

MPY600

Wide Bandwidth SIGNAL MULTIPLIER

FEATURES

- WIDE BANDWIDTH: 75MHz — Current Output 30MHz — Voltage Output
- LOW NOISE
- LOW FEEDTHROUGH: –60dB (5MHz)
- GROUND-REFERRED OUTPUT
- LOW OFFSET VOLTAGE

DESCRIPTION

The MPY600 is a wide-bandwidth four-quadrant signal multiplier. Its output voltage is equal to the algebraic product of the X and Y input voltages. For signals up to 30MHz, the on-board output op amp provides the complete multiplication function with a low-impedance voltage output. Differential current outputs extend multiplier bandwidth to 75MHz.

The MPY600 offers improved performance compared to common semiconductor modulator or multiplier circuits. It can be used for both two-quadrant (voltagecontrolled amplifier) and four-quadrant (doublebalanced) applications. While previous devices required cumbersome circuitry for trimming, balance and level-shifting, the MPY600 requires no external components. A single external resistor can be used to program the conversion gain for optimum spuriousfree dynamic range. When used as a modulator, carrier feedthrough measures -60dB at 5MHz.

Differential X, Y and Z inputs can be connected in a variety of useful configurations, including squarer, divider, and square-rooter circuits. The MPY600 is available in 16-pin plastic DIP, specified for the industrial temperature range.

- MODULATOR/DEMODULATOR
- VIDEO SIGNAL PROCESSING
- CRT GEOMETRY CORRECTION
- CRT FOCUS CORRECTION
- VOLTAGE-CONTROLLED CIRCUITS

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP .

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706 Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At $V_S = \pm 5V$, $T_A = +25^{\circ}C$ unless otherwise noted.

		MPY600AP			
SPECIFICATION	CONDITIONS	MIN	ТҮР	MAX	UNITS
INPUTS (X, Y, Z)					
Full-Scale Differential Input					
X ₁ -X ₂		±1			V
Y ₁ -Y ₂		±2			V
Z ₁ -Z ₂		±2			V
Input Voltage Range			±2.2		V
Differential Input Range			±2.5		V
Input Impedance			100 1.5		kΩ pF
Input Offset Voltage			±0.5	±5	mV
Drift			25		μV/°C
CMRR	$V_{CM} = \pm 2V$		70		dB
PSRR	· CM ·		70		dB
Input Bias Current (X, Y)			+15		μA
Z Input			-15		μΑ
VOLTAGE OUTPUT					
			(X ₁ -X ₂)(Y ₁ -Y ₂)		
Transfer Function			$V_0 = \frac{1}{2} + \frac{1}{2}$	Z ₂	V
Total Multiplier Error ⁽¹⁾	$-1V \le X \le 1V, -2V \le Y \le 2V$		±15	±25	mV
	$-2V \le X \le 2V, -2V \le Y \le 2V$		±25		mV
Gain Error			±1		%
Gain Temperature Drift			±200		ppm/°C
Power Supply Rejection	$V_s = \pm 4$ to $\pm 6V$		70		dB
Noise	f = 1 kHz to 30 MHz		120		nV/ Hz
Dutput Voltage Swing	$R_{L} = 100\Omega$	±2.2	±3		V
Dutput Current		±22	±30		mA
Short-Circuit Limit			50		mA
Bandwidth	Small Signal		30		MHz
Slew Rate			150		V/µs
Settling Time to 0.1%	4V Step		150		ns
Differential Gain Error	3.58MHz, 0 to 0.7V		0.2		%
Differential Phase Error	3.58MHz, 0 to 0.7V		0.2		Degree
Capacitive Load, Max	Stable Operation		100		pF
Feedthrough, X	X = 0dBm, f = 500kHz; Y Nulled		-65		dB
	X = 0dBm, f = 5MHz; Y Nulled		-60		dB
Feedthrough, Y	Y = 0dBm, f = 500kHz; X Nulled		-70		dB
	Y = 0dBm, f = 5MHz; X Nulled		-50		dB
Distortion, X	X = 0dBm, f = 500kHz, Y = 2V		-60		dB
	X = 0dBm, f = 5MHz, Y = 2V		-55		dB
Distortion, Y	Y = 0dBm, f = 500kHz, X = 2V		-65		dB
	Y = 0dBm, f = 5MHz, X = 2V		-55		dB
CURRENT OUTPUT					
Transfer Function		ΔΙ	$_{\rm O} = (X_1 - X_2)(Y_1 - Y_2)/2$		A
Total Multiplier Error ⁽¹⁾	$-1V \le X \le 1V, -2V \le Y \le 2V$		±20	±80	μΑ
	$-2V \le X \le 2V, -2V \le Y \le 2V$		±80		μΑ
Gain Error			±1		%
Gain Temperature Drift			±200		ppm/°C
Power Supply Rejection	$V_{S} = \pm 4$ to $\pm 6V$		50		dB
loise, Output			100		pA/√Hz
oltage Compliance Range			±2.5		V
Peak Output Current			5		mA
loise, Input-Referred	f = 1kHz to 75MHz		50		nV/√Hz
Bandwidth, Small-Signal			75		MHz
Settling Time to 0.1%	4mA Step		150		ns
eedthrough, X	X = 0dBm, f = 1MHz; Y Nulled		-65		dB
U .	X = 0dBm, f = 10MHz; Y Nulled		-45		dB
Feedthrough, Y	Y = 0dBm, f = 1MHz; X Nulled		-75		dB
y .	Y = 0dBm, f = 10MHz; X Nulled		-55		dB
Distortion, X	X = 0dBm, f = 1MHz, Y = 2V		-55		dB
	X = 0dBm, f = 10MHz, Y = 2V		-50		dB
Distortion, Y	Y = 0dBm, f = 1MHz, X = 2V		-65		dB
- ,	Y = 0 dBm, f = 10 MHz, X = 2V		-50		dB
POWER SUPPLY	1				1
Rated Performance			±5		v
Dperating		±4.75		±8	v
Current		± 1.7 O	±30	±35	mA
TEMPERATURE RANGE					
Specified Temperature Range		-25		+85	°C
Storage Temperature Range		-25 -40		+85 +125	⊃°C
	1	-40	50	±120	°C/W
Thermal Resistance, θ_{J-A}					

NOTE: (1) Deviation from ideal transfer function referred to full scale output. Includes gain, nonlinearity and offset errors.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Input Voltage Range	
Op Amp Output Current	100mA
Operating Temperature	+125°C
Storage Temperature	+150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

ORDERING INFORMATION

MODEL	PACKAGE	SPECIFIED TEMPERATURE RANGE
MPY600AP	16-Pin Plastic DIP	–25°C to +85°C

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
MPY600AP	16-Pin Plastic DIP	180

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

 $T_A = +25^{\circ}C$, $V_S = \pm 5V$ unless otherwise noted.

VOLTAGE OUTPUT FREQUENCY RESPONSE

3

PIN CONFIGURATION

TYPICAL PERFORMANCE CURVES (CONT)

 T_{A} = +25°C, V_{S} = $\pm 5 \text{V}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

 T_{A} = +25°C, V_{S} = $\pm 5 V$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

 T_A = +25°C, V_S = ±5V unless otherwise noted.

APPLICATION INFORMATION

POWER SUPPLIES

The MPY600 may be operated from power supplies from $\pm 4.75V$ to $\pm 8V$. Operation from $\pm 5V$ supplies is recommended. Since input and output levels are $\pm 2V$, larger supply voltage is not required for full output voltage swing. Furthermore, power dissipation can be minimized by using lower power supply voltage. Power supplies should be bypassed with good high-frequency capacitors such as ceramic or solid tantalum.

TRANSFER FUNCTION

The open-loop transfer function of the MPY600 is:

$$V_{O} = A \left[\frac{(X_1 - X_2) \cdot (Y_1 - Y_2)}{2V} - (Z_1 - Z_2) \right]$$

where A = open-loop gain of the output amplifier (typically 70dB).

X, Y, Z are differential input voltages— ±2V max.

An intuitive understanding of the transfer function can be gained by analogy to an op amp. Assuming that the openloop gain is infinite, any output voltage can be created by an infinitesimally small quantity with the brackets. An applications circuit can be analyzed by assigning circuit voltages to the X, Y and Z inputs and setting the bracketed quantity equal to zero. For example, in the basic multiplier connection (Figure 1), $Z_1 = V_0$ and $Z_2 = 0$. Setting this equal to zero:

$$\left[\frac{\left(\mathbf{X}_{1}-\mathbf{X}_{2}\right)\cdot\left(\mathbf{Y}_{1}-\mathbf{Y}_{2}\right)}{2\mathbf{V}}-\mathbf{V}_{0}\right]=0$$

Solving for V_O yields the transfer function of the circuit.

The X input is specified for $\pm 1V$ full-scale differential input. X inputs up to $\pm 2V$ provide useful operation with somewhat reduced accuracy and distortion performance. The Y input is rated for $\pm 2V$ full-scale input. The Y input gain (and therefore its full-scale range) can be varied with an external resistor connected to the R_Y terminals—see "Modulator/ Demodulator." Full-scale inputs (X = $\pm 1V$, Y = $\pm 2V$) produce a $\pm 1V$ output.

The differential inputs, X_1 , X_2 , and Y_1 , Y_2 , make it easy to trim offset voltage. The trim voltage is applied to the X_2 or Y_2 input, which is otherwise grounded (see X_2 input, Figure 5). Polarity of the input signals can be reversed by interchanging the inputs (reversing the connections X_1 and X_2 , for instance). The unused current outputs (pins 15 and 16) must be grounded (or loaded—see discussion on current outputs).

The output amplifier is operated in unity gain. The output voltage can be increased (for small input signals) by placing the internal output op amp in higher gain (Figure 2). This reduces bandwidth and increases output offset voltage errors.

FIGURE 1. Basic Multiplier Connection.

CURRENT OUTPUT

The current output connections of the MPY600 can achieve wider bandwidth multiplier operation (Figure 3). The current output is determined by the X and Y inputs only, so applications which use the Z input to modify the transfer function (e.g., divider and square-root modes) cannot be used. A full-scale input of ± 1 V on the X and ± 2 V on the Y inputs produces a 2mA differential current at the current outputs. This consists of approximately 2.5mA quiescent current ± 1 mA signal current on each output. The current outputs may be used to drive any load impedance which maintains the voltage on the current outputs within their compliance range. This compliance limit is approximately 2.5V from the power supply voltages. The current outputs and voltage output may be used simultaneously, if desired.

Output capacitance and stray capacitance at the current output terminals will limit the multiplier bandwidth. This makes large output resistors (greater than approximately $1k\Omega$) impractical. The current outputs can be used to drive 50Ω or 75Ω loads directly.

The circuit shown in Figure 4 uses the current outputs to drive an external OPA621 op amp configured as a currentdifference amplifier. It operates in a noise gain of 3.5. The OPA621 is stable in a noise gain of two or greater and has a 500MHz gain-bandwidth product. It achieves the full bandwidth performance of the MPY600. R_1 determines the transfer function gain. R_3 provides a proper load to optimize high-frequency effects. R_4 is made equal to the parallel combination of R_1 and R_3 .

FIGURE 2. Adjusting the Scale Factor with Feedback.

FIGURE 3. Current Output Connection.

FIGURE 4. 75MHz DC-Coupled Multiplier.

MODULATOR/DEMODULATOR

The balanced modulator or demodulator shown in Figure 5 uses the basic multiplier configuration. It shows the offset of the X input trimmed to null carrier feedthrough. It also illustrates the use of R_Y to change the gain of the Y input. This can be used to optimize the spurious-free dynamic range for a given input level. The Y input is optimized for $\pm 2V$ inputs. For lower input signals, the Y input can be programmed for higher gain by connecting an external resistor to the R_Y terminals. The conceptual diagram in Figure 6 reveals why varying the Y-channel gain can yield improved dynamic range. The R_Y selection curve in Figure 5 shows the optimum value of R_Y for a given Y-input signal level.

DIVIDER OPERATION

The MPY600 can be configured as a divider as shown in Figure 7. Numerator voltage is applied to the Z inputs; denominator voltage is applied to the Y_1 input. Since the

feedback connection is made to a multiplying input, the effective gain of the output amplifier varies as a function of the denominator input. This causes the bandwidth to vary with denominator (see Typical Performance Curves for divider bandwidth performance). Accuracy in divider operation is approximately 3% for a 10:1 denominator range. Errors grow large and will eventually saturate the output as the denominator voltage approaches 0V.

SQUARE-ROOT CIRCUIT

The circuit in Figure 8 provides an output voltage proportional to the square-root of the input (for positive input voltages). Diode D_1 prevents latch-up if the input should go negative. The circuit can be configured for negative input and positive output by reversing the polarity of both the X and Y differential inputs. The output polarity can be inverted by reversing the X input polarity and the diode. Accuracy can be improved by trimming the offset at the Z input.

FIGURE 5. Balanced Modulator.

FIGURE 6. Variable Y-Channel Gain—Conceptual Model.

FIGURE 7. Divider Circuit.

FIGURE 8. Square-Root Circuit.

FIGURE 10. Phase Detector.

FIGURE 9. Squaring Circuit.

FIGURE 11. Linear AM Modulator.

(NC) 6 R_{Y} 11 R R 1kΩ $1k\Omega$ X_2 7 Y_2 \sim $\Lambda \Lambda$ V_S = +10V -Vs +V_S 8 0- $\begin{cases} R_1 \\ R_1 \\ 100\Omega \end{cases}$ R_2 C_1 ≶ 1<u>0</u>0Ω Ť Maximum peak-to-peak signal amplitude = $V_S - 5V$ for both inputs and the output.

Vo

 Z_2

 Y_1

1

2 Z₁

3

4

5 R_Y

С

0.01µF

С

0.01µF

R

1kΩ

 \sim

Carrier

Modulation

Input

Input O----- V₀ __0

R

1kΩ

 \sim

I_P 16

I_N 15

14

12

(NC)

(NC)

MPY600

X₁ 13

FIGURE 12. 25MHz Multiplier with Improved Load Driving Capability.

FIGURE 13. Single-Supply Balanced Modulator.

FIGURE 14. CRT Focus Correction.

FIGURE 15. CRT Geometry Correction.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

