OKI semiconductor MSM38128RS

16384 WORD X 8 BIT MASK ROM

GENERAL DESCRIPTION

MSM38128RS is an N-channel silicon gate E/D MOS device ROM with a 16,384 word x 8 bit capacity. It operates on a 5V single power supply and the all inputs and outputs can be directly connected to the TTL. The adoption of an asynchronous system in the circuit requires no external clock assuring extremely easy operation. The availability of power down mode contributes to the low power dissipation which is as low as 20 mA (max) when the chip is not selected. The application of a byte system and the convertibility of the pins with a programmable ROM whose memory can be erased by ultraviolet ray radiation is most suitable for use as a large-capacity fixed memory for microcomputers and data terminals.

Since it provides both CE and OE signals, the connection of output terminals of other chips with the wired OR is possible ensuring an easy expand operation of memory and bus line control.

FEATURES

- 16384 words x 8 bits
- 5V single power supply
- Access time: 450 ns MAX
- Input/output TTL compatible

• 3-state output

Power down mode
 28-pin DIP

ABSOLUTE MAXIMUM RATINGS

(Ta = 25°C)

Item	Symbol	Rating	Unit	Conditions	
Power Supply Voltage	Vcc	-0.5 to 7	V		
Input Voltage	V _I	-0.5 to 7	^v v	Respect to VSS	
Output Voltage	Vo	-0.5 to 7	V		
Operating Temperature	T _{opr}	0 to 70	°C		
Storage Temperature	T _{stg}	-55 to 150	°C		

OPERATING CONDITION AND DC CHARACTERISTICS

140-00						
ltem	Symbol	Measuring Condition	Min.	Тур.	Max.	Unit
Deven Complex Malares	V _{cc}		4.5	5	5.5	v
Power Supply Voltage	V _{ss}		0	0	0	V
	VIH		2	5	6	V
Input Signal Level	VIL		-0.5	0	0.8	V
Output Cignel Level	Voн	I _{OH} = -400 μA	4.5 0 2 -0.5 2.4 -10 -10		Vcc	v
Output Signal Level	VOL	I _{OL} = 2.1 mA			0.4	V
Input Leak Current	ILI	V _I = 0V or V _{cc}	-10		10	μA
Output Leak Current	ILO	V _O = 0V or Vcc Chip not selected	-10		10	μA
David Currely Overset	lcc	Vcc = Max. I _O = 0 mA			120	mA
Power Supply Current	lccs	Vcc = Max.			20	mA
Peak Power ON Current	Ipo	Vcc = GND ~ Vcc Min. CE = Vco or VIH			20	mA
Operating Temperature	Topr		0		70	°C

AC CHARACTERISTICS

TIMING CONDITIONS

ltem	Conditions		
Input Signal Level	VIH=2.0V VIL=0.8V		
Input Rising, Falling Time	tr=ty=15 ns		
Timber March D. S. M. H.	Input Voltage=1,5V		
Timing Measuring Point Voltage	Output Voltage=0.8 & 2.0V		
Loading Condition	CL=100 pF + 1 TTL		

READ CYCLE

ltem	Cumbel	Specification Value				Descrite
	Symbol	Min.	Typ.	Max.	Unit	Remarks
Cycle Time	tc	450	1		ns	
Address Access Time	tAA			450	ns	
Chip Enable Access Time	^t ACE			450	ns	
Output Delay Time	tco			150	ns	
Output Setting Time	tLZ	20			ns	
Output Disable Time	tHZ	0		120	ns	
Output Retaining Time	tOH	20			ns	
Power Up Time	tPU	0		120	ns	
Power Down Time	tPD			120	ns	

1) READ CYCLE-1⁽¹⁾

2) READ CYCLE-2⁽²⁾

- Note: (1) CE is "L" level.
 - (2) The address is decided at the same time as or ahead of \overline{CE} "L" level.
 - (3) OE is shown in the negative logic here, however the active level is freely selected.
 - t_{CO} and t_{LZ} are determined by the later CE "L" or OE "L".
 t_{Hz} is determined by the earlier CE "H" or OE "H".
 t_{Hz} shows time until floating therefore it is not determined by the output level.

INPUT/OUTPUT CAPACITY

 $(Ta = 25^{\circ}C, f = 1 MHz)$

ltern	Symbol	Specification Value		Unit	Remarks
		Min.	Max.		
Input Capacity	CI		8	pF	Vi≂0A
Output Capacity	CO		10	pF	V _O =0V