# **OKI** semiconductor **MSM38256ARS**

32768 WORD x 8 BIT MASK ROM (E3-S-030-32)

# GENERAL DESCRIPTION

The MSM38256ARS is an N-channel silicon gate E/DMOS device ROM with a 32,768 word x 8 bit capacity. It operates on a 5V single power supply and the all inputs and outputs are TTL compatible. The adoption of an asynchronous system in the circuit requires no external clock assuring extremely easy operation. The availability of power down mode contributes to the low power dissipation which is as low as 6mA (max) when the chip is not selected. The application of a byte system and the pin compatibility with standard UV EPROMs make the device most suitable for use as a large-capacity fixed memory for microcomputers and data terminals.

Since it provides CE. OE. CS signals, the connection of output terminals of other chips with the wired OR is possible ensuring an easy expand operation of memory and bus line control.

#### **FFATURES**

- 32768 words x 8 bits
- Input/output TTL compatible
- 5V single power supply
- Access time: 150 ns MAX
- 3-state output
- Power down mode • 28-pin DIP



# ABSOLUTE MAXIMUM RATINGS

(Ta = 25°C)

| Rating                | Symbol           | Value      | Unit | Conditions                 |  |
|-----------------------|------------------|------------|------|----------------------------|--|
| Power Supply Voltage  | Vcc              | -0.5 to 7  | V    |                            |  |
| Input Voltage         | VI               | -0.5 to 7  | V    | Respect to V <sub>SS</sub> |  |
| Output Voltage        | Vo               | -0.5 to 7  | v    |                            |  |
| Operating Temperature | T <sub>opr</sub> | 0 to 70    | °C   |                            |  |
| Storage Temperature   | T <sub>stg</sub> | -55 to 150 | °C   |                            |  |
| Power Dissipation     | PD               | 1.0        | w    | Per package                |  |

# OPERATING CONDITION AND DC CHARACTERISTICS

| Parameter               | Sumb at          |                                                              | Rating   |      |                 |      |
|-------------------------|------------------|--------------------------------------------------------------|----------|------|-----------------|------|
| Parameter               | Symbol           | Measuring Conditions                                         | Min. Typ | Тур. | Max.            | Unit |
| Bound Supply Voltage    | V <sub>cc</sub>  |                                                              | 4.5      | 5    | 5.5             | V    |
| Power Supply Voltage    | V <sub>ss</sub>  |                                                              | 0        | 0    | 0               | V    |
| "H" Input Signal Level  | VIH              |                                                              | 2.2      | 5    | 6               | v    |
| "L" Input Signal Level  | VIL              |                                                              | -0.5     | 0    | 0.8             | V    |
| "H" Output Signal Level | VOH              | I <sub>OH</sub> = -400 μA                                    | 2.4      |      | V <sub>cc</sub> | V    |
| "L" Output Signal Level | VOL              | IOL = 2.1 mA                                                 |          |      | 0.4             | V    |
| Input Leakage Current   | <sup>1</sup> LI  | V <sub>I</sub> = 0V or V <sub>cc</sub>                       | -10      |      | 10              | μA   |
| Output Leakage Current  | LO               | V <sub>O</sub> = 0V or V <sub>cc</sub><br>Chip not selected  | -10      |      | 10              | μA   |
| Power Supply Current    | lcc              | V <sub>cc</sub> = Max. I <sub>O</sub> = 0 mA                 |          |      | 60              | mA   |
| Power Supply Current    | I <sub>ccs</sub> | V <sub>cc</sub> = Max.                                       |          |      | 6               | mA   |
| Peak Power On Current   | I <sub>po</sub>  | $V_{cc} = GND \sim V_{cc} Min.$<br>CE = $V_{cc}$ or $V_{IH}$ |          |      | 60              | mA   |
| Operating Temperature   | Topr             |                                                              | 0        |      | 70              | °c   |
| Load Capacitance        | CL               |                                                              |          |      | 100             | pF   |
| Fan Out                 | N                | TTL Load                                                     |          |      | 1               | Piec |

#### AC CHARACTERISTICS

#### TIMING CONDITIONS

| Parameter                      | Conditions                |  |  |
|--------------------------------|---------------------------|--|--|
| Input Signal Level             | VIH=2.4V VIL=0.6V         |  |  |
| Input Rising, Falling Time     | tr=tf=15 ns               |  |  |
|                                | Input Voltage=1.5V        |  |  |
| Timing Measuring Point Voltage | Output Voltage=0.8 & 2.0V |  |  |
| Loading Condition              | CL=100 pF + 1 TTL         |  |  |

#### MASK ROM · MSM38256ARS

# READ CYCLE

| Parameter                  | Symbol           | Specification Value |      |      |      | 0       |
|----------------------------|------------------|---------------------|------|------|------|---------|
|                            |                  | Min.                | Typ. | Max. | Unit | Remarks |
| Cycle Time                 | tc               | 150                 |      |      | ns   |         |
| Address Access Time        | tAA              |                     |      | 150  | ns   |         |
| Chip Enable<br>Access Time | <sup>t</sup> ACE |                     |      | 150  | ns   |         |
| Output Delay Time          | tco              |                     |      | 50   | ns   |         |
| Output Setting Time        | tLZ              | 10                  |      |      | ns   |         |
| Output Disable Time        | tHZ              | 10                  |      | 50   | ns   |         |
| Output Retaining Time      | tOH              | 10                  |      |      | ns   |         |
| Power Up Time              | tPU              | 0                   |      |      | ns   |         |
| Power Down Time            | tPD              | 1                   |      | 100  | ns   |         |

 $(V_{CC} = 5V \pm 10\%, V_{SS} = 0V, Ta = 0^{\circ}C to + 70^{\circ}C)$ 

# 1) READ CYCLE-1<sup>(1)</sup>



# 2) READ CYCLE-2<sup>(2)</sup>



Notes: (1) CE is "L" level.

- (2) The address is decided at the same time as or ahead of CE "L" level.
- (3) CS are shown in the negative logic here, however the active level is freely selected.
- t<sub>CO</sub> and t<sub>L</sub>Z are determined by the later CE "L", OE "L" or CS "L".
  t<sub>HZ</sub> is determined by the earlier CE "H", OE "H" or CS "H".
  t<sub>HZ</sub> shows time until floating therefore it is not determined by the output level.

# INPUT/OUTPUT CAPACITANCE

(Ta = 25°C, f = 1 MHz)

| Parameter          | Symbol | Specification<br>Value |      | Unit | Remarks            |
|--------------------|--------|------------------------|------|------|--------------------|
|                    |        | Min.                   | Max. |      |                    |
| Input Capacitance  | CI     |                        | 8    | pF   | V <sub>1</sub> =0V |
| Output Capacitance | co     |                        | 6    | ρF   | V <sub>O</sub> =0V |