OKI semiconductor MSM3732-AS/RS

32,768-BIT DYNAMIC RANDOM ACCESS MEMORY

GENERAL DESCRIPTION

The Oki MSM3732H/L is a fully decoded, dynamic NMOS random access memory organized as 32,768 one-bit words. The design is optimized for high-speed, high performance applications such as mainframe memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout is required.

Multiplexed row and column address inputs permit the MSM3732 to be housed in a standard 16 pin DIP. Pin-outs conform to the JEDEC approved pin out.

The MSM3732 is fabricated using silicon gate NMOS and Oki's advanced Double-Layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimum chip size. Dynamic circuitry is employed in the design, including the sense amplifiers.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and output are TTL compatible.

FEATURES

- 32,768 x 1 RAM, 16 pin package
- Silicon-gate, Double Poly NMOS, single transistor cell
- Row access time,
 - 120 ns max (MSM3732-12) 150 ns max (MSM3732-15) 200 ns max (MSM3732-20)
- Cycle time, 240 ns min (MSM3732-12) 270 ns min (MSM3732-15)
- 330 ns min (MSM3732-20) • Low power: 248 mW active, 28 mW max standby
- Single +5V Supply, ±10% tolerance

- All inputs TTL compatible, low capacitive load
- Three-state TTL compatible output
- "Gated" CAS
- 128 refersh cycles
- Common I/O capability using "Early Write" operation
- Output unlatched at cycle and allows extended page boundary and two-dimensional chip select
- Read-Modify-Write, RAS-only refresh, and Page-Mode capability
- On-chip latches for Addresses and Data-in
- On-chip substrate bias generator for high performance

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on any pin relative to VSS	VIN, VOUT	-1 to +7	v
Voltage on V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	v
Operating temperature	T _{opr}	0 to 70	°C
Storage temperature	T _{stg}	-55 to +150	°C
Power dissipation	PD	1.0	w
Short circuit output current		50	mA

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Referenced to VSS)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Temperature
Supply Voltage	Vcc	4.5	5.0	5.5	V	
	Vss	0	0	0	V	
Input High Voltage, all inputs	⊻ін	2.4		6.5	V	0°C to +70°C
Input Low Voltage, all inputs	VIL	-1.0		0.8	V	-

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min.	Max.	Unit	Notes
OPERATING CURRENT* Average power supply current (RAS, CAS cycling; t _{RC} = min.)	ICC1		45	mA	
STANDBY CURRENT Power supply current (RAS = CAS = VIH)	ICC2		5.0	mA	
REFRESH CURRENT Average power supply current (RAS cycling, CAS = V _{IH} ; t _{RC} = min.)	ССЗ		35	mA	
PAGE MODE CURRENT* Average power supply current (RAS = V _{IL} , CAS cycling; tp _C = min.)	ICC4		42	mA	
INPUT LEAKAGE CURRENT Input leakage current, any input ($0V \le V_{IN} \le 5.5V$, all other pins not under test = $0V$)	ILI	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (Data out is disabled, $0V \le V_{OUT} \le 5.5V$)	IL0	-10	10	μΑ	
OUTPUT LEVELS Output high voltage (I _{OH} = -5 mA) Output low voltage (I _{OL} = 4.2 mA)	VOH Vol	2.4	0.4	v v	

Note*: ICC is dependent on output loading and cycle rates. Specified values are obtained with the output open.

CAPACITANCE

 $(T_a = 25^{\circ}C, f = 1 MHz)$

Parameter	Symbol	Тур.	Ma×.	Unit
Input Capacitance $(A_0 \sim A_7, D_{IN})$	CIN1	4.5	5	pF
Input Capacitance (RAS, CAS, WE)	CIN2	7	10	pF
Output Capacitance (DOUT)	COUT	5	7	pF

Capacitance measured with Boonton Meter.

AC CHARACTERISTICS

Notes 1, 2, 3	Under Recommended
	Operating conditions

		Ţ	MSM3732-12		MSM3732-15		MSM3732-20		
Parameter	Symbol	Units	Min.	Max.	Min.	Max.	Min.	Max.	Note
Refresh period	tREF	ms		2		2		2	
Random read or write cycle time	tRC	ns	240		270		330		
Read-write cycle time	tRWC	ns	240		270		330	1	
Page mode cycle time	tPC	ns	150		170	-	225	1	
Access time from RAS	^t RAC	ns		120		150		200	4,6
Access time from CAS	^t CAC	ns		80	1	100		135	5,6
Output buffer turn-off delay	tOFF	ns	0	35	0	40	0	50	
Transition time	ι _T	ns	3	35	3	35	3	50	<u> </u>
RAS precharge time	tRP	ns	90		100		120		
RAS pulse width	^t RAS	ns	120	10,000	150	10,000	200	10,000	
RAS hold time	tRSH	ns	80	1	100	1	135		
CAS precharge time	tCP	ns	50		60	1	80		<u> </u>
CAS pulse width	tCAS	ns	80	10,000	100	10,000	135	10,000	
CAS hold time	tCSH	ns	120		150		200		
RAS to CAS delay time	TRCD	ns	20	40	20	50	25	65	7
CAS to RAS precharge time	tCRP	ns	0	1	0	1	0		
Row Address set-up time	tASR	ns	0	1	0		0		
Row Address hold time	^t RAH	ns	20		20		25		
Column Address set-up time	tASC	ns	0		0		0		
Column Address hold time	^t CAH	ns	40		45		55		
Column Address hold time referenced to RAS	tAR	ns	80		95		120		
Read command set-up time	tRCS	ns	0		0		0		
Read command hold time	TRCH	ns	0		0]	0		
Write command set-up time	twcs	ns	-10		-10		-10		8
Write command hold time	tWCH	ns	40		45		55		1
Write command hold time referenced to RAS	tWCR	ns	80		95		120		
Write command pulse width	tWP	ns	40		45		55		
Write command to RAS lead time	TRWL	ns	40		45		55		
Write command to CAS lead time	tCWL	ns	40		45		55		
Data-in set-up time	tDS	ns	0		0	1	0		
Data-in hold time	^t DH	ns	40		45		55	1	
Data-in hold time referenced to RAS	^t DHR	ns	80		95		120		
CAS to WE delay	tCWD	ns	50		60		80	1	8
RAS to WE delay	tRWD	ns	90	1	110		145		8
Read command hold time referenced to RAS	tRRH	ns	20	, ,	20		25		

- NOTES: 1) An initial pause of 100 µs is required after power-up followed by any 8 RAS cycles (Examples; RAS only) before proper device operation is achieved.
 - 2) AC measurements assume $t_T = 5 \text{ ns.}$
 - 3) VIH (Min.) and VIL (Max.) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VIL.
 - 4) Assumes that tRCD < tRCD (max.). If tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the values shown.
 - 5) Assumes that tRCD < tRCD (max.)
 - 6) Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
 - 7) Operation within the t_{RCD} (max.) limit insures that t_{RAC} (max.) can be met. t_{RCD} (max.) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max.) limit, then access time is controlled exclusively by t_{CAC}.
 - 8) tWCS, tCWD and tRWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if tWCS ≥ tWCS (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD ≥ tCWD (min.) and tRWD > tRWD (min.) the cycle is read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.

WRITE CYCLE TIMING

(EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

RAS ONLY REFRESH TIMING

(CAS: VIH, WE & DIN: Don't care)

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

PAGE MODE, READ-MODIFY-WRITE CYCLE

HIDDEN REFRFSH

DESCRIPTION

Address Inputs:

A total of fifteen binary input address bits are required to decode any 1 of 32,768 storage cell locations within the MSM3732. Eight row-address bits are established on the input pins $(A_0 \sim A_7)$ and latched with the Row Address Strobe (RAS). The seven column-address bits $(A_0$ through A_6) are established on the input pins and latched with the Column Address Strobe (CAS). All input addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (t_{RAH}) specification has been satisfied and the address inputs have been changed from row-addresses to column-addresses.

One Column Address (A_7) has to be fixed at logic "0" (low level) for MSM3732L, and at logic "1" (high level) for MSM3732H.

Write Enable:

The read mode or write mode is selected with the \overline{WE} input. A logic high (1) on \overline{WE} dictates read mode; logic low (0) dictates write mode. Data input is disabled when read mode is selected.

Data Input:

Data is written into the MSM3732 during a write or read-write cycle. The last falling edge of \overline{WE} or \overline{CAS} is a strobe for the Data In (D_{IN}) register. In a write cycle, if \overline{WE} is brought low (write mode) before \overline{CAS} , D_{IN} is strobed by \overline{CAS} , and the set-up and hold times are referenced to \overline{CAS} . In a read-write cycle, \overline{WE} will be delayed until \overline{CAS} has made its negative transistion. Thus D_{IN} is strobed by \overline{WE} , and set-up and hold times are referenced to \overline{WE} .

Data Output:

The output buffer is three-state TTL compatible with

a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The output is in a high impedance state until CAS is brought low. In a read cycle, or read-write cycle, the output is valid after t_{RAC} from transition of RAS when t_{RCD} (max.) is satisfied, or after t_{CAC} from transition of CAS when the transition occurs after t_{RCD} (max.). Data remain valid until CAS is returned to a high level. In a write cycle the identical sequence occurs, but data is not valid.

Page Mode:

Page-mode operation permits strobing the row-address into the MSM3732 while maintaining RAS at a logic low (0) throughout all successive memory operations in which the row-address doesn't change. Thus the power dissipated by the negative going edge of RAS is saved. Further, access and cycle times are decreased because the time normally required to strobe a new row-address is eliminated.

Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 128 rowaddresses $(A_0 \sim A_6)$ at least every two milliseconds. During refresh, either V_{IL} or V_{IH} is permitted for A₇. RAS only refresh avoids any output during refresh because the output buffer is in the high impedance state unless CAS is brought low. Strobing each of 128 row-addresses with RAS will cause all bits in each rwo to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation.

Hidden Refresh:

RAS ONLY REFRESH CYCLE may take place while maintaining valid output data. This feature is referred to as Hidden Refresh.

Hidden Refresh is performed by holding CAS as VIL from a previous memory read cycle.

TYPICAL CHARACTERISTICS

Cycle Rate (1/t_{RC}) [MHz]

I_{CC2} (MSM3764-12) v.s. Vcc

ICC2 V.S. Ta

ICC1 (tRP: Constant)

v.s. Ta

ICC4 (tCAS: Constant) v.s. Ta

Cycle rate (1/tpc) [MHz]

ICC4 (tCp: Constant) v.s. Ta

Clock Input v.s. Vcc

Address Input v.s. Ta

			1				
/	MSM3732H BIT I		·	MSM3732L BIT		PIN 16	
191 190	129128	92 193 254 255	191 190	129 128	192 193	254 255	
255 255 63 62	-∔	255 255 255 255 255 255 255 255 255 255	63 62	127 127	127 127 64 65	127 127	
255 255	255 255	255 255 255 255 255 255 255 255 255 255	127 127 63 62	127 127	127 127 64 65	127 127	
254 254	254 254	254 254 254 254 254 254 254 254	126 126	126 126	126 126 192 193	126 126	
191 190 254 254	254 254	254 254 254 254 254	126 126	126 126	126 126	254 255	
191 190 253 253	253 253	92 193 254 255 253 253 253 253 253	191 190 125 125	129 128 125 125	192 193 125 125	254 255 125 125	
63 62 253 253		64 65 126 127 253 253 253 253 253	63 62 125 125	1 0 0	64 65 125 125	126 127 125 125	
63 62 252 252		64 65 126 127 252 252 252 252 252	63 62 124 124	1 0	64 65 124 124	126 127 124 124	
191 190 252 252		92 193 254 255 252 252 252 252 252	191 190 124 124	129 128 - 	192 193 124 124	254 255 124 124	
191 190 251 251		92 193 254 255 251 251 251 251 251	191 190 123 123	129 128 123 123	192 193 123 123	254 255 123 123	
						(Co	olu
	1 1 11 111						
			╽┝┷┷╺				
191 190 132 132		92 193 254 255 32 132 132 132	191 190		192 193	254 255	
191 190 131 131		92 193 254 255 31 131 131 131	191 190 3 3		192 193 3 3	254 255 3 3	
63 62 131 131		64 65 126 127 31 131 131 131	63 62 3 3		64 65 3 3	126 127	
63 62 130 130		64 65 126 127 30 130 130 130	63 62 2 2		64 65 2 2	126 127 2 2	
191 190 130 130		92 193 254 255 30 130 130 130	191 190 2 2	129 128	192 193 2 2	254 255 2 2	
191 190 129 129		92 193 254 255 29 129 129 129	191 190		192 193 1 1	254 255 1 1	
63 62 129 129	1 0	64 65 126 127 29 129 129 129 129	63 62 1 1		64 65 1 1	126 127	
63 62 128 128		64 65 126 127 28 128 128 128	63 62 0 0		64 65 0 0	126 127	
191 190	129 128	92 193 254 255	191 190	129 128	192 193	254 255	
128 128							
Refresh		Refresh Address	Refresh	Address /	Befres	h Address	
(63 ←		(64 → 127)	(63 -		1	l → 127)	
/ Dii (Posi		$\frac{1}{D_2} = \frac{1}{Din}$ (Negative)	Din (Posit		03 D4 (N	Din egative)	
	Pin 8		Row)				
È.	A = Row Address	(Decimal)	Δ.	Word Driver	0	Curve Arma	
B : C	B = Column Add			Word Driver	-0-	Sense Amp	

MSM3732 Bit MAP (Physical-Decimal) [PS-1]