCOMMAND

• CTU_HW_CFGINTEGRITY

5.3.1.2.4.1 Hardware element

The synchronize sequential read input is implemented by the CTU, which generates the trigger events
according to one of the two operation modes shown in Figure 16.

Figure 16. CTU operating modes: triggered a) and sequential b)

The CTU receives various incoming signals (Event X in Figure 16) from different sources (FlexPWMs,
eTimers, or external GPIO, or any combination). These signals are then processed to generate trigger
events (Trigger X in Figure 16). An event can be a rising edge, a falling edge or both edges of each
incoming signal. The output trigger can be a pulse, an ADC command (or a stream of consecutive
commands) or both to one or more peripherals (for example, ADC, eTimers, and so on).

In triggered mode, the input event, which can be also a combination (logical OR) of several signals,
determines the reload/restart of the CTU counter and up to eight comparators are available to generate up
to eight output triggers with a given delay with respect to the reload signal. In sequential mode, one
comparator can be used to generate a trigger with a given delay with respect to one out of eight input events
(Event 0 works as the reload event).

Event

Delay T1

Delay T2

Delay T3

Delay T0

Trigger 0 Trigger 1 Trigger 2 Trigger 3

Event
a)

Event 0

Delay T1

Delay T2

Delay T3

Delay T0

Trigger 0 ... Trigger 3

Event 3
b)

......
...

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 75

Implementation hint: The CTU is configured so that the output triggers are generated with the desired
time schedule with respect to the input event(s).

For each trigger the set of ADC commands and pulses to be generated are defined.

Particularly, each ADC command specifies which channel is acquired by which ADC, if two ADCs
perform a concurrent conversion or just one of them is operational, and in which CTU internal FIFO the
result(s) will be stored. Four FIFOs are available (2 × 16 + 2 × 4). In case of a concurrent acquisition the
same FIFO is used for both results. ADCs are configured to accept commands from the CTU (instead of
commands provided via software). Multiple single or concurrent acquisitions can be scheduled for each
trigger events (overall 24 commands per control period, for example, between two successive reload
signals). The next command is sent when the ADC signals the completion of previous acquisition.

Recommendation: The CTU can be configured to generate interrupt requests when a trigger occurs (for
example, to trigger READ DIGITAL INPUTS).

5.3.1.2.4.2 Implementation details

The following hardware elements may be used for the safety function:

• CTU

• One eTimer channel

• Another eTimer channel

5.3.2 Digital outputs

Functional safety digital outputs are always assumed to be written either redundantly or with read back. In
case of single output with read back, the feedback loop should be as large as possible to cover faults on
system level also. Figure 17 depicts the connection of two (functional safety critical) actuators connected
to the MPC567xK. Actuator 1 is connected to an output peripheral, for example, a motor is connected to
a PWM-output (output peripheral 3). The signal generated by the output peripheral 3 can be input to an
input peripheral, for example, an eTimer. This measure is to confirm, that the generated output signal is
correct. This read back may be internally of the MPC567xK (internal read back) or externally (external
read back). The external read back covers more types of failures (for example, corrupt wire bonds or solder
joints) than the internal read back, but still does not guarantee, that the actuator really behaves as desired.
This is achieved by including the actuator and sensor into the read back loop. An alternative solution is to

Table 7. CTU software tests

Function Test Frequency

Synchronize sequential
read input

CTU_HWSWTEST_TRIGGERNUM Once for every control period (< FTTI)

CTU_SWTEST_TRIGGERTIME Once for every CTU control period (triggered
mode) or every trigger (sequential mode)

CTU_HWSWTEST_TRIGGEROVERRUN Once for every trigger

CTU_HWSWTEST_ADCCOMMAND Once for every ADC command

CTU_SWTEST_ETIMERCOMMAND Once for every control period (< FTTI)

CTU_HW_CFGINTEGRITY Once for every control period (< FTTI)

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 76

redundantly output a signal. For example, the actuator 2 consists of two relays in series to switch off a
functional safety relevant supply voltage. The selection of the suited output connection is part of the I/O
functional safety concept on system level.

Figure 17. Digital Outputs with redundancy and read back

Implementation hint: If a sufficient diagnostic coverage can be reached by a plausibility check on a
single output channel for a specific application, a plausibility check can replace a redundant write or a read
back. This hint is a special case of deviating from Safety requirements as described in Section 1, Preface.

5.3.2.1 Hardware

5.3.2.1.1 Single Write Digital Output

• Single Write Digital Output with external read back:
A comparison between the desired output values and the value read back via external read back
configuration is done. After writing the output value, the status of the digital input is evaluated.

• Single Write Digital Output with internal read back1:
A comparison between the desired output values and the value read back via internal read back
configuration. After writing the output value, the internal read back status is evaluated.

• Single Write PWM Output with external read back:
This procedure output compare the PWM read back provided by a single channel of the eTimer_0
(eTimer_1, eTimer_2) with the expected values that have been written to the external pad of the
FlexPWM_1 (FlexPWM_2, FlexPWM_0) output channel.

• Single Write PWM Output with internal read back1:
This procedure output compare the PWM read back provided by a single channel of the eTimer_0

1.Internal read back does not cover package faults (for example, wire bond, etc.).

O

input
peripheral

output
peripheral 2

output
peripheral 1

output
peripheral 3

O

O

I

actuator 2

actuator 1

sensor

torque, position,
angle, pressure,
temperature,
voltage, etc.

torque, position,
angle, pressure,
temperature,
voltage, etc.

internal
read back

external
read back

external read back
with actuator/sensor

in the loop

MPC567x

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 77

(eTimer_1, eTimer_2) with the expected values that have been written to the FlexPWM_1
(FlexPWM_2, FlexPWM_0) output channel.

Figure 18. Single Write Digital Output With Read Back

SIUL

OI

GPO

SIUL

O

GPO

I = Input

O = Output

GPI

Digital Out External Readback
Configuration

Digital Out Internal Readback
Configuration

PBRIDGE_n PBRIDGE_n

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 78

Figure 19. Single Write PWM Output With Read Back

5.3.2.1.2 Double Write Digital Output

• Double Write Digital Output

— The SIUL hardware element is used to perform a double write digital output.

• Double Write PWM Output

— The hardware elements are used to perform a double write PWM output:

— eTimer_0 and eTimer_1

— eTimer_0 and eTimer_2

— eTimer_1 and eTimer_2

— FlexPWM_0 and FlexPWM_1

— FlexPWM_0 and FlexPWM_2

— FlexPWM_1 and FlexPWM_2

eTimer

I

PWM Out Single Write External
Readback Configuration

Flex
PWM

eTimer

I

PWM Out Single Write Internal
Readback Configuration

Flex
PWM

OO

ETC[x]
n[z]* n[z]*

*Note: n[z] represents any FlexPWM output (for example, PWMA[z], PWMB[z] or
PWMX[z]).

I = Input

O = Output

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 79

Figure 20. Double Write Digital Output

Figure 21. Double Write PWM Output

SIUL

O

Digital Out Double
Configuration

O

GPO[y]GPO[x]

eTimer_0

PBRIDGE_n

O

eTimer_1

O

Flex

O

Flex

O

PWM_0 PWM_1

ETC[x]*

O = Output

ETC[y]* n[z]* n[z]*

*Note: n[z] represents any FlexPWM output (for example, PWMA[z], PWMB[z] or
PWMX[z]), but each output must be driven by different FlexPWM modules. The
same consideration is valid for the eTimer; any eTimer output may be used, but
each output must be driven by different eTimer module.

PBRIDGE_n

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 80

5.3.2.2 Software

Digital outputs used for functional safety purposes are assumed to be written either redundantly or with
read back as described in this section. Table 8 lists four element safety functions for output, the
corresponding safety integrity functions and their execution frequency. Alternative solutions with
sufficient diagnostic coverage are possible.

5.3.2.2.1 Single Write Digital Outputs With Read Back

The SIUL hardware element is used to perform a Single Write Digital Output With Read Back (see
Figure 18).

Rationale: To check if written data is coherent to the expected data.

Table 8. Digital outputs software tests

Function Test Frequency

Single Write Digital Outputs
With Read Back

SIUL_SWTEST_REGCRC Once after programming

GPOERB_SWTEST_CMP Once every write

GPOIRB_SWTEST_CMP Once every write

Double Write Digital Outputs
SIUL_SWTEST_REGCRC Once after programming

GPODW_SWAPP_WRITE Once every write

Single Write PWM Outputs
With Read Back

SIUL_SWTEST_REGCRC Once after programming

ETIMER0_SWTEST_REGCRC1

NOTES:
1 This test is required only if the eTimer channels are used for the safety function.

Once after programming

ETIMER1_SWTEST_REGCRC1 Once after programming

ETIMER2_SWTEST_REGCRC1 Once after programming

FLEXPWM0_SWTEST_REGCRC2

2 This test is required only if the FlexPWM channels are used for the safety function.

Once after programming

FLEXPWM1_SWTEST_REGCRC2 Once after programming

FLEXPWM2_SWTEST_REGCRC2 Once after programming

PWMRB_SWTEST_CMP Once every write

Double Write PWM Outputs

SIUL_SWTEST_REGCRC Once after programming3

3 If a change in a single SIUL configuration register is capable of affecting both the output and the read-back paths,
then SIUL_SWTEST_REGCRC may be executed every FTTI. In all other cases configuration errors are covered by
the software comparison.

ETIMER0_SWTEST_REGCRC1 Once after programming

ETIMER1_SWTEST_REGCRC1 Once after programming

ETIMER2_SWTEST_REGCRC1 Once after programming

FLEXPWM0_SWTEST_REGCRC2 Once after programming

FLEXPWM1_SWTEST_REGCRC2 Once after programming

FLEXPWM2_SWTEST_REGCRC2 Once after programming

PWMDW_SWAPP_WRITE Once every write

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 81

Implementation hint: The read back may be implemented either with external or with internal readback.

The SIUL element is correctly configured to provide the output write and the pad directions as follows:

• External read back – SIUL is configured to read back the signal from an additional pad, and the
loopback is performed outside the device. In this configuration, only half of the available digital
outputs are available as functional safety outputs.

• Internal read back – SIUL is configured to read back the pad value via an internal read path. All
pads dedicated to digital I/O are capable of reading the pad digital status using the input logic.

Rationale: To reduce the likelihood of a CMF caused by incorrect configuration of pads

Implementation hint: The application software integrates software test SIUL_SWTEST_REGCRC in
the application to check the correct configuration of the pads, and to compare a read back with the digital
output write. GPOERB_SWTEST_CMP may be used for the external read back or
GPOIRB_SWTEST_CMP for internal read back.

5.3.2.2.1.1 Implementation details

The SIUL hardware element may be used for the safety function.

NOTE
Pads that are not dedicated to a single function can be configured as GPIO.
Pads dedicated to ADC are an exception to this rule, as they can only be
configured as inputs.

5.3.2.2.1.2 SIUL_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

5.3.2.2.1.3 GPOERB_SWTEST_CMP

This software test is used to execute the comparison between the desired output values and the value read
back via external read back configuration. After writing the output value, the test reads the status of the
digital input.

Rationale: To check if the read data equals the written data

Implementation hint: The output is externally (on system level) connected to an input I/O. After writing
the value to the output signal, the input is read to check that the correct output is present.

5.3.2.2.1.4 GPOIRB_SWTEST_CMP

This software test is used to execute the comparison between the desired output values and the value read
back via internal read back configuration. After writing the output value, the test reads the status.

Rationale: To check if the read data equals the written data.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 82

5.3.2.2.2 Double Write Digital Outputs

The SIUL hardware element is used to perform a Double Write Digital Output.

Rationale: To configure pads used by this safety function and reduce the likelihood of a CMF caused by
incorrect configuration of pads

Implementation hint: The SIUL is configured by application software to correctly define the
configuration of the outputs used. The software performs a double write.

Rationale: To reduce the likelihood of a CMF caused by incorrect configuration of the pads

Implementation hint: To achieve the integrity of the two output channels, the application validates the
SIUL configuration implementing the SIUL_SWTEST_REGCRC.

Rationale: To write a digital output by exploiting redundancy

Implementation hint: The application software implements the double output write as defined by the
GPODW_SWAPP_WRITE.

5.3.2.2.2.1 Implementation details

The only hardware element that can be used for the safety function is the GPIO.

Every pad not dedicated to a single function may be configured as GPIO. Pads dedicated to ADC are an
exception to this rule, as they can be configured as inputs only.

5.3.2.2.2.2 GPODW_SWAPP_WRITE

Rationale: To minimize the common mode failure of the SIUL

Implementation hint: The output write of a redundant channel may be implemented by writing the two
outputs with a single instruction to the appropriate register and this register may be checked by read back.

To write two or more GPIOs with a single instruction, the Masked Parallel GPIO Pad Data Out register
(SIUL_MPGPDOn) register can be used. The two GPIOs used must be in the same SIUL_MPGPDOn
register.

To protect the value of the other GPIOs that belong to the same SIUL_MPGPDOn, the MASK field of the
SIUL_MPGPDOn register needs to be properly configured.

When using a single write (atomic) instruction to SIUL_MPGPDOn register, it is good practice to read
back (read after write) the register content due to the fact that a transient fault in the SIUL IPS interface
can affect in principle both output channels. The readback is needed to cover this common mode of failure.
An alternative implementation would be to write the two outputs separately not using the parallel register,
resulting in a small delay in output change between the channels.

5.3.2.2.3 Single Write PWM Outputs With Read Back

The following combination of elements may be used to perform a Write PWM Output With Read Back:

• eTimer_0 – FlexPWM_0

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 83

• eTimer_0 – FlexPWM_1

• eTimer_0 – FlexPWM_2

• eTimer_0 – FlexPWM_3

• eTimer_1 – FlexPWM_0

• eTimer_1 – FlexPWM_1

• eTimer_1 – FlexPWM_2

• eTimer_1 – FlexPWM_3

• eTimer_2 – FlexPWM_0

• eTimer_2 – FlexPWM_1

• eTimer_2 – FlexPWM_2

• eTimer_2 – FlexPWM_3

• eTimer_3 – FlexPWM_0

• eTimer_3 – FlexPWM_1

• eTimer_3 – FlexPWM_2

• eTimer_3 – FlexPWM_3

These units are configured to implement one PWM output channel and (via internal read back) the
eTimer_0 input PWM channel. The SIUL is configured to define the configuration of the output pads used.
The software performs a write operation followed by a read operation. To achieve the integrity of the two
output channels, the application shall tests the SIUL configuration implementing the
SIUL_SWTEST_REGCRC (to reduce the likelihood of a common mode failure caused by incorrect
configuration of the pads).

Rationale: To check that the configuration of the modules used by this safety function adheres to the
expected configuration.

Implementation hint: A single channel of the eTimer is used with a multiplexing of the internal read back
of the different output of the FlexPWM. The read back paths are limited to six signals, two for each
sub-module of the FlexPWM.

The following tests validate correct configurations:

• FLEXPWM0_SWTEST_REGCRC

• FLEXPWM1_SWTEST_REGCRC

• FLEXPWM2_SWTEST_REGCRC

• ETIMER0_SWTEST_REGCRC

• ETIMER1_SWTEST_REGCRC

• ETIMER2_SWTEST_REGCRC

Rationale: To check that the written data is what is expected.

Implementation hint: The application software writes to the output port and then compare the written
value via the read back (PWMRB_SWTEST_CMP).

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 84

5.3.2.2.3.1 Implementation details

The following hardware elements may be used for the safety function:

• eTimer_0 channels

• eTimer_1 channels

• eTimer_2 channels

• FlexPWM_0 channels

• FlexPWM_1 channels

• FlexPWM_2 channels

5.3.2.2.3.2 FLEXPWMx_SWTEST_REGCRC and ETIMERx_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

5.3.2.2.3.3 PWMRB_SWTEST_CMP

This test compares the PWM read back provided by a single channel of the eTimer_1 (eTimer_0) with the
expected values that have been written to the FlexPWM_0 (FlexPWM_1) output channel.

For this example, FlexPWM_0 is used to generate a PWM output and eTimer_1 is used to read back and
verify the output. Another combination could be used if required in an application.

5.3.2.2.4 Double Write PWM Outputs

Rationale: The hardware elements eTimer_0, eTimer_1 and eTimer_2 or FlexPWM_0, FlexPWM_1 and
FlexPWM_2 are used to perform a double Write PWM Output.

Implementation hint: These units are configured to implement two independent PWM channels. The
SIUL is configured to define the configuration of the output pads used. The software performs a double
write (see Section 5.3.2.2.4.3, PWMDW_SWAPP_WRITE).

Rationale: To reduce the risk of cascading faults

Implementation hint: Using adjacent pads as redundant I/O increases the likelihood of CMFs. Therefore,
it is preferable to use I/O that do not share the same configuration and data registers in the SIUL.

Rationale: To reduce the likelihood of a CMF caused by incorrect configuration of the pads

Implementation hint: To improve the integrity of the two output channels, the application should test the
SIUL configuration implementing the SIUL_SWTEST_REGCRC.

Rationale: To check that the configuration of the modules used by this safety function adheres to the
expected configuration

Implementation hint: The application software shall implement a test for the register configuration:

• ETIMER0_SWTEST_REGCRC (for eTimer)

• ETIMER1_SWTEST_REGCRC (for eTimer)

• ETIMER2_SWTEST_REGCRC (for eTimer)

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 85

• FLEXPWM0_SWTEST_REGCRC (for FlexPWM)

• FLEXPWM1_SWTEST_REGCRC (for FlexPWM)

• FLEXPWM2_SWTEST_REGCRC (for FlexPWM)

Rationale: To reduce the possibility of cascading a failure to shared circuitries, different modules should
be used.

Implementation hint: The output write of a redundant PWM channel is implemented by writing the new
output values to both PWM channels. The system integrator can decide whether to use two of the three
eTimers (eTimer_0, eTimer_1, eTimer_2) or two of the three FlexPWMs (FlexPWM_0, FlexPWM_1,
FlexPWM_2).

5.3.2.2.4.1 Implementation details

The following hardware elements are used for the safety function:

• eTimer_0 channels

• eTimer_1 channels

• eTimer_2 channels

• FlexPWM_0 channels

• FlexPWM_1 channels

• FlexPWM_2 channels

5.3.2.2.4.2 SIUL_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

5.3.2.2.4.3 PWMDW_SWAPP_WRITE

If the content of the PWM outputs are changed, care must be taken since the outputs can not be updated
synchronously. Therefore for a short period of time both outputs could be different.

5.3.3 Analog inputs

5.3.3.1 Hardware

Two options for reading analog inputs exist:

• Single Read Analog Inputs

• Double Read Analog Inputs

Apart from these hardware BISTs, tests may be implemented in software as described in section
Section 5.3.3.2.1, Single Read Analog Inputs and Section 5.3.3.2.2, Double Read Analog Inputs.

Oversampling can be used to detect transient faults affecting the ADC channel during normal operation.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 86

It is important to note that the ADC is part of the temperature measuring safety integrity function, and it
is therefore required that the ADC hardware BIST functions be executed even if the ADC is not in
application use.

5.3.3.1.1 Single Read Analog Inputs

The single-read analog input uses a single-analog-input channel either of ADC_0, ADC_1, ADC_2, or
ADC_3 to acquire an analog voltage signal (see Figure 22).

Figure 22. Single Read Analog Input configuration

5.3.3.1.2 Double Read Analog Inputs

The Double Read Analog Input uses two analog input channels to acquire a replicated analog input signal.
Two ADC units acquire and digitize the two copies of a redundant analog signal connected to the inputs.
In this configuration (if applied to all possible analog inputs), only half of the analog inputs are available
to the applications (AN[0:8] of ADC_0 for signals, and AN[0:8] of ADC_1 for signal copies). The
comparison of the results is performed by the system level application software (see Figure 23).

Rationale: ADC_0 and ADC_1 as also ADC_2 and ADC_3 share input for the channels (AN[11:14]).
Using double reads is a possible source of CMFs.

Implementation hint: One shared ADC channel (AN[11:14]) may not be used for both inputs of the
double read analog input function.

The usage of one input of one channel AN[11:14] in combination with another channel AN[0:8] is
possible.

ADC_x

Fault Routing

PBRIDGE_n

AN[x]

Reference voltages
(VDD_HV_ADRn and VSS_HV_ADR)

I

I = Input

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 87

The functional safety integrity is achieved by replicated acquisition with separated analog input channels
and software comparison by the processing function (see Figure 23).

Figure 23. Double Read Analog Inputs configuration

5.3.3.2 Software

Analog inputs used for functional safety purposes are assumed to be input redundantly as described in this
section. Table 9 lists two element safety functions for analog input, the corresponding safety integrity
functions and their execution frequency. Alternative solutions with sufficient diagnostic coverage are
possible.

ADC_0

AN[0:8]

ADC_1

AN[0:8]

I II = Input

Fault Routing

PBRIDGE_n

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 88

It is important to note that the ADC is part of the temperature measuring safety integrity function, and it
is therefore required that the hardware BIST functions be executed once after the boot even if the ADC is
not in application use.

5.3.3.2.1 Single Read Analog Inputs

To support a high diagnostic coverage two known reference supply voltages are utilized by two software
tests which are described in the following sections (ADC_SWTEST_TEST1 and
ADC_SWTEST_TEST2).

The reference supply voltages are the following:

• VDD_HV_ADR0 (ADC_0 high reference voltage)

• VDD_HV_ADR1 (ADC_1 high reference voltage)

• VDD_HV_ADR2 (ADC_2 high reference voltage)

• VDD_HV_ADR3 (ADC_3 high reference voltage)

• VSS_HV_ADR0 (ADC_0 low reference voltage)

Table 9. Analog inputs software tests

Function Test Frequency

Single Read Analog Inputs

SUPPLY SELF-TEST Once in the FTTI

RESISTIVE-CAPACITIVE SELF-TEST Once in the FTTI

CAPACITIVE SELF-TEST Once in the FTTI

ADC_SWTEST_TEST1 Once in the FTTI

ADC_SWTEST_TEST2 Once in the FTTI

ADC_SWTEST_VALCHK Once for every acquisition

ADC_SWTEST_OVERSAMPLING Once for every acquisition

ADC0_SWTEST_REGCRC Once in the FTTI

ADC1_SWTEST_REGCRC Once in the FTTI

ADC2_SWTEST_REGCRC Once in the FTTI

ADC3_SWTEST_REGCRC Once in the FTTI

SIUL_SWTEST_REGCRC Once in the FTTI

Double Read Analog Inputs

SUPPLY SELF-TEST Once after boot

RESISTIVE-CAPACITIVE SELF-TEST Once after boot

CAPACITIVE SELF-TEST Once after boot

ADC0_SWTEST_REGCRC Once after programming

ADC1_SWTEST_REGCRC Once after programming

ADC2_SWTEST_REGCRC Once after programming

ADC3_SWTEST_REGCRC Once after programming

SIUL_SWTEST_REGCRC Once after programming

ADC_SWTEST_CMP Once for every acquisition

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 89

• VSS_HV_ADR1 (ADC_1 low reference voltage)

• VSS_HV_ADR2 (ADC_2 low reference voltage)

• VSS_HV_ADR3 (ADC_3 low reference voltage)

The SIUL unit is configured to correctly enable the ADC inputs. The pads used for analog inputs can only
be configured as inputs.

Single Read Analog Inputs may be implemented using the following safety integrity functions at the
application level:

• ADC_SWTEST_TEST1

• ADC_SWTEST_TEST2

• ADC_SWTEST_VALCHK

• ADC0_SWTEST_REGCRC, ADC1_SWTEST_REGCRC, ADC2_SWTEST_REGCRC, or
ADC3_SWTEST_REGCRC

• SIUL_SWTEST_REGCRC

• ADC_SWTEST_OVERSAMPLING

5.3.3.2.1.1 Implementation details

The following hardware elements can be used for the safety integrity functions:

• Analog input channels AN[0:8] of ADC_0

• Analog input channels AN[11:14] of ADC_0 and ADC_1 (shared channels)

• Analog input channels AN[0:8] of ADC_1

• Analog input channels AN[0:8] of ADC_2

• Analog input channels AN[11:14] of ADC_2 and ADC_3 (shared channels)

• Analog input channels AN[0:8] of ADC_3

The system integrator may select one channel from different ADC modules, for example, ADC_0 or from
ADC_1. Shared channels can be used.

5.3.3.2.1.2 SIUL_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

5.3.3.2.1.3 ADCn_SWTEST_REGCRC

If ADC_0 is used the ADC0_SWTEST_REGCRC may be used. If ADC_1 is used the
ADC1_SWTEST_REGCRC may be used. If ADC_2 is used the ADC2_SWTEST_REGCRC may be
used. If ADC_3 is used the ADC3_SWTEST_REGCRC may be used.

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 90

5.3.3.2.1.4 ADC_SWTEST_TEST1 (open detection)

This test exploits the presampling feature of the ADC. Presampling allows to precharge or discharge of the
ADC internal capacitor before it starts the sampling and conversion phases of the analog input received
from the pads. During the presampling phase, the ADC samples the internally generated voltage. While in
the sampling phase, the ADC samples analog input coming from the pads. In the conversion phase, the last
sampled value is converted to a digital value. Figure 24 shows the normal sequence of operation for two
channels (Presampling – Sampling – Conversion).

Figure 24. Implementation of ADC_SWTEST_TEST1

Reference voltages, which can be used during presampling phase, is either VDD_HV_ADR or VSS_HV_ADR.

If there is an open failure in the analog multiplexing circuitry, the signal converted by the ADC is not the
analog input coming from the pad, but the presampling reference voltage (VDD_HV_ADRn or VSS_HV_ADRn).
Figure 25 depicts the signal path in the analog multiplexing circuitry for presampling phase and
conversion phase.

Figure 25. ADC_SWTEST_TEST1 (open detection)

Each analog input channel used by the safety function may be tested by system level measures (software).

Since the pads dedicated to analog inputs are of type INPUT, a missing enable from the SIUL results in an
open failure.

Rationale: To detect open failures of the channel multiplexing circuitry (see Figure 25).

Implementation hint: Presampling can be enabled on a per channel basis through the ADC_n_PSR0
register. ADC_n_PCSR[PREVAL0] selects which reference voltage is used to precharge/discharge the
ADC internal capacitor, (ADC_n_PSCR[PRECONV] = 0). (See “Analog-to-Digital Converter (ADC)”
chapter in the Qorivva MPC5675K Microcontroller Reference Manual for details on the presampling
feature).

Convert
Ch A

Presample
Ch B

Sample
Ch B

Convert
Ch B

Presample
Ch A

Sample
Ch A t

VDD_HV_ADRn
or

VSS_HV_ADRn

Note: Either VDD_HV_ADR0/1 or VSS_HV_ADR0/1 can be used as presampling voltage.

ADC

Reference
value 1

inputs
ADC

Reference
value 1

inputsADCADC

Presampling phase Conversion phase

Open detection:

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 91

NOTE
Caution! To reduce the likelihood of a false indication of an open fault in
the analog multiplexor, signals connected to the ADC inputs should not be
outside of the limits of the reference voltages (VDD_HV_ADR, VSS_HV_ADR).
In case this limitation cannot be fulfilled by the application, a more complex
algorithm may be necessary (for example, run the test three times with
VDD_HV_ADR, VSS_HV_ADR, VDD_HV_ADR).

5.3.3.2.1.5 ADC_SWTEST_TEST2 (short detection)

To detect short failures two different voltages are acquired by the ADC. If these values are different from
the expected ones, a short failure on the multiplexed circuitry has been detected.

To implement this test a presampling feature of the ADC can be exploited. The presampling may be
configured in such a way that the sampling of the channel is bypassed and the presampling reference
supply voltages are converted.

During the first step the VDD_HV_ADRn is converted and compared with the expected value; then the
VSS_HV_ADRn is converted and compared with the expected one (see Figure 26).

Figure 26. Implementation of ADC_SWTEST_TEST2

Rationale: To detect short failures of the channel multiplexing circuitry (see Figure 27).

Figure 27. ADC_SWTEST_TEST2 (short detection)

Implementation hint: Presampling can be enabled on a per channel basis through the ADC_n_PSR0
register. ADC_n_PCSR[PREVAL0] selects which reference voltage is used to precharge/discharge the
ADC internal capacitor. To bypass the conversion of the input channel and convert the presampled values,
ADC_n_PCSR[PRECONV] = 1. (See “Analog-to-Digital Converter (ADC)” chapter in the Qorivva
MPC5675K Microcontroller Reference Manual for details on the presampling feature).

Presample
Ch x

Convert
Ch x

Presample
Ch x

Convert
Ch x t

VDD_HV_ADRn VSS_HV_ADRn

Note: Either VDD_HV_ADR0/1 or VSS_HV_ADR0/1 can be used as presampling voltage.

ADC

Reference
value 2

inputs
ADC

Reference
value 1

ADCADC

Reference
value 1

First reference conversion

Short detection:

Second reference conversion

inputs

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 92

5.3.3.2.1.6 ADC_SWTEST_VALCHK

When ADC conversion is triggered by the CTU, the acquired digital sample data are stored into a dual
queue along with information about the channel that performed the acquisition. The checking of the
expected channel provides coverage of the control logic and part of the queue logic. Checking of the
expected sequence of acquired channels provides the coverage of the control logic and part of the queue
logic.

Implementation hint: If ADC is configured to work in CTU mode, the conversion results are stored in
CTU FIFOs (see CTU chapter in Qorivva MPC5675K Microcontroller Reference Manual for details).
Along with the converted data, the converted channel number and ADC module are stored. CTU includes
two sets of registers to read this information (FIFO Right aligned data, FRx, and FIFO Right aligned data,
FLx). These registers may be read to check that the sequence of the acquired channel is what is expected.

5.3.3.2.1.7 ADC_SWTEST_OVERSAMPLING

In case of Single Read Analog Inputs the ADC_SWTEST_OVERSAMPLING may be implemented as
counter measure against random fault.

ADC_SWTEST_OVERSAMPLING is an acquisition redundant in time.

It refers to sampling the signal at a rate significantly higher than the Nyquist frequency related to the input
signal. If there is a fault, the acquired values will not be correlated.

This safety integrity measure compares the acquired value to check the correlation.

Against random fault, three consecutive analog values are converted for each acquisition to implement the
ADC_SWTEST_OVERSAMPLING. Figure 28 shows the sampling of an analog signal at different points
in time (A1, A2 and A3). Every conversion is indicated by an arrow, which indicates the converted digital
value by its length. The second acquisition (A2) is faulty because the first converted value is quite different
respect the other two.

Figure 28. Series of acquired analog values

5.3.3.2.2 Double Read Analog Inputs

Rationale: To validate that the configuration of the modules used by this safety function corresponds with
what is expected. To reduce the likelihood of common mode failures caused by improper configuration of
the pads.

Faulty Acquisition

A1 A2 A3

t

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 93

Implementation hint: Double Read Analog Inputs may be implemented using the following safety
integrity functions at the application level:

• ADC0_SWTEST_REGCRC

• ADC1_SWTEST_REGCRC

• ADC2_SWTEST_REGCRC

• ADC3_SWTEST_REGCRC

• SIUL_SWTEST_REGCRC

Rationale: To validate that the two sets of read data correlate.

Implementation hint: Double Read Analog Inputs may be implemented using the software test
ADC_SWTEST_CMP to compare the channel reads.

5.3.3.2.2.1 Implementation details

The following hardware elements may be used for the safety function:

• Analog input channels AN[0:8] of ADC_0

• Analog input channels AN[0:8] of ADC_1

• Analog input channels AN[0:8] of ADC_2

• Analog input channels AN[0:8] of ADC_3

One channel from different ADC modules may be used, for example, one from ADC_0 module and one
from the ADC_1 module.

5.3.3.2.2.2 SIUL_SWTEST_REGCRC

See Section 5.2.7, Cyclic Redundancy Checker Unit (CRC) for <module>_SWTEST_REGCRC
implementation details.

5.3.3.2.2.3 ADC_SWTEST_CMP

This software test is used to execute the comparison between the double reads performed by any
combination of two ADC_n module channels. The comparison may take possible conversion tolerances
into account.

5.3.4 Other requirements

Rationale: To detect missing eTimer acquisition.

Implementation hint: In the eTimer module, the capture flag (eTimer_n_STS[ICFn]) may be used.

Rationale: To detect stalled quadrature counting.

Implementation hint: When using the eTimer counter to decode a primary and secondary external input
as quadrature encoded signals, the eTimer watchdog may be used (see the “Counting Modes” section of
the Qorivva MPC5675K Microcontroller Reference Manual). eTimer watchdog is only available for
channel 0.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 94

Implementation hint:

• When an application needs to access the ADC result FIFO, a 32-bit read access enables the
verification of the correct channel number on which the conversion was executed.

• All the FIFO empty interrupt flags should checked when the motor control period interrupt occurs

• In the eTimer module, the capture flag should be used to detect missing eTimer acquisition.

• If the ADC analog watchdog function is used for functional safety relevant signal, two analog
watchdog channels should monitor the same signal.

• If Sine Wave Generator (SWG) is used, the ADC (eventually in conjunction with CTU) should be
used to check the output signal.

• If an external temperature sensor is used to validate the accuracy of the internal temperature sensor,
the external temperature sensor may not be converted by the same ADC that was used to convert
the internal temperature value (ADC 0).

5.4 Communications

5.4.1 Redundant communication

Parts of the integrated DSPI, LINFlex, and I2C communication controller do not provide the functional
safety integrity IEC 61508 series and ISO 26262 requires for high functional safety integrity targets. As
these communication protocols often deal with low complex slave communication nodes, higher level
functional safety protocols as described in Chapter 5.4.2, “Fault-tolerant communication protocol” may
not be feasible. Therefore appropriate communication channel redundancy may be required. Multiple
instances of communication controller may be used to build up a single fault robust communication link.

Implementation hint: In case the communication over the following interfaces is integral part of the
safety function, multiple instances of the replicated hardware communication controller are implemented
redundantly, preferable using different data coding, for example, inversion, if using:

• Synchronous Serial Communication Controller (DSPI)

• LINFlex Communication Controller

• I2C Communication Controller

DSPI, LINFlexD, and I2C do not have special functional safety mechanisms other than what is included
into them by their protocol specifications. The system level communication architecture needs to provide
the functional safety mechanisms on the interface of the modules to meet functional safety requirements.

5.4.2 Fault-tolerant communication protocol

Parts of the integrated FlexRay, FlexCAN, and Fast Ethernet communication channel do not provide the
functional safety integrity IEC 61508 series and ISO 26262 requires for high functional safety integrity
targets.

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 95

Implementation hint: In case the communication over the following interfaces is integral part of the
functional safety function, a software interface with the hardware communication channel in accordance
with the IEC 61784-3 or IEC 62280 series is required for:

• FlexRay Communication Controller

• FlexCAN Communication Controller

• Fast Ethernet Communication Controller (FEC)

• Universal Asynchronous Communication Controller (LINFlex)

FlexRay, FEC, FlexCAN, and Universal Asynchronous Communication Controller (LINFlex) do not have
specific functional safety mechanisms other than ECC protection of SRAM arrays and what is included
into them by their protocol specifications. The application software, middleware software, or operating
system needs to provide the functional safety mechanisms on the interface of the IP modules to meet
functional safety requirements.

Typically mechanisms are:

• end-to-end CRC to detect data corruption

• sequence numbering to detect message repetitions, deletions, insertions, and resequencing

• an acknowledgement mechanism or time domain multiplexing to detect message delay

• sender identification to detect masquerade

As the black channel typically includes the physical layer (for example, communication line driver, wire,
connector), the functional safety software protocol layer is an end-to-end functional safety mechanism
from message origin to message destination.

Appropriate functional safety software protocol layer (for example, Fault Tolerant Communication Layer,
FTCOM, CANopen Safety Protocol) may be necessary to ensure the failure performance of the
communication process. Software protocol layer implements an software interface with the hardware
communication channel in accordance with the IEC 61784-3 or IEC 62280 series (so-called ‘black
channel’).

An alternative approach to improve the functional safety integrity of FlexCAN may use multiple instances
of the FlexCAN channels and use an appropriate protocol to redundantly communicate data, for example,
using the CANopen Safety protocol. This approach communicates redundant data (for example, one
message payload inverted, the other message payload not inverted) using different communication
controller.

Due to the limited bandwidth and the point to point communication architecture for Universal
Asynchronous Communication Controller (LINFlex) a simplified functional safety protocol layer may be
only required.

5.5 Additional configuration information

5.5.1 Call stack

Call stack overflow and call stack underflow is a common mode fault due to systematic faults within
application software. A stack overflow occurs when using too much memory (pushing to much date) on

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 96

the call stack. A stack underflow occurs when reading (pop) too much data from memory. The call stack
contains a limited amount of memory, often determined during development of the application software.
When a program attempts to use more space than is reserved (available) on the call stack (when accessing
memory beyond the call stack's upper and lower bounds), the stack is said to overflow or underflow,
typically resulting in a program crash.

It may be beneficial to implement a measure supervising the stack and respectively generating a fault
signal in case of a call stack overflow and call stack underflow.

5.5.1.1 Initial checks and configurations

Safety requirement under certain preconditions: [SM_061] When call stack underflow and call stack
overflow due to systematic faults within the application software endangers the item (system) level
functional safety integrity measure respective functional safety mechanisms may be implemented to detect
call stack underflow and call stack overflow faults. [end]

Rationale: To have a notification in case of an call stack overflow or call stack underflow error.

Implementation hint: The DAC1 and DAC2 resources maybe used for incremental stack overflow or
stack underflow detection when not being used as a hardware or software debug resource. Stack limit
checking is available regardless of EDM or IDM mode, and when resources used for stack limit checking
are owned by software, will utilize a DSI or machine check exception.

A data address compare (DAC) exception is signaled when there is a data access address match as defined
by the debug control registers and data address compare events are enabled. This could either be a direct
data address match or a selected set of data addresses, or a combination of data address and data value
matching. The debug interrupt is taken when no higher priority exception is pending.

Software-owned stack limit checking does not require IDM to be set. Hardware owned stack limit
checking requires EDM to be set. When stack limit checking is enabled, and DAC resources used for stack
limit checking are owned by software, DAC events are not generated for resources configured to perform
stack limit checking, and no DBSR DAC status flag will be set due to a detected stack limit violation.

Instead, depending on the processor mode, a data storage interrupt or a machine check exception is
signaled. When stack limit checking is enabled, and DAC resources used for stack limit checking are
owned by hardware, DAC events will be generated for resources configured to perform stack limit
checking, and the EDBSR0 DAC status flag will be set due to a detected stack limit violation, causing
entry into debug halted mode in the same way as a DAC exception normally does. The only difference is
that qualification of the access address is performed as discussed in the next paragraph.

Incremental stack limit checking may be implemented using two data address watchpoints defined by
DAC1 and DAC2. As hardware does not qualify a load or store access address with the use of GPR R1 as
the base or index register used to compute an effective address when a load or store instruction is executed,
special care has to be taken the watchpoints are not used elsewhere in the application software (guard band
address range). This measure does only enable incremental stack overflow, as it only detects data
addressing of the limit (upper and lower) address. Addressing going beyond the limits will be undetected.
When DAC resources configured to perform incremental stack limit checking are not owned by hardware,
if a stack limit violation occurs when performing the load or store, the access is aborted, and an error report
machine check is generated, with MCSRR0 pointing to the address of the load or store access which

Software requirements on system level

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 97

generated the stack overflow/underflow. If DAC resources configured to perform stack limit checking are
owned by hardware, then a normal DAC event is generated (but qualified with use of GPR R1), and debug
mode entry will occur in the same manner as for a non-stack limit DAC event.

When stack limit checking is enabled for a stack access, and DACn resources are owned by hardware, the
EDBSR0 DAC status flag will be set due to a detected stack limit violation, to cause entry into debug
halted mode or to generate a watchpoint, or both, i.e. after the access has completed.

Independent limit checks for supervisor and user accesses may be implemented by allocating independent
DACn resources to each, or a single limit may be applied using a single DACn resource. If more than one
DACn resource is utilized, a DAC hit on any resource utilized for stack limit checking will cause the
corresponding stack limit exception action to occur. If both a hardware-owned and a software-owned
resource generate a stack limit exception for a given load or store, the software resource will have priority,
since it is detected prior to completion of the access, and the access is aborted, thus the hardware event will
not occur.

NOTE
For DAC1 and DAC2, access type (read, write) control is part of DBCR0.

5.5.2 MCU configuration

Safety requirement: [SM_064] It is required that application software checks correct initialization of the
MPC567xK before activating the safety-relevant functionality. [end]

Safety requirement: [SM_062] It is required that application software checks the configuration of the
SCCM once after boot. [end]

Recommendation: It is recommended that SSCM is configured to trigger an exception in case of any
access to a peripheral slot not used on the device.

Rationale: To detect erroneous addressing and fault in address and bus logic.

Recommendation: It is recommended that after the boot application software perform an intended access
to an unimplemented memory space and check for the expected abort to occur.

Rationale: To detect erroneous addressing and fault in address and bus logic.

Recommendation: It is recommended that unused interrupt vectors point, or jump, to an address that is
illegal to execute, contains an illegal instruction, or in some other way causes detection of their execution.

Recommendation: It is recommended that only hardware related software (OS, drivers) run in supervisor
mode.

Rationale: To reduce the risk accidental writes configuration registers affecting the execution of the
MPC567xK’s safety function or disable the safety mechanism due to their change.

Recommendation: It is recommended that all configurations registers, and registers that aren't modified
during application execution, are protected with a Hard Lock Protection. Configuration registers, and
registers which have limited writes every trip time, are protected with soft-lock protection.

MPC567xK Safety Manual, Rev. 1

Software requirements on system level

Freescale Semiconductor 98

Rationale: To reduce the risk accidental writes configuration registers affecting the execution of the
MPC567xK’s safety function or disable the safety mechanism due to their change.

Implementation hint: Most of the off-platform peripherals have their own REG_PROT. Each peripheral
that may be protected through the REG_PROT has a Set Soft Lock bit in the Register Protection space.
This bit may be asserted to enable the protection of the related peripheral.

Each peripheral register that may be protected through register protection has a Set Soft Lock bit reserved
in the Register Protection address space. This bit may be asserted to enable the protection of the related
peripheral registers. Moreover, the Hard Lock Bit (REG_PROT_GCR[HLB] = 1) may be set for best write
protection.

5.5.2.1 Detection of unwanted resets

Safety requirement: [SM_071] It is required to implement application level measure to detect missing
RESETs of safety relevant modules. [end]

Implementation hint: To scan the content of the configuration registers of all safety relevant registers
once after reset and before initialization to detect RESET failures.

Safety requirement: [SM_063] It is required to detect unwanted reset of safety relevant modules by
application level software and hardware counter measures. [end]

This is a brief description of each of the column headings in Table 10:

• Reset signal – The internal signal that resets one or more of the receiving modules.

• Receiving module – This module is reset by the specified reset signal in the “Reset Signal” column.

• Software control – The register (or registers) which can reset the specified “Receiving Module” by
the specified “Reset Signal”. If no register is listed, the specified “Reset Signal” cannot be
controlled by the register interface.

• Reset effect and detection – The effect of the unwanted reset of the specified “Receiving Module”
and shows some mechanisms that can detect the module where the event occurred. If multiple
mechanisms are listed, the software can choose the mechanism that better fits its need (unless
explicitly specified).

• Specific software action needed – Additional software mechanism, with respect to the application
software, required to detect an unwanted reset of the specified “Receiving Module” (for example,
polling coming from configuration registers).

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

F
reescale S

em
iconductor

99

Table 10. Effects of reset

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

ipg_hard_async_reset_addtl_b(0:0)

lbist_interface_dummy_sog monitored_reset_b(3:3)

—
Reset
complete
system

No action
required

Same reset that goes to
fccu. Phase 1 reset and
STCU combined reset

fccu0_prot ipg_hard_async_reset_b

fccu0 ipg_hard_async_rst_clk_b

ipg_hard_async_reset_addtl_b(1:1) fccu0 ipg_hard_async_rst_clk_safe_b

—

Safe fault,
no
detection
required

No action
requiredipg_hard_async_reset_addtl_b(3:3) npc_wrapper ipp_ind_jcomp_sync

ipg_hard_async_reset_b(0:0)

mc_rgm_ipi_int_synchro rst_b

—
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

mc_me_nex_idle_b_synchro rst_b

ebi ipg_hard_reset_b

ddrc ipg_hard_sync_reset_b

ctu1 ipg_hard_async_reset_b_ipg

ctu0 ipg_hard_async_reset_b_ipg

acp_komodo_dpm_splitter_ebi_ddr resetb —
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM. AHB
Bus splitter for ebi

wkpu_prot ipg_hard_async_reset_b

—
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

wkpu ipg_hard_async_reset_b

stop_sync_adc1 ipg_hard_async_reset_master_b

stop_sync_adc0 ipg_hard_async_reset_master_b

sram_rccu_4_1 ipg_hard_async_reset_b

sram_rccu_4_0 ipg_hard_async_reset_b

siul_prot ipg_hard_async_reset_b

siul ipg_hard_async_reset_b

s3_axbs_rccu_6_1 ipg_hard_async_reset_b

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

F
reescale S

em
iconductor

100

ipg_hard_async_reset_b(0:0)
(cont’d)

s3_axbs_rccu_6_0

ipg_hard_async_reset_b —
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

rcosc16M_dig

pit_prot

pit

pdi_prot

pdi

osc_dig

npc_hndshk

mc_pcu_prot

mc_pcu

mc_me_prot

mc_me

m2_axbs_rccu_7_1

m2_axbs_rccu_7_0

linflex3_prot

linflex2_prot

linflex1_prot

linflex0_prot

lin3

lin2

lin1

lin0

leo3flash_rccu_5_1

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

F
reescale S

em
iconductor

101

ipg_hard_async_reset_b(0:0)
(cont’d)

leo3flash_rccu_5_0 ipg_hard_async_reset_b

—
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

i2c2_prot ipg_hard_async_reset_b

i2c2 ipg_hard_async_reset_b

i2c1_prot ipg_hard_async_reset_b

i2c1 ipg_hard_async_reset_b

i2c0_prot ipg_hard_async_reset_b

i2c0 ipg_hard_async_reset_b

flexray_prot ipg_hard_async_reset_b

flexray ipg_hard_async_reset_b

flexpwm2_prot ipg_hard_async_reset_b

flexpwm2 ipg_master_hard_async_reset_b

flexpwm1_prot ipg_hard_async_reset_b

flexpwm1 ipg_master_hard_async_reset_b

flexpwm0_prot ipg_hard_async_reset_b

flexpwm0 ipg_master_hard_async_reset_b

flex_mux0 ipg_hard_async_reset_b

fec_prot ipg_hard_async_reset_b

etimer2_prot ipg_hard_async_reset_b

etimer2 ipg_master_hard_async_reset_b

etimer1_prot ipg_hard_async_reset_b

etimer1 ipg_master_hard_async_reset_b

etimer0_prot ipg_hard_async_reset_b

etimer0 ipg_master_hard_async_reset_b

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

F
reescale S

em
iconductor

102

ipg_hard_async_reset_b(0:0)
(cont’d)

ebi_sync_clk

ipg_hard_async_reset_b —
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

ebi_prot

dspi2_prot

dspi2

dspi1_prot

dspi1

dspi0_prot

dspi0

dma_rccu_1_1

dma_rccu_1_0

dma1_ch_mux_prot

dma1_ch_mux

dma0_ch_mux_prot

dma0_ch_mux

ddrc_prot

ddrc

ctu1_prot

ctu0_prot

crc_top_prot

crc_top

crc1_top_prot

crc1_top

core_rccu_0_1

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

F
reescale S

em
iconductor

103

ipg_hard_async_reset_b(0:0)
(cont’d)

core_rccu_0_0

ipg_hard_async_reset_b

—
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

cmu2

cmu1

cmu0

can3_prot

can3

can2_prot

can2

can1_prot

can1

can0_prot

can0

bam

axbs_rccu_3_1

axbs_rccu_3_0

aips_rccu_2_1

aips_rccu_2_0

adc3_prot

adc2_prot

adc1_prot

adc1_ipsync ipg_master_reset_b

adc1_ipsync ipg_dma_hard_async_b

adc0_prot ipg_hard_async_reset_b

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

F
reescale S

em
iconductor

104

ipg_hard_async_reset_b(0:0)

adc0_ipsync ipg_master_reset_b

—
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

adc0_ipsync ipg_dma_hard_async_b

acp_komodo_c

ipg_hard_async_reset_b

IPS_READ_MUX_1_3

IPS_READ_MUX_1_2

IPS_READ_MUX_1_1

IPS_READ_MUX_0_3

IPS_READ_MUX_0_2

IPS_READ_MUX_0_1

ipg_hard_async_reset_b(1:1)

flexpwm2

ipg_slave_hard_async_reset_b

flexpwm1

flexpwm0

etimer2

etimer1

etimer0

ctu1
ipg_hard_async_reset_b_mt

ctu0

stop_sync_adc1
ipg_hard_async_reset_slave_b

stop_sync_adc0

adc3_flop

ipg_hard_async_reset_b
adc3

adc2_flop

adc2

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

F
reescale S

em
iconductor

105

ipg_hard_async_reset_b(1:1)

adc1_ipsync ipg_slave_reset_b

—
Reset
complete
system

No action
required

Synchronized phase 3
reset from MC_RGM

adc1_ipsync ipg_per_hard_async_b

adc1_flop
ipg_hard_async_reset_b

adc1

adc0_ipsync ipg_slave_reset_b

adc0_ipsync ipg_per_hard_async_b

adc0_flop
ipg_hard_async_reset_b

adc0

ipg_hard_async_reset_b(4:4)
siul ipg_hard_async_reset_osc_b

lbist_interface_dummy_sog monitored_reset_b(2:2)

ipg_hard_async_reset_cflash_b(0:0) cflash0_prot ipg_hard_async_reset_b

—
Reset
complete
system

No action
required

Synchronized phase 1
reset from MC_RGM

ipg_hard_async_reset_cflash_b(0:0) cflash0 ipg_hard_async_reset_b

ipg_hard_async_reset_cflash_b(1:1)

lbist_interface_dummy_sog monitored_reset_b(14:14)

cflash1_prot
ipg_hard_async_reset_b

cflash1

ipg_hard_async_reset_dest_b

pd_glitch_fix nreset —
Reset
complete
system

No action
required

Destructive reset (design
glue logic to avoid glitch on
PLL clock in event of reset)

npc_wrapper poreset_b

—
Reset
complete
system

No action
required

Destructive reset

mc_pcu ipg_hard_async_reset_dest_b

gluelogic_sog ipg_hard_async_reset_dest_b

dflash ipg_pad_reset_b

cflash1 ipg_pad_reset_b

cflash0 ipg_pad_reset_b

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

F
reescale S

em
iconductor

106

ipg_hard_async_reset_dflash_b
dflash_prot

ipg_hard_async_reset_b —
Reset
complete
system

No action
required

Synchronized phase 1
reset from MC_RGMdflash

ipg_hard_async_reset_pll_b

fmpll1

ipg_hard_async_rst_b — Wrong PLL
frequency

No action
required

Synchronized phase 3
reset from MC_RGM
(except when PLL is used
as source of mbist)

fmpll0

jtag_active_lbist_out npc_wrapper ipp_ind_jcomp

—
Reset
complete
system

No action
required

—
—

rcosc16M_dig power_on_rst_b

fmpll1 por_rst_b

fmpll0 por_rst_b

—

macc trstn

— Safe
No action
required

STCU - mbist reset

flexray_rom trstn

flexray_rom rst_n

flexray_lut_ram trstn

flexray_lut_ram rst_n

flexray_data_ram trstn

flexray_data_ram rst_n

fec_rif_ram trstn

fec_rif_ram rst_n

fec_mib_ram trstn

fec_mib_ram rst_n

dma_ram trstn

dma_ram rst_n

can_rxim_1_2_3 trstn

can_rxim_1_2_3 rst_n

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

S
o

ftw
are req

u
irem

en
ts o

n
 system

 level

M
P

C
567xK

 S
afety M

an
u

al, R
ev. 1

F
reescale S

em
iconductor

107

—

can_rxim_0 trstn

— Safe
No action
required

STCU - mbist reset

can_rxim_0 rst_n

can_mb_1_2_3 trstn

can_mb_1_2_3 rst_n

can_mb_0 trstn

can_mb_0 rst_n

bam_rom trstn

bam_rom rst_n

Table 10. Effects of reset (continued)

Internal Reset Signal Receiving Module Receiving Reset Input Port
Software
Control

Detection

 Software
action

required or
automatic?

Description

MPC567xK Safety Manual, Rev. 1

Failure rates and FMEDA

Freescale Semiconductor 108

6 Failure rates and FMEDA

6.1 Mission profile
Table 11 shows the parameters of Mission profile 1 and profile 2 for typical applications. This document
is based on these mission profiles although usage of MPC567xK is not limited to these values. Mission
profile 1 is a typical automotive profile and Profile 2 is a an alternative profile with continuous operation.

Table 12 shows temperature profiles of the different package options for Mission profile 1.

Table 13 shows temperature profiles of the different package options for profile 2.

Table 11. Mission profiles

Mission Parameters Mission profile 1 Mission profile 2

Trip time (Ttrip): 10 hours continuous

FTTI: 10 ms 10 ms

Lifetime (Tlife) 20 years 5–10 years

Total operating hours: 12000 hours 50000 hours

Table 12. Temperature profile for Mission profile 1

Device type Temperature range (°C) Operation time (h)

Packaged device

125 – 135 120

110 – 120 960

90 – 100 7680

30 – 40 3240

Bare die

120 – 125 120

100 – 110 960

80 – 90 7680

20 – 30 3240

Table 13. Temperature profile for Mission profile 2

Device type Temperature range (°C) Operation time (h)

Packaged device
10 – 60 21500 (43%)

-40 – 10 28500 (57%)

Bare die
10 – 60 21500 (43%)

-40 – 10 28500 (57%)

Failure rates and FMEDA

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 109

6.2 Overview
According to ISO 26262-4, chapter 7.4.3.1 and IEC 61508, Table B.6 a functional safety/failure analysis
on hardware design shall be applied to identify the causes of failures and the effects of faults. A typical
inductive analysis method is FMEDA (Failure Modes Effects and Diagnostic Analysis).

Dedicated FMEDA and failure rate tables for ISO 26262 and IEC 61508 were created for each of the
following parts of MPC567xK:

• FMEDAs for basic elements:

— Core: processing units (CPU)

— SRAM: non-volatile memories (SRAMs)

— Flash memory: volatile memory

— Clock: clock generation and clock supervision

— Power: Power generation and distribution

• Failure rates of application dependent functions:

— I/O and peripherals

It is assumed, that the basic elements are used in every application and having low application dependency,
whereas the use of peripheral and communications functions have a high application dependency. The
functional safety architecture of basic elements may not interfere with application.

The application dependent functions need to be included into the functional safety concept on system level.
Thus only raw failure rates and no failure metrics are given for these elements.

Table 14 lists all modules of MPC567xK and their mapping to the five FMEDAs.

Table 14. Module distribution over FMEDAs

Module

FMEDA for

Processing
Unit

SRAM
Flash

memory
Clock Power

CPU 

eDMA 

INTC 

MPU and MMU 

FCCU and external FAULT signals 

SWT, PIT, STM 

SRAMC 

SRAM (volatile memory) 

Flash memory (non-volatile
memory), including power supply pin



PFLASHC 

MPC567xK Safety Manual, Rev. 1

Failure rates and FMEDA

Freescale Semiconductor 110

The following are modules that are covered by the failure rates list:

• PBRIDGE_n

• BAM

• WAKEUP

• ADC_n

• CTU

• eTimer_n

• FlexPWM_n

• SIUL

• GPIO

• FlexRay

• FlexCAN_n

• DSPI_n

• LINFlexD_n

The FMEDA enables selection of functional safety mechanisms planed to be implemented in a specific
application. Enabling or disabling the usage of functional safety mechanisms within an application is
possible within the sheets.

The only failure modes used for the FMEDA are taken from table D.1 of ISO 26262-5, annex D. These
are used for both ISO 26262 and IEC 61508 calculations.

CMU 

External crystal 

FMPLL 

IRCOSC 

XOSC 

XBAR   

PMC (including power regulator pins) 

External voltage regulator 

Nexus, JTAG, BAM 

Table 14. Module distribution over FMEDAs

Module

FMEDA for

Processing
Unit

SRAM
Flash

memory
Clock Power

Provisions against dependent failures

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 111

The information in this section is valid as of the latest revision date of this document. Please ask your
Freescale Semiconductor representative for updates when performing the system level functional safety
analysis.

Furthermore, the complete FMEDA is available upon request when covered by a Freescale Semiconductor
NDA (please contact your Freescale Semiconductor representative).

Significant key values of the FMEDA are presented in a FMEDA report document, for an example case,
in which all typical functional safety mechanisms presented in this document are enabled.

The failure rate data used in these FMEDAs have been derived using failure data collected from Freescale
components already in the market, and from accelerated High Temperature Operating Life tests (HTOL)
performed on samples of MPC567xK or specific measurement, for example, using neutrons for single
event failure rates.

The implementation hints documented are assumed to be implemented as functional safety integrity
measures.

7 Provisions against dependent failures
ISO 26262 distinguishes between cascading failures and CMF. A cascading failure is a “failure of an
element of an item causing another element or elements of the same item to fail” whereas a common cause
failure is “a failure of two or more elements of an item resulting from a single specific event or root cause.”

7.1 Causes of dependent failures
ISO 26262-9 lists the following dependent failures, which are applicable to the MPC567xK on chip level:

• Random hardware failures, for example:

— physical defects that are able to influence an element and its redundant element (transient faults
are not considered initiator of common mode failures).

— electrical dependencies:

— latch-up

— supply noise

— faults of checking circuits (for example, RC)

— shared logic

— logic physically overlapping

— signals crossing lakes

— timing faults

• Environmental factors, for example:

— temperature

— EMI

• Failures of common signals (external resources), for example:

— clock

— power-supply

MPC567xK Safety Manual, Rev. 1

Provisions against dependent failures

Freescale Semiconductor 112

— non-application control signals (for example, testing, debugging)

— signals from non-replicated modules outside SoR.

Additionally, the following topics are mentioned in ISO 26262-9, which are beyond the scope of this
document and may be considered in other documents (see documents referenced in Section 2.1, Assumed
conditions of operation):

• Development faults:

— development faults are systematic faults which are addressed by design-process

• Manufacturing faults:

— manufacturing faults are usually systematic faults addressed by design-process and production
test

• Installation and repair faults:

— installation and repair faults need to be considered at system level

• Stress due to specific situations:

— Specific situations may be considered at system level. Additionally, the result of stress (for
example, wear and ageing due to electro-migration) usually lead to single-point faults and are
not considered dependent failures.

7.2 Measures against dependent failures

7.2.1 Physical isolation

To maximize the independence of redundant components, lakes are formed. This results in generation of
a partial, but nevertheless substantial, physical diversity in the silicon structure.

The duplicated computational elements in the SoR are separated in different lakes, lake 0 and lake 1.
Peripherals for I/O communication are grouped into a single lake. System level countermeasure for
common mode failures may therefore be required.

The redundant modules share a common silicon substrate. A failure of the substrate is typically fatal and
has to be detected by external system level measures. It is assumed that an external timeout function
(watchdog) is continuously monitoring the MPC567xK and is capable of detecting this CMF, and will
switch the system to a Safe statesystem within the FTTI.

The MPC567xK device satisfies the standard AECQ100 for latch-up immunity.

7.2.2 Environmental conditions

7.2.2.1 Temperature

MPC567xK was designed to work within a maximum operational temperature profile (see the Qorivva
MPC5675K Microcontroller Data Sheet for details). To cover common mode failures cause by
temperature, a temperature sensor for supervision is implemented which is described in Section 5.2.4,
Temperature Sensor (TSENS).

Provisions against dependent failures

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 113

7.2.2.2 EMI and I/O

To cope with noise at digital inputs, the I/O circuitry provides input hysteresis on all digital inputs.
Moreover, the RESET and NMI inputs contain glitch filtering capabilities, which are described in
Section 5.2.27, Glitch filter.

To reduce interference due to digital outputs, the I/O circuitry provides signal slope control. An internal
weak pull up or pull down structure is also provided to define the input state.

7.2.3 Failures of common signals

7.2.3.1 Clock

To cover common mode failures caused by erroneous clocks, supervisory modules are implemented as
described in Section 5.2.10, Clock Monitor Unit (CMU). Major failures in the clock system are also
detected by the use of the SWT (Section 5.2.5, Software Watchdog Timer (SWT)).

7.2.3.2 Power supply

To cover common mode failures caused by voltage, supervisory modules are implemented as described in
Section 5.2.12, Power Management Controller (PMC).

Some common mode failures (for example, loss of power supply) will still be detected by the use of an
external watchdog (Section 4.1.2, External Watchdog (EXWD)) because application software is no longer
able to trigger the EXWD.

7.2.3.3 Non-application control signals

Modules and signals (for example, for scan, test and debug), which are not functional safety relevant and
thus have no functional safety mechanism included should never be able to violate the functional safety
goal. This can be achieved by either not interfering with the functional safety relevant parts of the
MPC567xK or by detecting such interference. For example, there must be assurance that the system is not
debugged (or unintentionally in debug mode), or in any other special mode different from normal
application execution mode like test mode. FCCU failure indication is generated when one of the
following conditions is fulfilled (please also refer to Table 1):

• The device leaves LSM or DPM.

• A self-test sequence of the STCU is unintentionally executed during normal operation of the
device.

• Any of the configurations for production test are unintentionally executed during normal operation
of the device.

• Any JTAGC instruction is executed that causes a system reset or Test Mode Select (TMS) signal
is used to sequence the TAP controller state machine.

MPC567xK Safety Manual, Rev. 1

Provisions against dependent failures

Freescale Semiconductor 114

7.3 CMF avoidance on system level
It is recommended to not use adjacent input and output signals of peripherals, which are used redundantly,
in order to reduce CMF. As internal pad position and external pin/ball position do not necessarily
correspond to each other, the system integrator may take the following recommendations into
consideration:

• Usage of non-contiguous balls of the package

• Usage of non-contiguous pads of the silicon

• Usage of peripheral modules sharing same PBRIDGE

• Non-contiguous routing of these signals on the PCB

Safety requirement under certain preconditions: [SM_060] If the system requires robustness regarding
common mode faults, measures on item (system) level have to improve the robustness of redundant inputs
for double read input functions in respect to common mode faults. [end]

Recommendation: Avoid physically adjacent inputs for double read input functions to avoid CMFs.

Rationale: To minimize common mode failures (CMF).

Implementation hint: Pad position as well as pin/ball position should be taken into consideration.

The pin/ball assignment for individual peripherals can be extracted from the Qorivva MPC5675K
Microcontroller Data Sheet. However, this information is listed briefly here.

7.3.1 I/O pin/ball configuration

Safety requirement: [SM_072] The user must avoid configurations that place redundant signals on
neighboring pads or pins. [end]

Whether two functions are adjacent to each other can easily be determined by looking at the mechanical
drawings of the packages (see the Qorivva MPC5675K Microcontroller Data Sheet) together with the ball
number information of the packages as seen in the Qorivva MPC5675K Microcontroller Reference
Manual “System Integration Unit Lite (SIUL)” section and the “Pin muxing” table (see also Table 15).

An example on the BGA473 package as shown in Figure 29 has two balls belonging to port pins
flexpwm0_X[1] and flexpwm0_B[0], which are balls N3 and P1, respectively. They are not directly
adjacent to each other on the BGA package, but if you look at Table 15 you will notice that they are
adjacent on the die, pads 61 and 60, respectively.

Provisions against dependent failures

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 115

Figure 29. BGA473 adjacency

In another example looking at balls P3 and P4 in Figure 29, flexpwm0_A[2] and flexpwm0_A[3],
respectively, you will notice that the balls are adjacent, but if you reference Table 15 you will also notice
that the pads are not adjacent (66 and 73, respectively). Therefore, the two corresponding die pads are not
adjacent to each other.

The above examples are valid for corresponding balls on the BGA473. For a thorough analysis of pin
adjacency related to all signals see Table 15. This table can be used to determine whether two pins are
adjacent in the internal die for all signals and packages. Two pins, identified by the columns ‘Ball Name’,
are adjacent on the internal die if the numbers in the ‘Physical Pad Sequence’ column are consecutive (for
example, pad number n and pad number n + 1 are adjacent).

Table 15. Physical pin displacement on internal die

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

ADC0_ADC1_ANA11 — Y14 U11 280

ADC0_ADC1_ANA12 — AA14 T11 283

ADC0_ADC1_ANA13 — AB14 R11 284

ADC0_ADC1_ANA14 — AC14 P11 287

ADC0_ANA0 — AB10 P7 258

ADC0_ANA1 — AC10 T10 259

ADC0_ANA2 — AA11 R10 260

ADC0_ANA3 — AC11 — 261

ADC0_ANA4 — AB11 — 262

ADC0_ANA5 — AA12 — 263

N flexpwm0
A[0]

VSS_HV_
IO

flexpwm0
X[1]

flexpwm0
B[2]

P flexpwm0
B[0]

flexpwm0
B[1]

flexpwm0
A[2]

flexpwm0
A[3]

R flexpwm0
X[2]

flexpwm0
X[3]

flexpwm0
A[1]

VSS_HV_
IO

T flexpwm0
B[3]

flexpwm1
A[0]

flexpwm1
A[1]

VDD_HV
_IO

U flexpwm1
B[0]

flexpwm1
B[1]

flexpwm1
A[2]

dspi2
SCK

V VDD_HV
_OSC

VDD_HV
_IO

flexpwm1
B[2]

dspi1
CS2

W XTALIN VSS_HV_
IO

dspi0
CS3

VSS_LV_
PLL

Y VSS_HV_
OSC

RESET dspi0
CS2

VDD_LV_
PLL

AA XTALOUT FCCU_F[
0]

VSS_HV_
IO

dspi1
CS3

AB VSS_HV_
IO

VDD_HV
_IO

dspi2
SOUT

flexpwm1
X[2]

AC VSS_HV_
IO

VSS_HV_
IO

dspi2
SIN

flexpwm1
A[3]

1 2 3 4

MPC567xK Safety Manual, Rev. 1

Provisions against dependent failures

Freescale Semiconductor 116

ADC0_ANA6 — AB12 — 264

ADC0_ANA7 — AB13 — 265

ADC0_ANA8 — AA13 — 266

ADC1_ANA0 — AA15 T12 307

ADC1_ANA1 — AB15 R12 308

ADC1_ANA2 — AA16 T13 309

ADC1_ANA3 — AB16 — 310

ADC1_ANA4 — AB17 — 311

ADC1_ANA5 — AA17 — 312

ADC1_ANA6 — Y18 — 314

ADC1_ANA7 — AA18 — 313

ADC1_ANA8 — Y17 — 315

ADC2_ADC3_ANA11 — Y7 U7 216

ADC2_ADC3_ANA12 — AA7 U8 219

ADC2_ADC3_ANA13 — AB7 T8 220

ADC2_ADC3_ANA14 — Y8 R8 223

ADC2_ANA0 — AA8 R5 239

ADC2_ANA1 — AB8 U6 240

ADC2_ANA2 — AB9 T6 241

ADC2_ANA3 — AC9 R6 242

ADC3_ANA0 — Y6 T4 201

ADC3_ANA1 — AA6 U4 204

ADC3_ANA2 — AB6 U5 206

ADC3_ANA3 — AC6 T5 207

CAN0_RXD — C20 C14 550

CAN0_TXD — B21 B15 549

CAN1_RXD — D3 D3 713

CAN1_TXD — B4 B4 712

CLKOUT0 — E20 F14 540

CLKOUT1 — B3 B3 715

DRAMC_ADDR0 — U23 — 450

DRAMC_ADDR1 — T22 — 449

DRAMC_ADDR10 — AA23 — 436

DRAMC_ADDR11 — Y22 — 435

Table 15. Physical pin displacement on internal die (continued)

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

Provisions against dependent failures

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 117

DRAMC_ADDR12 — U21 — 433

DRAMC_ADDR13 — V21 — 432

DRAMC_ADDR14 — W21 — 430

DRAMC_ADDR15 — Y21 — 429

DRAMC_ADDR2 — V23 — 448

DRAMC_ADDR3 — R21 — 447

DRAMC_ADDR4 — W23 — 445

DRAMC_ADDR5 FLEXPWM1_B1 Y23 P17 444

DRAMC_ADDR6 FLEXPWM1_A2 U20 R16 443

DRAMC_ADDR7 FLEXPWM1_B2 W22 R17 441

DRAMC_ADDR8 — T20 — 439

DRAMC_ADDR9 — T21 — 437

DRAMC_BA0 FLEXPWM0_B3 D23 N14 497

DRAMC_BA1 FLEXPWM1_A0 D21 N16 495

DRAMC_BA2 FLEXPWM1_B0 E23 N17 494

DRAMC_CAS FLEXPWM0_B2 C23 M14 499

DRAMC_CKE FLEXPWM0_A0 R22 P16 451

DRAMC_CS0 FLEXPWM0_B1 E22 L16 501

DRAMC_D0 — J20 — 492

DRAMC_D1 — J21 — 491

DRAMC_D10 — M23 — 469

DRAMC_D11 — M22 — 468

DRAMC_D12 — N23 — 463

DRAMC_D13 — N22 — 462

DRAMC_D14 — P20 — 460

DRAMC_D15 — P21 — 459

DRAMC_D2 — H20 — 490

DRAMC_D3 — J22 — 489

DRAMC_D4 — K21 — 481

DRAMC_D5 — F23 — 480

DRAMC_D6 — J23 — 479

DRAMC_D7 — G23 — 478

DRAMC_D8 — K22 — 471

DRAMC_D9 — K23 — 470

Table 15. Physical pin displacement on internal die (continued)

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

MPC567xK Safety Manual, Rev. 1

Provisions against dependent failures

Freescale Semiconductor 118

DRAMC_DM0 — G22 — 486

DRAMC_DM1 — N21 — 465

DRAMC_DQS0 — G21 — 488

DRAMC_DQS1 — N20 — 466

DRAMC_ODT FLEXPWM1_A1 M20 M17 477

DRAMC_RAS FLEXPWM0_A2 F20 N15 498

DRAMC_WEB FLEXPWM0_A3 M21 P15 472

DSPI0_CS0 — L1 H3 47

DSPI0_CS2 — Y3 P3 92

DSPI0_CS3 — W3 N3 91

DSPI0_SCK — K1 G3 45

DSPI0_SIN — M3 K4 52

DSPI0_SOUT — D4 D4 2

DSPI1_CS0 — K2 H4 44

DSPI1_CS2 — V4 M3 90

DSPI1_CS3 — AA4 R4 98

DSPI1_SCK — K3 G4 42

DSPI1_SIN — J4 F4 36

DSPI1_SOUT — K4 F3 40

DSPI2_CS0 — L3 J3 49

DSPI2_CS1 — B6 B6 695

DSPI2_CS2 — L2 J4 48

DSPI2_SCK — U4 L3 88

DSPI2_SIN — AC3 U3 100

DSPI2_SOUT — AB3 T3 99

EBI_ADDR28 FLEXPWM0_X0 F21 H17 509

EBI_ADDR29 FLEXPWM0_X1 D22 J17 508

EBI_ADDR30 FLEXPWM0_X2 G20 K14 507

EBI_ADDR31 FLEXPWM0_X3 C22 K15 505

EBI_CLKOUT FLEXPWM0_B0 F22 K17 503

EBI_RD_WR FLEXPWM0_A1 E21 K16 504

ETH_COL — C15 C13 610

ETH_CRS — C12 C11 629

ETH_MDC — D15 D13 615

Table 15. Physical pin displacement on internal die (continued)

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

Provisions against dependent failures

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 119

ETH_MDIO — A10 A13 607

ETH_RXCLK — C13 A11 623

ETH_RXD0 — B12 A12 616

ETH_RXD1 — C14 B12 618

ETH_RXD2 — D14 A10 634

ETH_RXD3 — B9 B10 635

ETH_RXDV — A9 D12 620

ETH_RXER — B10 B11 627

ETH_TXCLK — A11 B14 606

ETH_TXD0 — B11 C12 619

ETH_TXD1 — C11 D11 632

ETH_TXD2 — C10 D10 636

ETH_TXD3 — A13 A15 600

ETH_TXEN — A12 A14 603

ETH_TXER — B13 B13 609

ETIMER0_ETC0 — D7 C6 673

ETIMER0_ETC1 — C7 C7 669

ETIMER0_ETC2 — C8 C8 663

ETIMER0_ETC3 — C9 C9 661

ETIMER0_ETC4 — C6 D7 671

ETIMER0_ETC5 — D6 D6 672

ETIMER1_ETC0 — AA20 T15 327

ETIMER1_ETC1 — Y9 P5 251

ETIMER1_ETC2 — Y10 P6 253

ETIMER1_ETC3 — Y11 P8 254

ETIMER1_ETC4 — Y16 P12 405

ETIMER1_ETC5 — Y15 P13 407

EVTI_B — H4 L2 27

EVTO_B — H1 L1 30

FCCU_F[0] — AA2 R4 97

FCCU_F[1] — C4 C4 709

FLEXPWM0_A0 — N1 — 59

FLEXPWM0_A1 — R3 — 75

FLEXPWM0_A2 — P3 — 66

Table 15. Physical pin displacement on internal die (continued)

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

MPC567xK Safety Manual, Rev. 1

Provisions against dependent failures

Freescale Semiconductor 120

FLEXPWM0_A3 — P4 — 73

FLEXPWM0_B0 — P1 — 60

FLEXPWM0_B1 — P2 — 62

FLEXPWM0_B2 — N4 — 65

FLEXPWM0_B3 — T1 — 74

FLEXPWM0_X0 — M1 — 57

FLEXPWM0_X1 — N3 — 61

FLEXPWM0_X2 — R1 — 64

FLEXPWM0_X3 — R2 — 72

FLEXPWM1_A0 — T2 — 77

FLEXPWM1_A1 — T3 — 79

FLEXPWM1_A2 — U3 — 84

FLEXPWM1_A3 — AC4 — 108

FLEXPWM1_B0 — U1 — 78

FLEXPWM1_B1 — U2 — 83

FLEXPWM1_B2 — V3 — 87

FLEXPWM1_B3 — AC5 — 113

FLEXPWM1_X0 — Y5 — 103

FLEXPWM1_X1 — AA5 — 104

FLEXPWM1_X2 — AB4 — 105

FLEXPWM1_X3 — AB5 — 107

FLEXRAY_CA_RX — E3 E3 708

FLEXRAY_CA_TR_EN — A8 A8 676

FLEXRAY_CA_TX — B8 B8 675

FLEXRAY_CB_RX — C5 C5 702

FLEXRAY_CB_TR_EN — B7 B7 678

FLEXRAY_CB_TX — A7 A7 677

JTAG_TDI — AA19 M15 417

JTAG_TDO — AB18 L17 413

LIN0_RXD — W20 T14 411

LIN0_TXD — V20 R14 409

LIN1_RXD — AB21 — 410

LIN1_TXD — AA22 — 408

MCKO — G1 J1 18

Table 15. Physical pin displacement on internal die (continued)

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

Provisions against dependent failures

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 121

MDO1 — D1 E2 0

MDO10 — F1 H1 15

MDO11 — F2 F2 11

MDO12 — J3 M4 37

MDO13 — J2 L4 35

MDO14 — B5 B5 701

MDO15 — C2 C2 716

MDO2 — E2 D1 5

MDO3 — D2 D2 725

MDO4 — F4 G1 14

MDO5 — A4 A4 706

MDO6 — F3 F1 12

MDO7 — A5 A5 705

MDO8 — G3 J2 20

MDO9 — A6 A6 700

MSEO_B0 — H3 K1 29

MSEO_B1 — G4 K2 21

PDI_CLOCK — A17 C17 535

PDI_DATA0 — B17 D16 534

PDI_DATA1 — A16 D17 533

PDI_DATA10 — A19 G15 521

PDI_DATA11 — D18 G16 520

PDI_DATA12 — C19 H14 519

PDI_DATA13 — A20 H15 517

PDI_DATA14 — B20 J14 515

PDI_DATA15 — A21 J15 514

PDI_DATA2 — C17 E15 532

PDI_DATA3 — A15 E16 530

PDI_DATA4 — B16 E17 529

PDI_DATA5 — C16 C16 528

PDI_DATA6 — B15 F15 526

PDI_DATA7 — A18 F16 525

PDI_DATA8 — C18 F17 523

Table 15. Physical pin displacement on internal die (continued)

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

MPC567xK Safety Manual, Rev. 1

Provisions against dependent failures

Freescale Semiconductor 122

7.3.2 Modules sharing PBRIDGE

The system designer needs to take into consideration how modules are distributed across the different
PBRIDGEs. Whenever possible the redundant modules should be used such that each module is connected
to a different PBRIDGE. For example, FlexPWM_0 and FlexPWM_1 on PBRIDGE_0 while FlexPWM_2
connects to PBRIDGE_1. So, when FlexPWM redundancy is required for the safety function, the designer
should utilize PBRIDGE_2 with either PBRIDGE_1 or PBRIDGE_0.

7.3.3 External timeout function

A common mode failure may lead to a state where the MPC567xK is not able to signal an internal failure
via its FCCU_F[n] signals (error out). With the use of a system level timeout function (for example,
watchdog timer), the likelihood that CMFs affect the functional safety of the system can be reduced
significantly.

In general, the external watchdog covers common mode failures which are related to:

• Missing/wrong power

• Missing/wrong clocks

• Missing/wrong resets

• General destruction of internal components (for example, latch-up at redundant input pads)

• Errors in mode change (for example, test, debug, sleep/wakeup)

Since these errors do not result in subtle output variations of the MCU but typically in a complete failure,
a simple watchdog is sufficient.

The external watchdog function is in permanent communication with the CPU of MPC567xK. As soon as
there are no correct communications, the external watchdog function switches the system to
Safe statesystem. Thus, either the MPC567xK or external watchdog function can transition the system to
Safe statesystem. The external watchdog function is required to be sufficiently independent of the
MPC567xK (for example, regarding clock generation, power supply, and so on).

The external watchdog function does not necessarily need to be a dedicated IC, the requirements may also
be fulfilled by another MCU (already used in the system) which is capable of detecting a communication
problem and moving the system to Safe statesystem.

PDI_DATA9 — B19 G14 522

PDI_FRAME_V — D19 G17 538

PDI_LINE_V — B18 E14 536

READY — J1 K3 33

NOTES:
1 Die pads not relevant for analysis, and non-functional pins (for example, power) are not shown.

Table 15. Physical pin displacement on internal die (continued)

Ball Name
BGA 473

Ball Name BGA 257
(if different)

Ball Number
BGA 473

Ball Number
BGA 257

Physical Pad
Sequence1

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 123

8 Additional information

8.1 Safety function pseudo-code
CAUTION

For some functions, code examples are given to exemplify the intended
functionality and give some hints on integration. This code does not cover
all aspects of actual applications and, as such, is intended to be used as a
general guideline.

In some code examples given in this chapter, ‘while’ loops are used. These loops may never terminate,
depending on their condition. To prevent termination of software execution flow, a timeout function may
be implemented (see Figure 30). For simplicity, such a timeout is not used in the code examples for the
safety integrity functions, but may be used in system level application software.

Figure 30. Code example: timeout

start_time = read_timer();
do current_time = read_timer() - start_time;
while ((Current_time < Limit) && (Flag_not_set))
if (Flag_set)

PASS;
else

FAIL;

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 124

8.1.1 Flash memory

8.1.1.1 FLASH_SW_ECCTEST

Figure 31. Code example: FLASH_SW_ECCTEST (definitions)

definitions for FLASH_SW_ECCTEST

#define C90FL_BASE 0xC3F88000
#define C90FL_MCR (*(vuint32_t *)(C90FL_BASE))
#define C90FL_ADR (*(vuint32_t *)(C90FL_BASE+0x18))
#define C90FL_UT0 (*(vuint32_t *)(C90FL_BASE+0x3C))
#define C90FL_UT1 (*(vuint32_t *)(C90FL_BASE+0x40))
#define C90FL_UT2 (*(vuint32_t *)(C90FL_BASE+0x44))

#define C90FL_UT_PASSWORD 0xF9F99999

#define UT0_UTE (0x80000000)
#define UT0_SBCE (0x40000000)
#define UT0_DSI(x) (((x)&0xFF)<<16)
#define UT0_EIE (0x00000008)
#define UT0_AIS (0x00000004)
#define UT0_AIE (0x00000002)
#define UT0_AID (0x00000001)

#define MCR_SBC (0x00002000)

#define C90FL_OK 0x0
#define C90FL_ECC_DECODE_FAIL 0xE

#define ReadAddrLong(addr) (*((vuint32_t *) (addr)))
#define RegFieldSet(preg, bit, value) preg &=

~bit(0xFFFFFFFF); preg |= bit(value)

// Bit definitions and macros for
// C90FL_UT0

// Data syndrome input
// ECC data input enable
// Array integrity sequence
// Array integrity enable
// Array integrity done

// return code ECC decode test pass
// return code ECC decode test fail

// macros for reading/setting registers
// or addresses

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 125

Figure 32. Code example: FLASH_SW_ECCTEST

FLASH_SW_ECCTEST() {

return_Code = 0xF9F99999;
C90FL_UT0= C90FL_UT_PASSWORD;
C90FL_UT0 |= UT0_SBCE;
for(k = 0; k < 2; k++) {

C90FL_UT0 |= UT0_EIE;
C90FL_UT1 = 0xFFFFFFFF;
C90FL_UT2 = 0xFFFFFFFF;
RegFieldSet(C90FL_UT0, UT0_DSI, 0xFF);

for(i = 0; i <= 72; i++) {
if(i < 32) C90FL_UT1 = 0xFFFFFFFF & (~(1<<i));
else if(i < 64) {

C90FL_UT1 = 0xFFFFFFFF;
C90FL_UT2 = 0xFFFFFFFF & (~(1<<(i-32))); }

else if(i < 72) {
C90FL_UT1 = 0xFFFFFFFF;
C90FL_UT2 = 0xFFFFFFFF;
RegFieldSet(C90FL_UT0, UT0_DSI, (0xFF &

(~(1<<(i-64)))));}
else {

C90FL_UT1 = 0xFFFFFFFF;
C90FL_UT2 = 0xFFFFFFFF;
RegFieldSet(C90FL_UT0, UT0_DSI, 0xFF); }

addr = rdAddr + k*8 + i*0x40;
C90FL_ADR = addr;
data0 = ReadAddrLong(addr);
data1 = ReadAddrLong(addr+4);

if(i = = 72) {
if((data0 != 0xFFFFFFFF) ||

(data1 != 0xFFFFFFFF) ||
((C90FL_MCR & MCR_SBC) != 0)) {
return_Code = C90FL_ECC_DECODE_FAIL;
break;

}
}
else {

if((data0 != 0xFFFFFFFF) ||
(data1 != 0xFFFFFFFF) ||
((C90FL_MCR & MCR_SBC) = = 0)) {
return_Code = C90FL_ECC_DECODE_FAIL;
break;

}
else C90FL_MCR |= MCR_SBC;

}
}

}
C90FL_UT0 = 0;
return return_Code;}

// enable user-test mode
// enable single-bit error correction
// visibility
// loop for two double-words in a 
// page
// set EIE
// Initialize UT0[DSI], UT1, UT2
// registers with all “1”s

// walking “0” through data and
// ECC bits
// walking ‘0’ in first word

// walking ‘0’ in second word

// walking ‘0’ in ECC parity bits
// all “1”s data vector

// the address will skip 0x40 to
// make
// sure every read is fetch from
// Flash memory
// do a normal read to address
// saved
// in ADR

// check for expected data and ECC
// correction

// clear SBC

Return Values:
C90FL_OK: ECC logic check pass
C90FL_ECC_DECODE_FAIL: ECC logic check fail

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 126

8.1.2 <module>_SWTEST_REGCRC

An example of how to implement ADC0_SWTEST_REGCRC is shown in this section. ADC_0 registers
are processed by eDMA channel 1. Also, there is an example of how to add another function by the
inclusion of SIUL_SWTEST_REGCRC for the SIUL. The SIUL registers for SIUL_SWTEST_REGCRC
are processed by eDMA channel 2. CRC Checks for other modules (for example, eTimer, FlexPWM) can
be added in a similar way.

The content of the registers which are to be monitored are transferred to the CRC with the scatter/gather
algorithm of the eDMA module. Scatter/gather enables a DMA channel to scatter the DMA data to
multiple destinations or gather it from multiple sources. Please refer to the “Dynamic programming”
section in the “Enhanced Direct Memory Access (eDMA)” chapter of the Qorivva MPC5675K
Microcontroller Reference Manual for detailed information about scatter/gather.

Figure 33 gives an example to initialize the CRC module. Different CRC contexts may be used for
different eDMA channels.

Figure 33. Code example: CRC initialization

TCD structures are initialized, which contain all configurations for a module to be checked as a linked list.
Before starting the algorithm, the first TCD structure of each module is uploaded (Init_DMA_TCD_SG)
to an eDMA channel (Figure 34).

init_CRC (sub_module, CRC_mode) {

CRC.CNTX[0].CFG.WORD = CRC_mode;
while(CRC.CNTX[sub_module].CFG.WORD!=CRC_mode) {}

CRC.CNTX[0].CSTAT.WORD = 0xFFFFFFFF;
}

// Failed

// set seed

Parameters:
sub_module: CRC-context to be used
CRC_mode: CRC configuration (for example, 6)

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 127

Figure 34. TCD structures configuration and upload

Each TCD structure specifies a register (or a couple of contiguous registers) to be monitored as well as
corresponding eDMA parameters. An example for ADC_0 (TCD_ADC_config) is shown in Figure 35 and
the upload of the first structure to the eDMA is shown in Figure 36.

If a check of the second ADC registers is required (ADC1_SWTEST_REGCRC,
ADC2_SWTEST_REGCRC, ADC3_SWTEST_REGCRC), they can simply be added to the ADC_0
configuration shown in Figure 35 without using any additional eDMA channel.

start

Init_DMA_ADC
Init DMA TCD structure
(TCD_ADC_config1...
TCD_ADC_config(n))

in SRAM or flash memory

init_CRC (0,6)
init_CRC (1,6)

init context 0 for ADC and
context 1 for SIUL

Init_DMA_TCD_SG (TCD_ADC, 1)
Upload first structure of TCD_ADC

to eDMA channel 1
(start = 0; interrupt = 1; request = disabled)

Init_DMA_SIUL
Init DMA TCD structure
(TCD_SIUL_config1...
TCD_SIUL_config(m))

in SRAM or flash memory

... other modules

done

Init_DMA_TCD_SG (TCD_SIUL, 2)
Upload first structure of TCD_SIUL

to eDMA channel 2
(start = 0; interrupt = 1; request = disabled)

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 128

Figure 35. Code example: TCD_ADC configuration in SRAM

Init_DMA_ADC (){

TCD_ADC_config1.sadr = & ADC0.IMR.R;
TCD_ADC_config1.smod = 0;
TCD_ADC_config1.ssize= 2;
TCD_ADC_config1.dmod= 0;
TCD_ADC_config1.dsize= 2;
TCD_ADC_config1.soff= 4;
TCD_ADC_config1.nbytes= 8;
TCD_ADC_config1.slast= 0;
TCD_ADC_config1.dadr=& CRC.CNTX[0].INP.R;
TCD_ADC_config1.citer_e_link= 0;
TCD_ADC_config1.citer_linkch= 0;
TCD_ADC_config1.citer= 1;
TCD_ADC_config1.doff= 0;
TCD_ADC_config1.dlast_sga=&TCD_ADC_config2;
TCD_ADC_config1.biter_e_link= 0;
TCD_ADC_config1.biter_linkch= 0;
TCD_ADC_config1.biter= 1;
TCD_ADC_config1.bwc= 0;
TCD_ADC_config1.major_linkch= 0;
TCD_ADC_config1.done= 0;
TCD_ADC_config1.active= 0;
TCD_ADC_config1.major_e_link= 0;
TCD_ADC_config1.e_sg= 1;
TCD_ADC_config1.d_req= 0;
TCD_ADC_config1.int_half= 0;
TCD_ADC_config1.int_maj= 0;
TCD_ADC_config1.start= 0;
TCD_ADC_config1.smloe= 0;
TCD_ADC_config1.dmloe= 0;
TCD_ADC_config1.mmloff= 0;

TCD_ADC_config2.sadr= & ADC0.WTISR.R;
TCD_ADC_config2.dlast_sga= &TCD_ADC_config3;
TCD_ADC_config2.d_req= 0;
TCD_ADC_config2.int_maj= 0;
TCD_ADC_config2.start= 1;
TCD_ADC_config2.smloe= 0;
[all other TCD elements]

TCD_ADC_config(n).sadr= & ADC0.DMAE.R;
TCD_ADC_confign(n).dlast_sga= &TCD_ADC_config1;
TCD_ADC_confign(n).d_req= 1;
TCD_ADC_confign(n).int_maj= 1;
TCD_ADC_confign(n).start= 1;
TCD_ADC_confign(n).smloe= 0;
[all other TCD elements]
}

// ADC_0 - IMR & CIMR0
// source address modulo
// source data transfer size
// destination address Module
// destination data transfer size
// source address signed offset
// inner minor byte transfer count
// last source address adjustment
// destination address = input of CRC
// context 0
// enable c2c linking (minor loop compl.)
// link channel number
// current major iteration count
// destination address signed offset

// enable c2c linking (minor loop compl.)
// bandwidth control
// link channel number
// channel done
// channel active
// enable c2c linking (major loop compl.)
// enable scatter/gather processing
// disable request
// enable interrupt (major count)
// enable interrupt (major iteration)
// channel start

// ADC_0 - WTISR & WTIMR

// ADC_0 - DMAE & DMAR0

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 129

Figure 36. Code example: first structure upload to eDMA

Figure 37 shows the execution flow of the eDMA modules scatter/gather algorithm. Once the first channel
is started by setting DMASERQ = 1, all structures (TCD_ADC_config) are executed consecutively. An
interrupt is issued after the last eDMA transfer has been finished (for example, TCD_ADC_config(n) in
Figure 37). Then the calculated CRC value for all TCD_ADC_config1…TCD_ADC_config(n) can then

Init_DMA_TCD_SG (T, channel){

DMA_CH_MUX.CHCONFIG[channel].B.SOURCE = 28;
DMA_CH_MUX.CHCONFIG[channel].B.TRIG = 0;
DMA_CH_MUX.CHCONFIG[channel].B.ENBL = 1;

SPP_DMA2.CHANNEL[channel].TCDWORD0_.B.SADDR = T.sadr;
SPP_DMA2.CHANNEL[channel].TCDWORD16_.B.DADDR = T.dadr;
SPP_DMA2.CHANNEL[channel].TCDWORD4_.B.SMOD = T.smod;
SPP_DMA2.CHANNEL[channel].TCDWORD4_.B.DMOD = T.dmod;
SPP_DMA2.CHANNEL[channel].TCDWORD4_.B.DSIZE = T.dsize;
SPP_DMA2.CHANNEL[channel].TCDWORD4_.B.SSIZE = T.ssize;
SPP_DMA2.CHANNEL[channel].TCDWORD4_.B.SOFF = T.soff;
SPP_DMA2.CHANNEL[channel].TCDWORD20_.B.DOFF = T.doff;
SPP_DMA2.CHANNEL[channel].TCDWORD12_.B.SLAST = T.slast;
[]
}

// add all other

Parameters:
T: TCD structures
channel: eDMA channel

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 130

be compared to the expected (predetermined) CRC value. All channels used for
<module>_SWTEST_REGCRC are repetitively started (DMASERQ) within the FTTI.

Figure 37. <module>_SWTEST_REGCRC flow diagram

Trigger

execute TCD_ADC_config1
update TCD1 by TCD_ADC_config2

(start = 1; interrupt = 0; request = enabled)

DMASERQ = 1
(enable eDMA request for channel 1)

done

?
Trigger

(once per FTTI)
no

yes

execute TCD_ADC_config2
update TCD1 by TCD3_ADC_config3

(start = 1; interrupt = 0; request = enabled)

...

execute TCD_ADC_config(n-1)
update TCD1 by TCD_ADC_config(n)

(start = 1; interrupt = 0; request = enabled)

execute TCD_ADC_config(n)
update TCD1 by TCD_ADC_config1

(start = 0; interrupt = 1; request = disabled)

DMASERQ = 2
(enable eDMA request for channel 2)

automatically executed on eDMA module
(scatter/gather)

execute TCD_SIUL_config1
update TCD2 by TCD_SIUL_config2

(start = 1; interrupt = 0; request = enabled)

...

automatically executed on eDMA module
(scatter/gather)

DMASERQ =....
other channels

read CRC-result and
compare to expected

value for ADC

interrupt

read CRC-result and
compare to expected

value for SIUL

interrupt

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 131

8.1.3 CTU

Figure 38. Code example: CTU initialization

Init_CTU(trig, mode) {

if (trig <= 3) {
if (mode) {

CTU.THCR1.R |= (1 <<
((trig*8)+1)); }

else {
CTU.THCR1.R &= ~(1 <<

((trig*8)+1)); }
}

else {
trig -= 4;
if (mode) {

CTU.THCR2.R |= (1 <<
((trig*8)+1)); }

else {
CTU.THCR2.R &= ~(1 <<

((trig*8)+1));
}

}

CTU.TGSCRR.R = 0x10;
CTU.TGSCCR.R = 0x100;

CTU.CTUCR.B.GRE = 1;
CTU.CTUCR.B.MRS_SG = 1;

CTU.CTUEFR.R |= 0x0400;

dummy = CTU.CTUIFR.R;
dummy = CTU.CTUEFR.R;
CTU.CTUIR.B.IEE = 1;
}

// enable ETIMER_0 output

// disable ETIMER_0 output

// enable ETIMER_0 output

// enable ETIMER_0 output

// set some BS value to avoid compare error

// set Global Reload
// load new configuration into CTU

// clear the CMP_ERR bit (??)

// clear any pending interrupts

// enable error interrupts (CTU reports overruns via
// interrupts)

Parameters
trig: selects the trigger to be linked to the timer
mode: controls the SET/CLEAR of the selected trigger

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 132

8.1.3.1 CTU_HWSWTEST_ADCCOMMAND

Figure 39. Code example: CTU_HWSWTEST_ADCCOMMAND

8.1.3.2 CTU_SWTEST_ETIMERCOMMAND

An example configuration for implementing the CTU_SWTEST_ETIMERCOMMAND is shown in
Figure 40. Channel 2 of eTimer_0 generates the Master Reload Signal (MRS) for the CTU. Based on this
signal, the CTU generates 8 output triggers in triggered mode. These are counted by channel 0 of

CTU_HWSWTEST_ADCCOMMAND (){

{
[#define ADC_NUMBER 4;]

ADC_seq[ADC_NUMBER] = {11, 12, 13, 14};
temp[2*ADC_NUMBER] = {0,0,0,0,0,0,0,0};

CTU.CTUCR.B.MRS_SG = 1;

while (!(ADC0.CDR[ADC_seq[ADC_NUMBER-1]].B.VALID));

for (i = 0; i<(ADC_NUMBER*2); i++) {
switch (i/2) {

case 0:temp[i] = CTU_0.FR0.R;break;
case 1:temp[i] = CTU_0.FR1.R;break;
case 2:temp[i] = CTU_0.FR2.R;break;
case 3:temp[i] = CTU_0.FR3.R;break;

}
}

for (i = 0; i<ADC_NUMBER*2; i++) {
if (ADC_seq[i/2] != ((temp[i]>>16)&0xF))

return FAIL;
if (((temp[i]>>20)&0x1)==(i%2)) return FAIL;

}
return PASS;
}

// number of test channels - max 24

// channels of ADC to be measured
// data from CTU FIFO memory

// start

// check channels and ADCs
// ADC_0 has value “1” and ADC_1
// has value ‘0’ in FIFO memory!

Return Values:
PASS: ADC number and channel number are correct
FAIL: otherwise

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 133

eTimer_0. With every interrupt from channel 2 of eTimer_0 occurring with a new MRS, the counter
register (CNTR) of channel 0 can be verified for accuracy.

Figure 40. Configuration for sequential mode example 1

CTU_OUT

pri

eTimer_0

eTimer0_trig

CTU

eTimer0_in

number of triggers

clk/64

MRS

pri

eTimer_0
channel 2channel 0

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 134

Figure 41. Code example: CTU initialization

void Init_CTU(uint16_t period,uint8_t nof){

CTU.TGSCR.B.PRES = 0x3;
CTU.TGSCR.B.MRS_SM = 26;
CTU.TGSCRR.R = 0x0;
CTU.TGSCCR.R = 0x7FFF;

if (period < 9) CTU.COTR.R = 30*period;
else CTU.COTR.R = 0xFF;

CTU.CTUCR.B.T0_SG = 0x0;

if (period>273) period = 273*30;
else period*=30;

if (nof>=1){
CTU.T0CR.R = period;
CTU.THCR1.B.T0_E = 0x1;
CTU.THCR1.B.T0_ETE = 0x1;
CTU.THCR1.B.T0_T1E = 0x1;

}
[… trigger 1 to 7]

if (nof>=8){
CTU.T7CR.R = 8*period;
CTU.THCR2.B.T7_E = 0x1;
CTU.THCR2.B.T7_ETE = 0x1;
CTU.THCR2.B.T7_T1E = 0x1;

}

CTU.TGSISR.B.I13_RE = 0x1;
CTU.CTUCR.B.TGSISR_RE = 0x1;
CTU.CTUCR.B.GRE = 0x1;
CTU.CTUIR.B.MRS_IE = 0x1;

CTU.CTUIR.B.IEE = 1;
}

//Configure TGS counter - prescaler 4
//MRS signal from eTimer_0 [2]

//always 1/4 total period, max. 2.125 s

// keep value inside 16-bit range of
// all triggers during 1
// trigger compare registers
//configuration scheduler unit

//allow external signal for MRS - eTimer_0 [2]
//reload global setting

//enable error interrupts

Parameters
period: period of trigger to be generated
nof: number of trigger to be generated

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 135

Figure 42. Code example: eTimer initialization

Init_Etimer(period,nof) {

ETIMER_0.ENBL.R = 0;

ETIMER_0.CHANNEL[0].COMP1.R = 0x0;
ETIMER_0.CHANNEL[0].COMP2.R = 0x0;
ETIMER_0.CHANNEL[0].LOAD.R = 0x0;

ETIMER_0.CHANNEL[0].CTRL.B.CNTMODE = 0x1;
ETIMER_0.CHANNEL[0].CTRL.B.PRISRC = 0x8;
ETIMER_0.CHANNEL[0].CTRL.B.SECSRC = 0x6;
ETIMER_0.CHANNEL[0].CTRL.B.LENGTH = 0x0;
ETIMER_0.CHANNEL[0].CTRL2.R = 0x0;

ETIMER_0.CHANNEL[0].INTDMA.R = 0x0;
ETIMER_0.CHANNEL[0].CMPLD1.R = 0x0;
ETIMER_0.CHANNEL[0].CMPLD2.R = 0x0;
ETIMER_0.CHANNEL[0].FILT.R = 0x0;

ETIMER_0.ENBL.R |= (1<<0);

ETIMER_0.CHANNEL[2].COMP1.R =
2*(nof*period+2);
ETIMER_0.CHANNEL[2].COMP2.R =
2*(nof*period+2)+0xA;

ETIMER_0.CHANNEL[2].LOAD.R = 0x0;

ETIMER_0.CHANNEL[2].CTRL.B.CNTMODE = 0x1;
ETIMER_0.CHANNEL[2].CTRL.B.PRISRC = 0x1E;
ETIMER_0.CHANNEL[2].CTRL.B.SECSRC = 0x6;
ETIMER_0.CHANNEL[2].CTRL.B.LENGTH = 0x1;

ETIMER_0.CHANNEL[2].CTRL2.B.OEN = 0x1;
ETIMER_0.CHANNEL[2].CTRL2.B.OUTMODE = 0x8;

ETIMER_0.CHANNEL[2].CCCTRL.B.CLC2 = 0x7;
ETIMER_0.CHANNEL[2].CCCTRL.B.CPT2MODE = 0x0;
ETIMER_0.CHANNEL[2].CCCTRL.B.CPT1MODE = 0x0;
ETIMER_0.CHANNEL[2].CCCTRL.B.CFWM = 0x0;
ETIMER_0.CHANNEL[2].CCCTRL.B.ARM = 0x0;

ETIMER_0.CHANNEL[2].INTDMA.R = 0x0;
ETIMER_0.CHANNEL[2].CMPLD1.R = 0x0;
ETIMER_0.CHANNEL[2].CMPLD2.R = 0x0;
ETIMER_0.CHANNEL[2].FILT.R = 0x0;

ETIMER_0.ENBL.R |= (1<<2);
}

//stop all channels

// set compare and load values to zero

// count rising edges of primary source
// primary source IPB 1:1 and capturing on rising 
// edge of secondary source (output CTU)

// disable DMA, interrupts, input filter, etc.

// enable timer channel

// delay between MRS pulses
// 2*(nof*period+2) approximately
120/64*(nof*period+2)
// 2 - is reserve between two pulses MRS for checking
// numbers of triggers events
// 120/64 - it is period of input signal (primary source)
of
// eTimer_0 [2]
// 0xA = width of MRS signal
// Count rising edges of primary source
//primary source IPB 1:1 and capturing on rising
//edge of secondary source (output CTU)

//disable DMA, interrupts, input filter, etc.

//enable timer channel

Parameters
period: period of trigger to be generated
nof: number of trigger to be generated

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 136

8.1.3.3 CTU_HWSWTEST_TRIGGEROVERRUN

Figure 43. Code example: CTU_HWSWTEST_TRIGGEROVERRUN

8.1.3.4 CTU_SWTEST_TRIGGERTIME (sequential mode)

An example configuration for implementing the CTU_SWTEST_TRIGGERTIME for eight triggers in
sequential mode is shown in Figure 44. Channel 2 of eTimer_0 generates an Event Signal (EV) for the
CTU. Channel 2 of eTimer_1 generates the MRS for the CTU. Based on these signals, the CTU generates
the desired delayed output signal (CTU_OUT). In this example, the delay is configured to increase with
every event signal (defined in CTU initialization shown in Figure 44). Channel 0 of eTimer_0 drives a
signal which is high during the delay caused by the CTU (from rising edge of EV to rising edge of
CTU_OUT). Channel 1 of eTimer_0 measures the delay which can then be checked for accuracy.

Figure 44. Configuration for sequential mode example 2

CTU_HWSWTEST_TRIGGEROVERRUN (* store_var){

temp = (*store_var & 0x0BE0);

if (temp) {
return (FAIL);
}

return (PASS);
}

// mask all errors except external trigger,
// timer N triggers and ADC command
// overrun

// if there are any, this is a error
// error detected, thus FAIL

Parameters
*store_var: When the CTUEFR register is read, it's content is cleared. The original content is stored in address give
by store_var

Return Values:
PASS: no overrun
FAIL: otherwise

DIFF

pri
eTimer_0

eTimer_0 trig

CTU

eTimer_0 in

clk/32

EV

pri

eTimer_0

eTimer_1 in
MRS

pri
eTimer_0

pri

eTimer_1

clk

sec

sec

CTU_OUT

delay

channel 0 channel 2

channel 2
channel 1

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 137

Figure 45 shows a timing example of this configuration.

Figure 45. Timing for sequential mode example 2

EV

MRS

CTU_OUT

DIFF

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 138

Example code for eTimers and CTU are shown in Figure 46, Figure 47 and Figure 48.

Figure 46. Code example: eTimer initialization (seq.)

Init_Etimer_seq () {

ETIMER_0.ENBL.R = 0;
ETIMER_0.CHANNEL[2].COMP1.R = 0x400;
ETIMER_0.CHANNEL[2].COMP2.R = 0x800;
ETIMER_0.CHANNEL[2].LOAD.R = 0x0;

ETIMER_0.CHANNEL[2].CTRL.B.CNTMODE = 0x1;
ETIMER_0.CHANNEL[2].CTRL.B.PRISRC = 0x1D;
ETIMER_0.CHANNEL[2].CTRL.B.LENGTH = 0x1;
ETIMER_0.CHANNEL[2].CTRL2.B.OEN = 0x1;
ETIMER_0.CHANNEL[2].CTRL2.B.OUTMODE = 0x8;

ETIMER_0.CHANNEL[2].CCCTRL.B.CLC1 = 0x7;
ETIMER_0.CHANNEL[2].CCCTRL.B.CPT2MODE = 0x0;
ETIMER_0.CHANNEL[2].CCCTRL.B.CPT1MODE = 0x0;
ETIMER_0.CHANNEL[2].CCCTRL.B.CFWM = 0x3;

ETIMER_0.CHANNEL[2].INTDMA.R = 0x0;
ETIMER_0.CHANNEL[2].CMPLD1.R = 0x0;
ETIMER_0.CHANNEL[2].CMPLD2.R = 0x0;
ETIMER_0.CHANNEL[2].FILT.R = 0x0;

ETIMER_0.ENBL.R |= (1<<2);

ETIMER_1.ENBL.R = 0;
ETIMER_1.CHANNEL[2].COMP1.R = 0x6;
ETIMER_1.CHANNEL[2].COMP2.R = 0x7;
ETIMER_1.CHANNEL[2].LOAD.R = 0x0;

ETIMER_1.CHANNEL[2].CTRL.B.CNTMODE = 0x1;
ETIMER_1.CHANNEL[2].CTRL.B.PRISRC = 0x9;
ETIMER_1.CHANNEL[2].CTRL.B.LENGTH = 0x1;
ETIMER_1.CHANNEL[2].CTRL2.B.OEN = 0x1;
ETIMER_1.CHANNEL[2].CTRL2.B.OUTMODE = 0x8;

ETIMER_1.CHANNEL[2].CCCTRL.B.CLC1 = 0x7;
ETIMER_1.CHANNEL[2].CCCTRL.B.CPT2MODE = 0x0;
ETIMER_1.CHANNEL[2].CCCTRL.B.CPT1MODE = 0x0;
ETIMER_1.CHANNEL[2].CCCTRL.B.CFWM = 0x3;

ETIMER_1.CHANNEL[2].INTDMA.R = 0x0;
ETIMER_1.CHANNEL[2].CMPLD1.R = 0x0;
ETIMER_1.CHANNEL[2].CMPLD2.R = 0x0;
ETIMER_1.CHANNEL[2].FILT.R = 0x0;

ETIMER_1.ENBL.R |= (1<<2);

[continue on next page]

// stop all channels
// set compare and load values to zero

// count rising edges of primary source
// IP BUS 1:32

// disable DMA, interrupts, input filter

// enable etimer_0 channel 2

// stop all channels
// set compare and load values to zero

// count rising edges of primary source
// auxiliary input #1 (= eTimer_0[2] out)

// disable DMA, interrupts, input filter

// enable eTimer_1 channel 2

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 139

Figure 47. Code example: eTimer initialization (seq.)

ETIMER_0.CHANNEL[0].COMP1.R = 0x1;
ETIMER_0.CHANNEL[0].COMP2.R = 0x0;
ETIMER_0.CHANNEL[0].LOAD.R = 0x0;

ETIMER_0.CHANNEL[0].CTRL.B.CNTMODE = 0x3;
ETIMER_0.CHANNEL[0].CTRL.B.PRISRC = 0x12;
ETIMER_0.CHANNEL[0].CTRL.B.SECSRC = 0x8;
ETIMER_0.CHANNEL[0].CTRL.B.LENGTH = 0x1;
ETIMER_0.CHANNEL[0].CTRL2.B.SIPS = 0x1;
ETIMER_0.CHANNEL[0].CTRL2.B.OPS = 0x1;
ETIMER_0.CHANNEL[0].CTRL2.B.OEN = 0x1;
ETIMER_0.CHANNEL[0].CTRL2.B.OUTMODE = 0x8;

ETIMER_0.CHANNEL[0].CCCTRL.B.CLC1 = 0x6;
ETIMER_0.CHANNEL[0].CCCTRL.B.CPT2MODE = 0x0;
ETIMER_0.CHANNEL[0].CCCTRL.B.CPT1MODE = 0x0;
ETIMER_0.CHANNEL[0].CCCTRL.B.CFWM = 0x3;

ETIMER_0.CHANNEL[0].INTDMA.R = 0x0;
ETIMER_0.CHANNEL[0].CMPLD1.R = 0x0;
ETIMER_0.CHANNEL[0].CMPLD2.R = 0x0;
ETIMER_0.CHANNEL[0].FILT.R = 0x0;

ETIMER_0.ENBL.R |= (1<<0);

ETIMER_0.CHANNEL[1].COMP1.R = 0xEA60;
ETIMER_0.CHANNEL[1].COMP2.R = 0x0;
ETIMER_0.CHANNEL[1].LOAD.R = 0x0;

ETIMER_0.CHANNEL[1].CTRL.B.CNTMODE = 0x3;
ETIMER_0.CHANNEL[1].CTRL.B.PRISRC = 0x18;
ETIMER_0.CHANNEL[1].CTRL.B.SECSRC = 0x10;
ETIMER_0.CHANNEL[1].CTRL.B.LENGTH = 0x1;
ETIMER_0.CHANNEL[1].CTRL2.B.SIPS = 0x0;

ETIMER_0.CHANNEL[1].CCCTRL.B.CLC1 = 0x6;
ETIMER_0.CHANNEL[1].CCCTRL.B.CPT2MODE = 0x0;
ETIMER_0.CHANNEL[1].CCCTRL.B.CPT1MODE = 0x0;
ETIMER_0.CHANNEL[1].CCCTRL.B.CFWM = 0x3;

ETIMER_0.CHANNEL[1].INTDMA.R = 0x0;
ETIMER_0.CHANNEL[1].CMPLD1.R = 0x0;
ETIMER_0.CHANNEL[1].CMPLD2.R = 0x0;
ETIMER_0.CHANNEL[1].FILT.R = 0x0;

ETIMER_0.ENBL.R |= (1<<1);
}

//set compare and load values to zero

// counter #2 output
// auxiliary input_0 (from CTU)

// disable DMA, interrupts, input filter

// enable eTimer_0 channel 0

// eTimer_0[1] measure width impulse
// set compare and load values to zero

// IP BUS 1:1
// counter #0 output

//disable DMA, interrupts, input filter

// enable eTimer_0 channel 1

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 140

Figure 48. Code example: CTU initialization (seq.)

An updated measurement result of eTimer_0 channel 1 issues an interrupt, and the updated result may be
stored in a variable. After a complete cycle of eight triggers, the measured delay can be compared to the
expected delay value (Figure 49).

Init_CTU_seq(uint16_t period) {

CTU.TGSCR.B.PRES = 0x3;
CTU.TGSCR.B.TGS_M = 0x1;
CTU.TGSCR.B.MRS_SM = 0x1C;
CTU.TGSCR.B.ET_TM = 0x0;

CTU.TGSCRR.R = 0x0;
CTU.TGSCCR.R = 0x2000;

if (period < 9) CTU.COTR.R = 30*period;
else CTU.COTR.R = 0xFF;

if (period>546) period = 546*30;
else period*=30;

CTU.COTR.R = 0xAF;

CTU.T0CR.R = period;
CTU.T1CR.R = 3*period;
CTU.T2CR.R = 6*period;
CTU.T3CR.R = 10*period;
CTU.T4CR.R = 15*period;
CTU.T5CR.R = 21*period;
CTU.T6CR.R = 28*period;
CTU.T7CR.R = 36*period;

CTU.THCR1.B.T0_E = 0x1;
CTU.THCR1.B.T0_ETE = 0x1;
CTU.THCR1.B.T0_T1E = 0x1;
[… repetition for trigger 1 to 7]

CTU.CTUEFR.R = 0xFFFF;
CTU.CTUIFR.R = 0xFFFF;
CTU.CTUIR.R = 0x0;

CTU.TGSISR.B.I13_RE = 0x1;
CTU.TGSISR.B.I14_RE = 0x1;

CTU.CTUCR.B.TGSISR_RE = 0x1;

CTU.CTUIR.B.T0_I = 0x1;
[… repetition for interrupts 1 to 7]

CTU.CTUIR.B.MRS_IE = 0x1;

CTU.CTUCR.B.GRE = 0x1;
CTU.CTUIR.B.IEE = 0x0;
CTU.CTUCR.B.MRS_SG = 0x1;
}

//TGS counter - prescaler 4
// sequential mode

// always 1/4 total period, max. 2.125 s

// keep value inside 16-bit range of
// trigger compare registers

//set values of comparators
// [s] - [base 10] - [base 16]
// 5 - 600 - 258
// 15 - 1800 - 708
// 30 - 3600 - E10
// 50 - 6000 - 1770
// 75 - 9000 - 2328
// 105 - 12600 - 3138
// 140 - 16800 - 41A0
// 168 - 20160 - 4EC0

// configuration scheduler unit

// reload global setting
// source eTimer_1 rising edge
// source eTimer_2 rising edge

// reload TGSISR reload enable

// allowed interrupts

// reload global settings
// enable error interrupts
// MRS to start CTU

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 141

Figure 49. Code example: CTU_SWTEST_TRIGGERTIME (seq.)

8.1.3.5 CTU_SWTEST_TRIGGERTIME

Figure 50 shows an example of eTimer_2 initialization. eTimer_2 is configured to count rising edges of
the IP Bus clock (assumed f = 120 MHz) as primary count source and rising edges of auxiliary input 0
(output from CTU) as secondary count source.

Figure 50. Code example: Etimer initialization (triggered)

CTU_seq_test(tol, period){

if ((abs(delay_0[0] - 120*1*period) > tol) ||
(abs(delay_0[1] - 120*3*period) > tol) ||
(abs(delay_0[2] - 120*6*period) > tol) ||
(abs(delay_0[3] - 120*10*period) > tol) ||
(abs(delay_0[4] - 120*15*period) > tol) ||
(abs(delay_0[5] - 120*21*period) > tol) ||
(abs(delay_0[6] - 120*28*period) > tol) ||
(abs(delay_0[7] - 120*36*period) > tol))

return FAIL;
else return PASS;

}

 //checking of measured values

Init_Etimer_trigger () {

ETIMER_2.ENBL.R = 0;
ETIMER_2.CHANNEL[0].COMP1.R = 0x0;
ETIMER_2.CHANNEL[0].COMP2.R = 0x0;
ETIMER_2.CHANNEL[0].LOAD.R = 0x0;

ETIMER_2.CHANNEL[0].CTRL.B.CNTMODE = 0x1;
ETIMER_2.CHANNEL[0].CTRL.B.PRISRC = 0x18;
ETIMER_2.CHANNEL[0].CTRL.B.SECSRC = 0x8;
ETIMER_2.CHANNEL[0].CTRL2.R = 0x0;

ETIMER_2.CHANNEL[0].CCCTRL.B.CPT2MODE = 0x2;
ETIMER_2.CHANNEL[0].CCCTRL.B.CPT1MODE = 0x2;
ETIMER_2.CHANNEL[0].CCCTRL.B.CFWM = 0x3;
ETIMER_2.CHANNEL[0].CCCTRL.B.ARM = 0x1;

ETIMER_2.CHANNEL[0].INTDMA.R = 0x0;
ETIMER_2.CHANNEL[0].CMPLD1.R = 0x0;
ETIMER_2.CHANNEL[0].CMPLD2.R = 0x0;
ETIMER_2.CHANNEL[0].FILT.R = 0x0;

ETIMER_2.ENBL.R |= (1<<0);
}

// stop all channels
// set compare and load values to zero

// Count rising edges of primary source
// IP Bus clock divide by 1 prescaler
// Auxiliary input #0

// rising edges of secondary count source
// rising edges of secondary count source

// disable DMA, interrupts, input filter

// enable etimer channel

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 142

Figure 51 shows an example of CTU initialization.

Figure 51. Code example: CTU initialization (triggered)

Figure 52 shows the consecutive CTU trigger event generation. The time of each rising edge is stored in
CAPT_1 and CAPT_2 FIFOs. Once a capture occurs on capture circuit 1, capture circuit 1 is disarmed and
capture circuit 2 is armed and vice versa. The safety integrity measure CTU_SWTEST_TRIGGERTIME
(see Figure 53) calculates the period of the CTU signal and reports FAIL, in case the period does not match
the expectations.

Figure 52. Timing of CAPT1 and CAPT2 values

Init_CTU_trigger(period) {

CTU.TGSCR.B.PRES = 0x3;
CTU.TGSCR.B.TGS_M = 0x0;
CTU.TGSCRR.R = 0x0;
CTU.TGSCCR.R = 0xA8C;

if (period < 9) CTU.COTR.R = 120*period/4;
else CTU.COTR.R = 0xFF;

CTU.CTUCR.B.T0_SG = 0x0;

if (period>546) period = 546 * 30;
else period*=30;

CTU.T0CR.R = period;
CTU.T1CR.R = 2*period;
CTU.T2CR.R = 3*period;
CTU.T3CR.R = 4*period;

CTU.THCR1.B.T0_E = 0x1;
CTU.THCR1.B.T0_ETE = 0x1;
CTU.THCR1.B.T0_T3E = 0x1;

[… repetition for timer 1 to 3]

CTU.CTUCR.B.GRE = 0x1;
CTU.CTUIR.B.IEE = 1;
}

// TGS counter - prescaler 4
// triggered mode
// 2700

// always 1/4 total period, max. 2.125 s

// keep value inside 16-bit range of
// trigger compare registers

// set values of comparators

// configuration scheduler unit

// reload global setting
// enable error interrupts

period period period

capt1_FIFO[0]
temp[0]

capt2_FIFO[0]
temp[2]

capt1_FIFO[1]
temp[1]

capt2_FIFO[1]
temp[3]

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 143

Figure 53. Code example: CTU_SWTEST_TRIGGERTIME (trig.)

8.1.3.6 CTU_HWSWTEST_TRIGGERNUM

Figure 54. Code example: CTU_HWSWTEST_TRIGGERNUM

CTU_SWTEST_TRIGGERTIME (period)

{
temp[4] = {0,0,0,0};
CTU.CTUCR.B.MRS_SG = 0x1;

while(ETIMER_2.CHANNEL[0].CTRL3.B.C2FCNT<2);

ETIMER_2.CHANNEL[0].CCCTRL.B.ARM = 0x0;

temp[0] = ETIMER_2.CHANNEL[0].CAPT1.R;
temp[1] = ETIMER_2.CHANNEL[0].CAPT1.R;
temp[2] = ETIMER_2.CHANNEL[0].CAPT2.R;
temp[3] = ETIMER_2.CHANNEL[0].CAPT2.R;

ETIMER_2.CHANNEL[0].CCCTRL.B.ARM = 0x1;
if (

((temp[2]-temp[0])!=120*period) ||
((temp[3]-temp[1])!=120*period) ||
((temp[1]-temp[2])!=120*period))

return FAIL;
else return PASS;
}

// MRS to start CTU (here just for
// illustration)

// wait until two entries in FIFO 2

// stop counting to read values

// reading capture values from FIFO

// assuming fclock = 120 MHz

Parameters:
period: expected time between two triggers. The value is in s

Return Values:
PASS when difference fits into the tolerance
FAIL otherwise

CTU_HWSWTEST_TRIGGERNUM_ISR() {

g_ctuefr = CTU.CTUEFR.R;
CTU.CTUEFR.R = 0xFFFF;

if (g_ctuefr&(1<<11)); [place reaction
here]
if (g_ctuefr&(1<<9)); [place reaction here]
if (g_ctuefr&(1<<8)); [place reaction here]
if (g_ctuefr&(1<<7)); [place reaction here]
if (g_ctuefr&(1<<6)); [place reaction here]
if (g_ctuefr&(1<<5)); [place reaction here]
if (g_ctuefr&(1<<4)); [place reaction here]
if (g_ctuefr&(1<<3)); [place reaction here]
if (g_ctuefr&(1<<1)); [place reaction here]
}

// a critical event occurs it immediately attends
// store the error cause in a variable

// external trigger generation overrun error
// timer 4 trigger generation overrun error
// timer 3 trigger generation overrun error
// timer 2 trigger generation overrun error
// timer 1 trigger generation overrun error
// ADC command generation overrun error
// TGS overrun error in sequential mode
// Master Reload Signal overrun error
// trigger overrun error (more than 8 EV) in TGS
sequential mode

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 144

8.1.3.7 CTU_HW_CFGINTEGRITY

Figure 55. Code example: CTU_HW_CFGINTEGRITY

8.1.4 Digital inputs

8.1.4.1 ETIMERI_SWTEST_CMP

This test is to redundantly read two PWM inputs. The pulse widths of the input signals are captured and
compared for this test. However, other parameter of the input signal could be used if configured with a
simple configuration change.

CTU_HW_CFGINTEGRITY (* store_var){

if ((*store_var & 0x1) || (*store_var & 0x8)) {
return (FAIL);
}

return (PASS);
}

// if there was a reload error (MRS_RE)
// (0x1) or an overrun (MRS_O) (0x8) the
// configuration is/could be incorrect

Parameters
*store_var: When the CTUEFR register is read, it's content is cleared. The original content is stored in address give
by store_var

Return Values:
PASS: no configuration error
FAIL: otherwise

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 145

To demonstrate, this example uses hard-coded I/O and eTimer channels.

Figure 56. Code example: ETIMERI_SWTEST_CMP

ETIMERI_SWTEST_CMP () {

SIUL.PCR[0].R = 0x0500;
SIUL.PCR[4].R = 0x0500;

ETIMER_0.CHANNEL[0].CTRL1.R = 0x3800;
ETIMER_0.CHANNEL[0].CCCTRL.R = 0x0065;

ETIMER_1.CHANNEL[0].CTRL1.R = 0x3800;
ETIMER_1.CHANNEL[0].CCCTRL.R = 0x0065;

while(ETIMER_0.CHANNEL[0].STS.B.ICF1 == 0);
eT0_time1 = ETIMER_0.CHANNEL[0].CAPT1.R;

while(ETIMER_1.CHANNEL[0].STS.B.ICF1 == 0);
eT1_time1 = ETIMER_1.CHANNEL[0].CAPT1.R;

while(ETIMER_0.CHANNEL[0].STS.B.ICF2 == 0);
eT0_time2 = ETIMER_0.CHANNEL[0].CAPT2.R;

while(ETIMER_1.CHANNEL[0].STS.B.ICF2 == 0);
eT1_time2 = ETIMER_1.CHANNEL[0].CAPT2.R;

eT0_Result = eT0_time2 - eT0_time1;
eT1_Result = eT1_time2 - eT1_time1;

if ((eT0_Result == eT1_Result)||
(eT0_Result+1 == eT1_Result)||
(eT0_Result-1 == eT1_Result)) return

eT1_Result;
else return error;
}

// configure SIUL inputs
// A[0] to eTimer_0
// A[4] to eTimer_1

// eTimer0: configure period measurement
// ARM, capture 1:rising, capture2:falling

// eTimer_1: configure period measurement
// ARM, capture 1:rising, capture 2:falling

// eTimer_0: wait for 1st edge to capture
// eTimer_0: read time 1st edge captured at

// eTimer_1: wait for 1st edge to capture
// eTimer_1: read time 1st edge captured at

// eTimer_0: wait for 2nd edge to capture
// eTimer_0: read time 2nd edge captured at

// eTimer_1: wait for 2nd edge to capture
// eTimer_1: read time 2nd edge captured at

// eTimer_0: calculate Period
// eTimer_1: calculate Period

// Check if results are the same within one count

Parameters: none
Return values:
error: Inputs did not match
value: Pulse widths matched and the value of the matching pulse width is returned.

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 146

8.1.4.2 GPI_SWTEST_CMP

Figure 57. Code example: GPI_SWTEST_CMP

GPI_SWTEST_CMP (pin1, pin2){

if(pin1== pin2) return read_error;

SIUL.PCR[pin1].R = 0x0100;
SIUL.PCR[pin2].R = 0x0100;

pin1_val = SIUL.GPDI[pin1].R;
pin2_val = SIUL.GPDI[pin2].R;

if(pin1_val != pin2_val) return read_error;
else return pin1_val;
}

// Make sure that I/Os are different

// Configure SIUL GPIO as input

// Read Inputs

// Check values match and return

Parameters
pin1: Defines the first of the two input GPIO to be read
pin2: Defines the second GPIO to be read

Return values
0: Input value read as low on both Pin 1 and Pin 2
1: Input value read as high on both Pin 1 and Pin 2
read_error: Input values read on Pin1 and Pin2 do not match

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 147

8.1.5 Digital outputs

8.1.5.1 GPODW_SWAPP_WRITE

Figure 58. Code example: GPODW_SWAPP_WRITE

GPODW_SWAPP_WRITE (pin1, pin2, op_state){

pin1_reg = pin1 >> 5;
pin2_reg = pin2 >> 5;

if((pin1_reg != pin2_reg) | (pin1=pin2) {
return(error);
}

SIUL.PCR[pin1].R = 0x0200;
SIUL.PCR[pin2].R = 0x0200;

pin1_bit = pin1 - (pin1_reg * 32);
pin2_bit = pin2 - (pin1_reg * 32);

temp1 = 0x1 << pin1_bit;
temp2 = 0x1 << pin2_bit;
temp1 = temp1 + temp2;

temp1 = reverse(temp1);

if (op_state == 0){
SIUL.PGPDO[pin1_reg].R = (SIUL.PGPDO[pin1_reg].R

& !temp1);
if (SIUL.PGPDO[pin1_reg].R & temp1) return error
else return output_ok;
}

else if (op_state == 1){
SIUL.PGPDO[pin1_reg].R = (SIUL.PGPDO[pin1_reg].R

| temp1);
if (SIUL.PGPDO[pin1_reg].R & temp1) return

output_ok
else return error;
}

else return error;
}

// Calculate number of SIUL.PGPDO
// of first and second GPIO

// Both GPIOs different and
// programmed in
// the same parallel data register?

// Configure GPIO as output
// Configure GPIO as output

// Calculate values to write to parallel
// data register

// Create bit Position Masks

// Reverse the bit Order

// Clear Output
// Readback required (atomic
operation)

// Set Output
// Readback required (atomic
operation)

Parameters:
pin0: The first GPIO number that output is to be generated on
pin1: The second GPIO number that output is to be generated on
op_state: Desired value of the GPIO

Return Values:
output_ok: Output written successfully
error: Output configuration does not read back as written: pads are not in the same parallel data out register.

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 148

8.1.5.2 GPOIRB_SWTEST_CMP

This software test executes the comparison between the desired output values and the value read back via
internal read back configuration.

Figure 59. Code example: GPOIRB_SWTEST_CMP

8.1.5.3 GPOERB_SWTEST_CMP

The output is externally connected to an input pin. After writing the output value to the pin, the input is
read to check that the correct output value is present.

Figure 60. Code example: GPOERB_SWTEST_CMP

GPOIRB_SWTEST_CMP (pin, op_state){

SIUL.PCR[pin_op].R= 0x0300;

SIUL.GPDO[pin_op].R = op_state;

if(SIU.GPDI[pin_op].R != op_state)
return(error);
else return(output_ok);
}

// Configure Pin[pin_op] as GPIO output with enabled
input buffer

// Set Pin[pin_op] Output State

// Does read back value matches the desired op_state?

Parameters:
pin_op: The GPIO number that output is to be generated on and read back from.
op_state: Desired value of the GPIO

Return values:
output_ok: Input value read back matches written output
input_error: Output does not read back as written

GPOERB_SWTEST_CMP (pin_op, pin_rb, op_state) {

SIUL.PCR[pin_op].R= 0x0200;
SIUL.PCR[pin_rb].R= 0x0100;

SIUL.GPDO[pin_op].R = op_state;

[short pause]

if(SIU.GPDI[pin_rb].R != op_state)
return(error);
else return(output_ok);
}

// Configure Pin[pin_op] as GPIO output
// Configure Pin[pin_rb] as GPIO input

// Set Pin[pin_op] Output State

// There is a short propagation delay before the output is
// present at the input of the read back pin.

// Does read back value match the desired out_val?

Parameters:
pin_op: The GPIO number that output is to be generated on.
pin_rb: The GPIO number that the output is to be read back on.
op_state: Desired value of the GPIO

Return values:
output_ok: Input value read back matches output written
error: Output does not read back as written

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 149

8.1.5.4 PWMRB_SWTEST_CMP

In this test case the pulse width is measured and used for comparison. The eTimer could be configured to
compare the period by changing the configuration to capture the times at which 2 consecutive edges of the
same type occur.

The result might be a few counts different from the output signal. It is good practice to take this into
account on the system level.

The FlexPWM is configured to generate a center aligned PWM. This configuration is shown in Figure 61.

Figure 61. PWM output signal and Timing

Pulse width = 2 × AAh = 340d

0100h

0000h

Init FF00h

00AAh

FF55h

FlexPWM timebase config

Center aligned
PWM output

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 150

Application software validates the values read by comparing these with expected values (340 (154h) in
this example).

Figure 62. Code example: PWMRB_SWTEST_CMP

8.1.5.5 PWMDW_SWAPP_WRITE

This example configures the FlexPWM and uses channel A of two of the FlexPWM modules. The code
for PWM generation is next to output configuration, whereas in the real application, it is very likely that
the code for PWM generation is kept separate. For demonstration, this example uses hard-coded I/O and

PWMRB_SWTEST_CMP (){

SIUL.PCR[4].R = 0x0500;
SIUL.PCR[12].R = 0x0A00;

FLEXPWM_0.SUB[2].INIT.R = 0xFF00;
FLEXPWM_0.SUB[2].CTRL.B.FULL = 1;
FLEXPWM_0.SUB[2].CTRL2.B.INDEP = 0x1;
FLEXPWM_0.SUB[2].CTRL2.B.DBGEN = 0x1;
FLEXPWM_0.SUB[2].DTCNT0.R = 0x0000
FLEXPWM_0.SUB[2].DTCNT1.R = 0x0000
FLEXPWM_0.SUB[2].DISMAP.R = 0xF000;
FLEXPWM_0.SUB[2].CTRL2.B.DBGEN = 1;
FLEXPWM_0.SUB[2].VAL[0].R = 0x0000;
FLEXPWM_0.SUB[2].VAL[1].R = 0x0100;
FLEXPWM_0.SUB[2].VAL[2].R = 0xFF55;
FLEXPWM_0.SUB[2].VAL[3].R = 0x00AA;
FLEXPWM_0.OUTEN.B.PWMA_EN = 0x4;

FLEXPWM_0.MCTRL.B.LDOK = 0x4;
FLEXPWM_0.MCTRL.B.RUN = 0x4;

ETIMER_1.CHANNEL[0].CTRL1.R = 0x3800;
ETIMER_1.CHANNEL[0].CCCTRL.R = 0x0065;

while(ETIMER_1.CHANNEL[0].STS.B.ICF1 == 0);
time1 = ETIMER_1.CHANNEL[0].CAPT1.R;

while(ETIMER_1.CHANNEL[0].STS.B.ICF2 == 0);
time2 = ETIMER_1.CHANNEL[0].CAPT2.R;

Result = time2 - time1;

 return Result;
}

// configure SIUL inputs
// input: A[4] to eTimer_1
// output: FlexPWM_0 A[2] to A[12]

// configure FlexPWM for center aligned PWM

// initial count value
// full Cycle reload
// independent Outputs
// PWM runs in debug
// PWM dead time 0
// PWM dead time 1
// reset Fault Dis
// PWM runs in debug mode
// mid-cycle reload point
// max value for counter
// PWMA high 0xFF55
// PWMA low 0x00AA
// enable PWM A - channel 2

// load configuration values into buffers
// Go!

// configure period measurement
// ARM, capture1:rising, capture 2:falling

// wait for 1st edge to capture
// read time 1st edge captured at

// wait for 2nd edge to capture
// read time 2nd edge captured at

// calculate Period

Return Values:
The time between the rising edge and falling edge.

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 151

FlexPWM outputs, because a generic example considering the restrictions in mapping FlexPWM outputs
to GPO would to go beyond the scope of this document.

Figure 63. Code example: PWMDW_SWAPP_WRITE

PWMDW_SWAPP_WRITE (){

FLEXPWM_0.SUB[2].INIT.R = 0xFF00;
FLEXPWM_0.SUB[2].CTRL.B.FULL = 1;
FLEXPWM_0.SUB[2].CTRL2.B.INDEP = 0x1;
FLEXPWM_0.SUB[2].CTRL2.B.DBGEN = 0x1;
FLEXPWM_0.SUB[2].DTCNT0.R = 0x0000;
FLEXPWM_0.SUB[2].DTCNT1.R = 0x0000;
FLEXPWM_0.SUB[2].DISMAP.R = 0xF000;
FLEXPWM_0.SUB[2].CTRL2.B.DBGEN = 1;
FLEXPWM_0.SUB[2].VAL[0].R = 0x0000;
FLEXPWM_0.SUB[2].VAL[1].R = 0x0100;
FLEXPWM_0.SUB[2].VAL[2].R = 0xFF55;
FLEXPWM_0.SUB[2].VAL[3].R = 0x00AA;
FLEXPWM_0.SUB[2].VAL[4].R = 0xFFAA;
FLEXPWM_0.SUB[2].VAL[5].R = 0x0055;

FLEXPWM_0.OUTEN.B.PWMA_EN = 0x4;

FLEXPWM_0.MCTRL.B.LDOK = 0x4;
FLEXPWM_0.MCTRL.B.RUN = 0x4;

FLEXPWM_1.SUB[0].INIT.R = 0xFF00;
FLEXPWM_1.SUB[0].CTRL.B.FULL = 1;
FLEXPWM_1.SUB[0].CTRL2.B.INDEP = 0x1;
FLEXPWM_1.SUB[0].CTRL2.B.DBGEN = 0x1;
FLEXPWM_1.SUB[0].DTCNT0.R = 0x0000;
FLEXPWM_1.SUB[0].DTCNT1.R = 0x0000;
FLEXPWM_1.SUB[0].DISMAP.R = 0xF000; /
FLEXPWM_1.SUB[0].CTRL2.B.DBGEN = 1;
FLEXPWM_1.SUB[0].VAL[0].R = 0x0000;
FLEXPWM_1.SUB[0].VAL[1].R = 0x0100;
FLEXPWM_1.SUB[0].VAL[2].R = 0xFF55;
FLEXPWM_1.SUB[0].VAL[3].R = 0x00AA;
FLEXPWM_1.SUB[0].VAL[4].R = 0xFFAA;
FLEXPWM_1.SUB[0].VAL[5].R = 0x0055;

FLEXPWM_1.OUTEN.B.PWMA_EN = 0x1;

FLEXPWM_1.MCTRL.B.LDOK = 0x1;
FLEXPWM_1.MCTRL.B.RUN = 0x1;

SIUL.PCR[12].R = 0x0A00;
SIUL.PCR[117].R = 0x0600;
}

// Initial count value
// Full Cycle reload
// Independent Outputs
// PWM runs in debug
// PWMA dead time
// PWMB dead time
// Reset Fault Dis
// PWM runs in debug mode
// Mid-Cycle Reload Point
// Max value for counter
// Max value for counter
// PWMA Low 0x00AA
// PWMB High 0xFFAA
// PWMB Low 0x0055

// Enable PWM A

// Load configuration values into
buffers
// Go!

// Initial count value
// Full Cycle reload
// Independent Outputs
// PWM runs in debug
// PWMA dead time
// PWMB dead time
// Reset Fault Dis
// PWM runs in debug mode
// Mid-Cycle Reload Point
// Max value for counter
// PWMA High 0xFF55
// PWMA Low 0x00AA
// PWMB High 0xFFAA
// PWMB Low 0x0055

// Enable PWM A

// Load configuration values into
buffers
// Go!

// configure SIUL outputs
// FlexPWM_0 A[2] to A[12]
// FlexPWM_1 A[0] to H[5]

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 152

8.1.6 Analog inputs

8.1.6.1 ADC_SWTEST_TEST1

Figure 64 shows the ADC_SWTEST_TEST1 configuration using ADC_0. Depending on the type of input
signal to the ADC, VDD_HV_ADR, VSS_HV_ADR, or alternating between these, may be used for this
function. This function may also be used for ADC_1, ADC_2, and ADC_3.

Figure 64. Code example: ADC_SWTEST_TEST1

Figure 65 shows the execution of ADC_SWTEST_TEST1. This function is called when an end of chain
interrupt occurs on ADC_0. This function tests whether the converted value is near to the value of a
converted reference value. If the converted value is very close to the value of a converted reference voltage
(for example, FFFh or 0), an open failure, or misconfiguration, of the multiplexing circuit is assumed. In
this case, g_ADC0_SWTEST_TEST1_result = 1, which indicates a failed test. In this example, all
channels are tested. If fewer channels are used in an application, the unused channels must be excluded
from testing.

ADC0_SWTEST_TEST1_Init_ADC(){

ADC0.MCR.B.MODE = 0;
ADC0.NCMR0.B.CH0 = 1;
ADC0.NCMR0.B.CH1 = 1;
[ all other used channels]

SIUL.PCR[23].R=0x2100;
SIUL.PCR[24].R=0x2100;
[ all other used channels]

ADC0.PSCR.B.PREVAL0=0;
ADC0.PSCR.B.PREVAL1=0;
ADC0.PSCR.B.PREVAL2=0;
ADC0.PSCR.B.PRECONV=1;
ADC0.PSR0.R=0xFFFF;

[VSS_HV_ADR0 can be used alternatively]

ADC0.IMR.B.MSKECH=1;
}

// Set one shot mode
// Enable channel 0
// Enable channel 1

// ADC_0: enable B[7] for AN[0]
// ADC_0: enable B[8] for AN[1]

// Select VDD_HV_ADR0 as presampling voltage
// Select VDD_HV_ADR0 as presampling voltage (errata
//#4016)
// Select VDD_HV_ADR0 as presampling voltage (errata
//#4016)
// The ADC will perform a presampling followed by a
conversion
// Presampling enabled for channels 0-15

// Application dependent

// Configuration of End of Chain interrupt

Parameters:
none

Return Values:
none

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 153

Figure 65. Code example: ADC_SWTEST_TEST1

8.1.6.2 ADC_SWTEST_TEST2

Figure 66 shows the configuration of ADC_0 for ADC_SWTEST_TEST2. This function may also be used
for ADC_1, ADC_2, and ADC_3 as needed.

Figure 66. Code example: ADC_SWTEST_TEST2

Figure 67 shows the execution of ADC_SWTEST_TEST2. This function is called when an end of chain
interrupt occurs on ADC_0. This function tests whether the difference of the converted values for both
reference voltages are within an expected range (D_TOLERANCE). ADC0_SWTEST_TEST2 = 1 if the
test fails.

ADC0_SWTEST_TEST1_handler(){

ADC0.ISR.B.ECH=1;
if(ADC0.PSCR.B.PREVAL0==0){

for(i=0;i<16;i++){
if (abs(0xFFF - ADC0.CDR[i].B.CDATA) <= D_TOLERANCE)
g_ADC0_SWTEST_TEST1_result=1;

}
}

if(ADC0.PSCR.B.PREVAL0==1){
for(i=0;i<16;i++){

if (abs(0 - ADC0.CDR[i].B.CDATA) <= D_TOLERANCE)
g_ADC0_SWTEST_TEST1_result=1;

}
}
}

//if the difference between
presampling value and measured
value is lower than the tolerance

//if the difference between
presampling value and measured
value is lower than the tolerance

Init_ADC(){

ADC0.MCR.B.MODE = 0;
ADC0.NCMR0.B.CH2 = 1;
ADC0.NCMR0.B.CH5 = 1;

ADC0.PSCR.B.PREVAL0=0;
ADC0.PSCR.B.PREVAL1=0;
ADC0.PSCR.B.PREVAL2=0;
ADC0.PSCR.B.PRECONV=1;
ADC0.PSR0.R=0x24;

ADC0.IMR.B.MSKECH=1;
}

// Set one shot mode
// Enable channels to be used, channels 2 and 5 in this example

// Select VDD_HV_ADR0 as presampling voltage
// Select VDD_HV_ADR0 as presampling voltage
// Select VDD_HV_ADR0 as presampling voltage
// The ADC will perform a presampling followed by a conversion
// Presampling enabled for channels 2 and 5

// Configuration of End of Chain interrupt

MPC567xK Safety Manual, Rev. 1

Additional information

Freescale Semiconductor 154

Figure 67. Code example: ADC_SWTEST_TEST2

8.1.6.3 ADC_SWTEST_CMP

Figure 68. Code example: ADC_SWTEST_CMP

8.2 Checks and configurations
Below is a list of the minimum number of checks by the safety integrity functions which need to pass
before executing any safety function:

• Lock-step mode check

ADC0_SWTEST_TEST2_handler(){

ADC0.ISR.B.ECH=1;
if(ADC0.PSCR.B.PREVAL0==0) {

g_ADC0_channel2=ADC0.CDR[2].B.CDATA;
ADC0.PSCR.B.PREVAL0=1;
ADC0.PSCR.B.PREVAL1=1;
ADC0.PSCR.B.PREVAL2=1;
ADC0.MCR.B.NSTART=1;

}
if(ADC0.PSCR.B.PREVAL0==1){

if (abs(0xFFF - g_ADC0_channel2 + ADC0.CDR[5].B.CDATA)
>= D_TOLERANCE)

g_ADC0_SWTEST_TEST2_result=1;

ADC0.PSCR.B.PREVAL0=0;
ADC0.PSCR.B.PREVAL1=0;
ADC0.PSCR.B.PREVAL2=0;

}

//Select VSS_HV_ADR0 as presampling voltage
//Select VSS_HV_ADR0 as presampling voltage
//Select VSS_HV_ADR0 as presampling voltage
//start the chain conversion.

// select VDD_HV_ADR0 as presampling voltage
// select VDD_HV_ADR0 as presampling voltage
// select VDD_HV_ADR0 as presampling voltage

ADC_SWTEST_CMP (tol, ADCH1, ADCH2){

ADC0.MCR.B.NSTART = 1;
ADC1.MCR.B.NSTART = 1;

while (
(!ADC0.CDR[ADCH1].B.VALID) ||
(!ADC1.CDR[ADCH2].B.VALID))

{;}

if (abs(ADC0.CDR[ADCH1].B.CDATA -
ADC1.CDR[ADCH2].B.CDATA) >= tol) return (FAIL);
return (PASS);

}

// start a single conversion with ADC_0
// start a single conversion with ADC_1

// wait till conversion is complete

// difference between the results is
// greater than the tolerance

Parameters:
tol: Defines the allowed difference from the reference
ADCH1: first ADC channel
ADCH2: second ADC channel

Return Values:
PASS: results match within the given tolerance
FAIL: results do not match

Additional information

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 155

• STCU check

• Flash Array Integrity Self check

• SUPPLY SELF-TEST

• Temperature sensor check

• SWT enabled

• CMU check

• PLL_SW_CHECK

• IRC_SW_CHECK

• PMC check

• FCCU_F[n] signal check1

Correct execution of these checks is a prerequisite for functional safety.

Below lists all checks that are repeated (at least once every FTTI) during normal operation of the device:

• FLASH_SW_ECCTEST

• FLASH_SW_ECCREPORT

• Temperature check

• CRC calculation2

1. Required for single FCCU signal usage only
2. Safety requirement once per FTTI for single read functions only / Safety requirement once after programming for all other

functions

MPC567xK Safety Manual, Rev. 1

Acronyms and abbreviations

Freescale Semiconductor 156

9 Acronyms and abbreviations
A short list of acronyms and abbreviations used in this document is summarized for completeness:

Table 16. Acronyms and abbreviations

Terms Meanings

ADC Analog-to-Digital Converter

BAM Boot Assist Module

BIST Built-in-Self Test

BIU Bus Interface Unit

CF Critical Fault

CCF Common Cause Failure

CMF Common Mode Failure

CMU Clock Monitor Unit

CRC Cyclic Redundancy Check

CTU Cross-Triggering Unit

DC Diagnostic Coverage

DMA Direct Memory Access

DED Dual Error Detection

ECC Error Correcting Code

ECSM Error Correction Status Module

ECU Electronic Control Unit

eDMA Enhanced Direct Memory Access

ERRM Error Out Monitor function

EXWD External Timeout (Watchdog) function

FCCU Fault Collection and Control Unit

FMEDA Failure Modes, Effects & Diagnostic Analysis

FMPLL Frequency-Modulated Phase-Locked Loop

FTTI Single-Point Fault Tolerant Time Interval

GPIO General Purpose I/O

HVD High Voltage Detector

INTC Interrupt Controller

LBIST Logic Built-In-Self-Test

LOC Loss-of-clock

LOL Loss-of-lock

LVD Low Voltage Detector

Acronyms and abbreviations

MPC567xK Safety Manual, Rev. 1

Freescale Semiconductor 157

MBIST Memory-Built-In-Self-Test

MC_CGM Clock Generation Module

MC_ME Mode Entry

MC_RGM Reset Generation Module

MCU Microcontroller Unit

MMU Memory Management Unit

MPU Memory Protection Unit

NCF Non-Critical Fault

NMI Non-Maskable Interrupt

NVM Non-Volatile Memory

PMC Power Management Controller

PSM Power Supply and Monitor function

PWM Pulse Width Modulation

RCCU Redundancy Control and Checking Unit

SEC Single Error Correction

SFF Safe Failure Fraction

SIL Safety Integrity Level

SM Safety Manual

SoR Sphere of Replication

SSCM System Status and Configuration Module

STCU Self-Test Control Unit

SWG Sine Wave Generator

SWT Software Watchdog Timer

XOSC External Oscillator

Table 16. Acronyms and abbreviations (continued)

Terms Meanings

MPC567xK Safety Manual, Rev. 1

Document revision history

Freescale Semiconductor 158

10 Document revision history
Table 17 summarizes revisions to this document.

Table 17. Revision history

Revision Date Description of Changes

1 7 Dec 2012 • Initial document release

MPC5675KSM
Rev. 1
12/2012

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org

word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org. 
© 2012 Freescale Semiconductor, Inc.

	1 Preface
	1.1 Related documents
	1.2 Vocabulary

	2 General information
	2.1 Assumed conditions of operation
	2.2 Safety function
	2.3 Safe state
	2.4 Single-point Fault Tolerant Time Interval and Process Safety Time
	2.5 Latent-FTTI for latent faults
	2.6 Failure handling

	3 Functional safety concept
	3.1 Faults
	3.2 Failures
	3.3 General functional safety concept
	3.3.1 Sphere of Replication - Lockstep Mode (LSM)
	3.3.2 SoR - DPM

	4 Hardware requirements on system level
	4.1 Assumed functions by separate circuitry
	4.1.1 High impedance outputs
	4.1.2 External Watchdog (EXWD)
	4.1.3 Power Supply Monitor (PSM)
	4.1.4 Error Out Monitor (ERRM)
	4.1.4.1 Both FCCU signals connected to separate device
	4.1.4.2 Single FCCU signal connected to separate device

	4.2 Optional hardware measures on system level
	4.2.1 PWM output monitor (PWMA)

	5 Software requirements on system level
	5.1 Disabled modes of operation
	5.1.1 Debug mode
	5.1.2 Test mode

	5.2 MPC567xK modules
	5.2.1 Fault Collection and Control Unit (FCCU)
	5.2.1.1 Initial checks and configurations
	5.2.1.2 Runtime checks

	5.2.2 Reset Generation Module (MC_RGM)
	5.2.2.1 Initial checks and configurations

	5.2.3 Self Test Control Unit (STCU)
	5.2.3.1 Initial checks and configurations

	5.2.4 Temperature Sensor (TSENS)
	5.2.4.1 Initial checks and configurations
	5.2.4.2 Runtime checks

	5.2.5 Software Watchdog Timer (SWT)
	5.2.5.1 Runtime checks

	5.2.6 Redundancy Control Checking Unit (RCCU)
	5.2.6.1 Initial checks and configurations

	5.2.7 Cyclic Redundancy Checker Unit (CRC)
	5.2.7.1 Runtime checks

	5.2.8 Internal RC Oscillator (IRCOSC)
	5.2.8.1 Initial checks and configurations
	5.2.8.2 Runtime checks

	5.2.9 Frequency-Modulated PLL (FMPLL)
	5.2.9.1 Initial checks and configurations

	5.2.10 Clock Monitor Unit (CMU)
	5.2.10.1 Initial checks and configurations

	5.2.11 Mode Entry (MC_ME)
	5.2.12 Power Management Controller (PMC)
	5.2.12.1 1.2 V supply supervision
	5.2.12.2 3.3 V supply supervision

	5.2.13 Memory Protection Unit (MPU)
	5.2.13.1 Initial checks and configurations

	5.2.14 Memory Management Unit (MMU)
	5.2.14.1 Initial checks and configurations

	5.2.15 Performance Monitor Counter (PMC)
	5.2.15.1 Initial checks and configurations

	5.2.16 Built-in Hardware Self Tests (BIST)
	5.2.16.1 MBIST
	5.2.16.2 LBIST
	5.2.16.3 Flash memory array integrity self check
	5.2.16.4 Flash memory margin read
	5.2.16.5 Flash memory ECC logic check
	5.2.16.6 Flash memory ECC fault report check
	5.2.16.7 Peripheral Built-In Self-Test (PBIST)

	5.2.17 Error correction (ECC, ECSM)
	5.2.17.1 Runtime checks

	5.2.18 Interrupt Controller (INTC)
	5.2.18.1 Runtime checks

	5.2.19 Semaphore Unit (SEMA4)
	5.2.19.1 Initial checks and configurations

	5.2.20 Enhanced Direct Memory Access (eDMA)
	5.2.20.1 Runtime checks

	5.2.21 Periodic Interrupt Timer (PIT)
	5.2.21.1 Runtime checks

	5.2.22 System Status and Configuration Module (SSCM)
	5.2.22.1 Initial checks and configurations

	5.2.23 Flash memory
	5.2.23.1 Initial checks and configurations
	5.2.23.2 Runtime checks
	5.2.23.3 Implementation details

	5.2.24 Cross Triggering Unit (CTU)
	5.2.24.1 Runtime checks
	5.2.24.2 Synchronize sequential read input

	5.2.25 Fault injection tests
	5.2.26 SRAM
	5.2.27 Glitch filter
	5.2.28 Register Protection module (REG_PROT)
	5.2.28.1 Runtime checks

	5.2.29 External Bus Interface (EBI)
	5.2.29.1 Runtime checks

	5.2.30 Multi-port DDR DRAM controller (MDDRC)
	5.2.30.1 Runtime checks

	5.2.31 Wake-Up Unit (WKPU) / External NMI
	5.2.32 Crossbar Switch 2 (XBAR2)
	5.2.33 Analog to Digital Converter (ADC)
	5.2.33.1 Initial checks and configurations

	5.3 I/O functions
	5.3.1 Digital inputs
	5.3.1.1 Hardware
	5.3.1.2 Software

	5.3.2 Digital outputs
	5.3.2.1 Hardware
	5.3.2.2 Software

	5.3.3 Analog inputs
	5.3.3.1 Hardware
	5.3.3.2 Software

	5.3.4 Other requirements

	5.4 Communications
	5.4.1 Redundant communication
	5.4.2 Fault-tolerant communication protocol

	5.5 Additional configuration information
	5.5.1 Call stack
	5.5.1.1 Initial checks and configurations

	5.5.2 MCU configuration
	5.5.2.1 Detection of unwanted resets

	6 Failure rates and FMEDA
	6.1 Mission profile
	6.2 Overview

	7 Provisions against dependent failures
	7.1 Causes of dependent failures
	7.2 Measures against dependent failures
	7.2.1 Physical isolation
	7.2.2 Environmental conditions
	7.2.2.1 Temperature
	7.2.2.2 EMI and I/O

	7.2.3 Failures of common signals
	7.2.3.1 Clock
	7.2.3.2 Power supply
	7.2.3.3 Non-application control signals

	7.3 CMF avoidance on system level
	7.3.1 I/O pin/ball configuration
	7.3.2 Modules sharing PBRIDGE
	7.3.3 External timeout function

	8 Additional information
	8.1 Safety function pseudo-code
	8.1.1 Flash memory
	8.1.1.1 FLASH_SW_ECCTEST

	8.1.2 <module>_SWTEST_REGCRC
	8.1.3 CTU
	8.1.3.1 CTU_HWSWTEST_ADCCOMMAND
	8.1.3.2 CTU_SWTEST_ETIMERCOMMAND
	8.1.3.3 CTU_HWSWTEST_TRIGGEROVERRUN
	8.1.3.4 CTU_SWTEST_TRIGGERTIME (sequential mode)
	8.1.3.5 CTU_SWTEST_TRIGGERTIME
	8.1.3.6 CTU_HWSWTEST_TRIGGERNUM
	8.1.3.7 CTU_HW_CFGINTEGRITY

	8.1.4 Digital inputs
	8.1.4.1 ETIMERI_SWTEST_CMP
	8.1.4.2 GPI_SWTEST_CMP

	8.1.5 Digital outputs
	8.1.5.1 GPODW_SWAPP_WRITE
	8.1.5.2 GPOIRB_SWTEST_CMP
	8.1.5.3 GPOERB_SWTEST_CMP
	8.1.5.4 PWMRB_SWTEST_CMP
	8.1.5.5 PWMDW_SWAPP_WRITE

	8.1.6 Analog inputs
	8.1.6.1 ADC_SWTEST_TEST1
	8.1.6.2 ADC_SWTEST_TEST2
	8.1.6.3 ADC_SWTEST_CMP

	8.2 Checks and configurations

	9 Acronyms and abbreviations
	10 Document revision history

