OKI semiconductor MSM41257AAS/RS

262,144-BIT DYNAMIC RANDOM ACCESS MEMORY < Nibble Mode Type>

GENERAL DESCRIPTION

The Oki MSM41257A is a fully decoded, dynamic NMOS random access memory organized as 262144 one-bit words. The design is optimized for high-speed, high performance applications such as mainframe memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout is required.

Multiplexed row and column address inputs permit the MSM41257A to be housed in a standard 16 pin DIP. Pin-outs conform to the JEDEC approved pin out. Additionally, the MSM41257A offers new functional enhancements that make it more versatile than previous dynamic RAMs. "CAS-before-RAS" refresh provides an on-chip refresh capability, also features "nibble mode" which allows high speed serial access to up to 4 bits of data.

The MSM41257A is fabricated using silicon gate NMOS and Oki's advanced VLSI Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimum chip size. Dynamic circuitry is employed in the design, including the sense amplifiers.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and output are TTL compatible.

FEATURES

- 262,144 × 1 RAM, 16 pin package
- Silicon-gate, Double Poly NMOS, single transistor cell
- Row access time:
 - 100 ns max (MSM41257A-10AS/RS) 120 ns max (MSM41257A-12AS/RS) 150 ns max (MSM41257A-15AS/RS)
- Cycle time:

200 ns min (MSM41257A-10AS/RS) 220 ns min (MSM41257A-12AS/RS) 260 ns min (MSM41257A-15AS/RS)

Low power:

385 mW active, 28 mW max standby

- Single +5V Supply, ±10% tolerance
- All inputs TTL compatible, low capacitive load

- Three-state TTL compatible output
- "Gated" CAS
- 256 refresh cycles/4 ms
- Common I/O capability using "Early Write" operation
- Output unlatched at cycle end allows extended page boundary and two-dimensional chip select
- Read-Modify-Write, RAS-only refresh, capability
- On-chip latches for Addresses and Data-in
- On-chip substrate bias generator for high performance
- CAS-before-RAS refresh capability
- "Nibble Mode" capability

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on any pin relative to V_{SS}	VIN, VOUT	-1 to +7	v
Voltage on V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	v
Operating temperature	Topr	0 to 70	°C
Storage temperature	Tstg	-55 to +150	°C
Power dissipation	PD	1.0	w
Short circuit output current		50	mA

Note: Parmanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Referenced to V_{SS})

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Temperature
Supply Voltage	V _{CC}	4.5	5.0	5.5	v	
Supply voltage	VSS	0	0	0	V	0°C to +70°C
Input High Voltage, all inputs	VIH	2.4		6.5	v	
Input Low Voltage, all inputs	VIL	-1.0		0.8	v	

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min.	Max.	Unit	Notes
OPERATING CURRENT* Average power supply current (RAS, CAS cycling; t _{RC} = min.)	ICC1		70	mA	
STANDBY CURRENT Power supply current (RAS = CAS = VIH)	ICC2		5.0	mA	
REFRESH CURRENT 1 Average power supply current (RAS cycling, CAS = V _{IH} ; t _{RC} = min.)	ІССЗ		60	mA	
NIBBLE MODE CURRENT* Average power supply current (RAS = V _{IL} , CAS cycling; t _{NC} = min:)	ICC4		30	mA	
REFRESH CURRENT 2 Average power supply current (CAS before RAS; t _{RC} = min.)	ICC5		65	mA	
INPUT LEAKAGE CURRENT Input leakage current, any input (OV \leq V _{IN} \leq 5.5V, all other pins not under test = OV)	ال	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (Data out is disabled, $0V \le V_{OUT} \le 5.5V$)	ILO	-10	10	μΑ	
OUTPUT LEVELS Output high voltage ($I_{OH} = -5 \text{ mA}$) Output low voltage ($I_{OL} = 4.2 \text{ mA}$)	VOH VOL	2.4	0.4	v v	

Note*: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open.

■ DYNAMIC RAM · MSM41257AAS/RS ■------

CAPACITANCE

 $(Ta = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input capacitance ($A_0 \sim A_8$, D_{IN})	CIN1	_	7	pF
Input capacitance (RAS, CAS, WE)	C _{IN2}	_	10	pF
Output capacitance (D _{OUT})	COUT	_	7	pF

Capacitance measured with Boonton Meter.

___ DYNAMIC RAM · MSM41257AAS/RS =

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Note 1, 2, 3

Parameter	Symbol	Unit	MSM4 1	1257A- 0	MSM4 1	1257A- 2	MSM4 1	Notes	
			Min.	Max.	Min.	Max.	Min.	Max.	
Refresh period	tREF	ms		4		4		4	
Random read or write cycle time	^t RC	ns	200		220		260		
Read-write cycle time	^t RWC	ns	200		220		260		
Access time from RAS	^t RAC	ns		100		120		150	4,6
Access time from $\overline{\text{CAS}}$	^t CAC	ns		50		60		75	5,6
Output buffer turn-off delay	tOFF	ns	о	30	0	30	0	30	
Transition time	tŢ	ns	3	50	3	50	3	50	
RAS precharge time	t _{RP}	ns	85		90		100		
RAS pulse width	^t RAS	ns	105	10µs	120	10µs	150	10µs	
RAS hold time	^t RSH	ns	55		60		75		
CAS pulse width	^t CAS	ns	55	10µs	60	10µs	75	10µs	
CAS hold time	^t CSH	ns	105		120		150		
RAS to CAS delay time	^t RCD	ns	25	50	25	60	25	75	7
CAS to RAS set-up time	^t CRS	ns	20		20		20		
Row address set-up time	tASR	ns	о		0		0		
Row address hold time	^t RAH	ns	15		15		15		
Column address set-up time	tASC	ns	o		o		0		
Column address hold time	^t CAH	ns	20		20		25		
Read command set-up time	tRCS	ns	0		0		0		
Read command hold time referenced to CAS	tRCH	ns	0		0		0		
Read command hold time referenced to RAS	tRRH	ns	20		20		20		
Write command set-up time	twcs	ns	0		0		0		8

AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Unit	MSM4 1	1257A- 0	MSM4 1	1257A- 2	MSM4 1	1257A- 5	Notes
			Min.	Max.	Min.	Max.	Min.	Max.	
Write command pulse width	twp	ns	15		20		25		1
Write command hold time	twcн	ns	15		20		25		
Write command to RAS lead time	^t RWL	ns	35		40		45		
Write command to CAS lead time	tCWL	ns	35		40		45		
Data-in set-up time	tDS	ns	0		0		0		
Data-in hold time	^t DH	ns	20		20		25		
CAS to WE delay time	tCWD	ns	15		20		25		8
Refresh set-up time for CAS referenced to RAS	tFCS	ns	20		25		30		
Refresh hold time for CAS referenced to RAS	^t FCH	ns	20		25		30		
CAS precharge time (C before R cycle)	^t CPR	ns	20		25		30		
RAS precharge to CAS active time	^t RPC	ns	20		20		20		
Nibble mode read/write cycle time	tNC	ns	55		60		70		9
Nibble mode read-write cycle time	^t NRWC	ns	55		60		70		9
Nibble mode access time	^t NCAC	ns		25		30		35	9
Nibble mode CAS pulse width	t _{NCAS}	ns	25		30		35		9
Nibble mode CAS precharge time	^t NCP	ns	20		25		30		9
Nibble mode read RAS hold time	^t NRRSF	ns	25		30		40		9
Nibble mode write RAS hold time	tNWRSH	ns	45		50		60		9
Nibble mode CAS hold time referenced to RAS	^t RNH	ns	20		20		20		9

AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Unit	MSM4	1257A- 0	MSM4 1	1257A- 2	MSM4	Notes		
			Min.	Max.	Min.	Max.	Min.	Max.	}	
Refresh counter test cycle time	^t RTC	ns	340		375		430		10	
Refresh counter test RAS pulse width	^t TRAS	ns	230	10µs	265	10µs	320	10µs	10	
Refresh counter test CAS precharge time	^t CPT	ns	50		60		70		10	

- Notes: 1 An initial pause of 100 μ s is required after power-up followed by any 8 RAS cycles (Example: RAS only) before proper device operation is achieved.
 - 2 The AC characteristics assume at $t_T = 5$ ns
 - 3 V_{IH} (Min.) and V_{IL} (Max.) are reference levels for measuring of input signals. Also transition times are measured between V_{IH} and V_{IL}.
 - 4 Assumes that $t_{RCD} \leq t_{RCD}$ (Max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
 - 5 Assumes that $t_{RCD} \ge t_{RCD}$ (Max.).
 - 6 Measured with a load circuit equivalent to 2TTL loads and 100 pF.
 - 7 Operation within the t_{RCD} (Max.) limit insures that t_{RAC} (Max.) can be met. t_{RCD} (Max.) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (Max.) limit, then access time is controlled exclusively by t_{CAC}.
 - 8 t_{WCS} and t_{CWD} are not restrictive operating parameters. They are included in the data sheet as electrical charcteristics only; if t_{WCS} \geq t_{WCS} (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{CWD} \geq t_{CWD} (min.), the cycle is read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
 - 9 Nibble mode cycle.
 - 10 CAS before RAS Refresh Counter Test Cycle only.

READ CYCLE

WRITE CYCLE (EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

NIBBLE MODE READ CYCLE

NIBBLE MODE WRITE CYCLE

NIBBLE MODE READ-WRITE CYCLE

RAS ONLY REFRESH CYCLE

CAS-BEFORE-RAS REFRESH CYCLE

HIDDEN REFRESH CYCLE

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

FUNCTIONAL DESCRIPTION

Simple Timing Requirements:

The MSM41257A has the circuit considerations for easy operational timing requirements for high speed access time operations. The MSM41257A can operate under the condition of t_{BCD} (max) = t_{CAC} which provides an optimal time space for address multiplexing. In addition, the MSM41257A has the minimal hold time of Address (t_{CAH}), WE (t_{WCH}) and D_{IN} (t_{DH}). And the MSM41257A can commit better memory system through-put during operations in an interleaved system. Furthermore, Oki has made timing requirements referenced to RAS nonrestrictive and deleted from the data sheet, which includes tAR, tWCR, tDHR and tRWD. Therefore, the hold times of the Column Address DIN and WE as well as tCWD (CAS to WE Delay) are not restricted by tRCD.

Fast Read- While-Write Cycle:

The MSM41257A has the fast read while write cycle which is achieved by excellent control of the three-state output buffer in addition to the simplified timings described in the previous section. The output buffer is controlled by the state of WE when CAS goes low. When WE is low during CAS transition to low, the MSM41257A goes to early write mode where the output becomes floating and common I/O bus can be used on the system level. Whereas, when WE goes low after town following CAS transition to low, the MSM41257A goes to delayed write mode where the output contains the data from the cell selected and the data from D_{IN} is written into the cell selected. Therefore, very fast read write cycle becomes available.

Address Inputs:

A total of eighteen binary input address bits are required to decode any 1 of 262,144 storage cell location within the MSM41257A. Nine rowaddress bits are established on the input pins (Ao through Aa) and latched with the Row Address Strobe (RAS). Then nine column address bits are established on the input pins and latched with the Column Address Strobe (CAS). All input addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by RAS to permit triggering of CAS as soon as the Row Address Hold Time (tRAH) specification has been satisfied and the address inputs have been changed from rowaddresses to column-addresses.

Write Enable:

The read or write mode is selected with the WE input. A logic "high" on WE dictates read mode, logic "low" dictates write mode. Data input is disabled when read mode is selected.

Data Input:

Data is written into the MSM41257A during a write or read-write cycle. The last falling edge of WE or CAS is a strobe for the Data in (DIN) register. In a write cycle, if WE is brought "low" (write mode) before CAS, DIN is strobed by CAS, and the set-up and hold times are referenced to CAS. In a read-write cycle, WE will be delayed until CAS has made its negative transition. Thus DIN is strobed by WE, and set-up and hold times are referenced to WE.

Data Output:

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data out is the same polarity as data in. The output is in a high impedance state until CAS is brought "low". In a read cycle, or a read-write cycle, the output is valid after tRAC from transition of RAS when tRCD (max) is satisfied, or after tCAC from transition of CAS when the transition occurs after tRCD (max). Data remain valid until CAS is returned to "high". In a write cycle, the identical sequence occurs, but data is not valid. Nibble Mode

Nibble mode allows high speed serial read. write or read-modify-write access of 2, 3 or 4 bits of data. The bits of data that may be accessed during nibble mode are determined by the 8 row addresses and the 8 column addresses. The 2 bits of addresses ($CA_8 RA_8$) are used to select 1 of the 4 nibble bits for initial access. After the first bit is accessed by normal mode, the remaining nibble bits may be accessed by CAS "high" then "low" while RAS remains "low". Togoling CAS causes RA₈ and CA₈ to be incremented internally while all other address bits are held constant and makes the next nibble bit available for access. (See Table 1)

If more than 4 bits are accessed during nibble mode, the address sequence will begin to repeat. If any bit is written during nibble mode, the new data will be read on any subsequent access. If the write operation may be executed again on subsequent access, the new data will be written into the selected cell location.

In nibble mode, the three-state control of DOUT Pin is determined by the first normal access cycle.

The data output is controlled by only WE state referenced at CAS negative transition of the normal cycle (first Nibble bit). That is, when $t_{WCS} > t_{WCS}$ (min) is met, the data output will remain open circuit throughout the succeeding Nibble cycle regardless of WE state. Whereas, when $t_{CWD} > t_{CWD}$ (min) is met, the data output will contain data from the cell selected during the succeeding nibble cycle regardless of WE state. The write operation is done during the period where WE and CAS clocks are low. Therefore, write operation can be done bit by bit during each nibble operation at any timing conditions of WE (twcs and tcwp) at the normal cycle (first Nibble bit).

SEQUENCE	NIBBL BIT	.E RA₃	ROW ADDRESS CA₃	COLUMN ADDRESS	
RAS/CAS (normal mode)	1	0	10101010 0	10101010	input addresses
toggle CAS (nibble mode) 2	1	10101010 0	10101010	Ĩ
toggle CAS (nibble mode) 3	0	10101010 1	10101010	generated inter-
toggle CAS (nibble mode) 4	1	10101010 1	10101010	repeats
toggle CAS (nibble mode) 1	0	10101010 0	10101010)

Table 1 NIBBLE MODE ADDRESS SEQUENCE EXAMPLE

RAS Only Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 256 row-addresses (A_0 to A_7) at least every 4 milliseconds. RAS only refresh avoids any output during refresh because the output buffer is in the high impedance state unless CAS is brought low. Strobing each of the 256 row-addresses (A_0 to A_7) with RAS will cause all bits in each row to be refreshed. Further RAS only refresh results in a substantial reduction in power dissipation.

CAS Before RAS Refresh:

CAS before RAS refreshing available on the MSM41257A offers an alternate refresh method. If CAS is held on low for the specified period (t_{FCS}) before RAS goes to low, on chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next CAS before RAS refresh operation.

Hidden Refresh:

Hidden refresh cycle may take place while maintaining latest valid data at the output by extending CAS active time from the previous memory read cycle. In MSM41257A hidden refresh means CAS before RAS refresh and the internal refresh addresses from the counter are used to refresh addresses, because CAS is always low when RAS goes to low in this mode.

CAS Before RAS Refresh Counter Test Cycle:

A special timing sequence using \overline{CAS} before \overline{RAS} counter test cycle provides a convenient method of verifying the functionality of \overline{CAS} before \overline{RAS} refresh activated circuitry. As shown in \overline{CAS} before \overline{RAS} Counter Test Cycle, if \overline{CAS} goes to high and goes to low again while \overline{RAS} is held low, the read and write operation are enabled. A memory cell address, consisting of a row address (9 bits) and a column address (9 bits), to be acceded can be defined as follows:

- * A ROW ADDRESS
 - Bits A₀ through A₂ are defined by the refresh counter. The other bit A₀ is set "high" internally.
- * A COLUMN ADDRESS
 - All the bits A₀ through A₀ are defined by latching levels on A₀ through A₀ at the second falling edge of CAS.

Suggested CAS before RAS Counter Test Procedure:

The timing, as shown in \overline{CAS} before \overline{RAS} Counter Test Cycle, is used for all the operations described as follows:

- (1) Initialize the internal refresh counter. For this operaton, 8 cycles are required.
- (2) Write a test pattern of lows into memory cells at a single column address and 256 row addresses.
- (3) By using read-modify-write cycle, read the low written at the last operation (Step (2)) and write a new high in the same cycle. This cycle is repeated 256 times, and highs are written into the 256 memory cells.
- (4) Read the high written at the last operation (Step (3)).
- (5) Complement the test pattern and repeat the steps (2), (3) and (4).

NIBBLE MODE

Pin 8 A : CELL в

A = ROW ADDRESS (DECIMAL) B = COLUMN ADDRESS (DECIMAL)

(0 - 255)

(0 – 255)

REFRESH ADDRESS

0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0
252	253	254	255]	3	2	1	0		256	257	258	259		511	510	509	508
256	256	256	256		256	256	256	256		256	256	256	256		256	256	256	256
252	253	254	255	I	3	2	1	0		256	257	258	259		511	510	509	508
1	1	1	1		1	1	1	1	~	1	1	1	1		1	1	1	1
252	253	254	255		3	2	1	0	DEI	256	257	258	259		511	510	509	508
257	257	257	257	[257	257	257	257	8	257	257	257	257		257	257	257	257
	1		l						B									
									Z									
				ļ					5									
252	253	254	255		3	2	1	0	0	256	257	258	259		511	510	509	508
126	126	126	126	ł	126	126	126	126		126	126	126	126		126	126	126	126
252	253	254	255		3	2	1	0	COLUMN DECODER	256	257	258	259		511	510	509	508
382	382	382	382	1	382	382	382	382		382	382	382	382		382	382	382	382
252	253	254	255		3	2	1	0		256	257	258	259		511	510	509	508
127	127	127	127		127	127	127	127		127	127	127	127		127	127	127	127
252	253	254	255		3	2	1	0		256	257	258	259		511	510	509	508
383	383	383	383		383	383	383	383		383	383	383	383		383	383	383	383
										_								
ROW DECODER										ROW	DEC	DDER			1			
252	253	254	255		2	2	1	0		256	257	25.9	250		511	510	500	509
511	511	511	511		511	511	511	511		511	511	511	511		511	511	511	511
252	253	254	255	-	3	2	1	0		256	257	258	259		511	510	509	508
255	255	255	255		255	255	255	255		255	255	255	255		255	255	255	255
252	253	254	255	-	3	2	1	0		256	257	258	259		511	510	509	508
510	510	510	510		510	510	510	510		510	510	510	510		510	510	510	510
252	253	254	255	~	3	2	1	0	μ α	256	257	258	259	ł	511	510	509	508
254	254	254	254		254	254	254	254	B	254	254	254	254		254	254	254	254
1				-					00					l l				
									B									
		1	1			1			N N						1			
252	253	254	255	-	3	2	1	0	Ē	256	257	258	259	1	511	510	509	508
385	385	385	385		385	385	385	385	8	385	385	385	385		385	385	385	385
252	253	254	255		3	2	1	0		256	257	258	259		511	510	509	508
129	129	129	129	_	129	129	129	129		129	129	129	129		129	129	129	129
252	253	254	255		3	2	1	0		256	257	258	259		511	510	509	508
384	384	384	384	_	384	384	384	384		384	384	384	384		384	384	384	384
252	253	254	255		3	2	1	0		256	257	258	259		511	510	509	508
1 100																		1
128	128	128	128		128	128	128 128 128 128 128 128 128 128 128									128	128	128
128	128	128	128 A8 F	ROW =	128 "L"	128	128	128		128	128	128	128 A8 R	 DW = '	128 "H"	128	128	128

DYNAMIC RAM · MSM41257AAS/RS

3 0 2 0

252 253 254 255

MSM41257A Bit Map (Physical-Decimal)

256 257 258 259

0 0

1 0

□ Pin 16

511 510 509 508