

GENERAL DESCRIPTION

The MSM414256RS is a new generation dynamic RAM organized as 262,144 words by 4 bits. The technology used to fabricate the MSM414256RS is OKI's N channel silicon gate MOS process technology. The device operates at a single +5V power supply. Its I/O pins are TTL compatible.

FEATURES

- Silicon gate, tripple polysilicon NMOS, 1-transistor memory cell
- 262,144 words by 4 bits

- Standard 20-pin plastic DIP
- Family organization

Family Access Time (MAX)		Cycle Time	Power Dissipation			
	(MIN)	Operating (MAX)	Stand By (MAX)			
MSM414256-10RS	100 ns	200 ns	413 mW	28 mW		
MSM414256-12RS	120 ns	230 ns	385 mW			

- Single +5V supply, $\pm 10\%$ tolerance
- Input: TTL compatible, address input, data input latch
- Output: TTL compatible, tristate, nonlatch
- Refresh: 512 cycles/8 ms
- Output impedance controllable through early write and OE operations
- Page mode, read modify write capability
- CAS before RAS refresh, CAS before RAS hidden refresh, RAS only refresh capability

Prelininary

- "Gated" CAS
- Built-in VBB generator circuit

ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Conditions	Value	Unit
Voltage on any pin relative to V_{SS}	VT	Ta = 25°C	-1.0 to +7.0	v
Short circuit output current	los	Ta = 25°C	50	mA
Power dissipation	PD	Ta = 25°C	1	w
Operating temperature	Topr	_	0 to +70	°C
Storage temperature	Tstg	-	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

 $(Ta = 0 to + 70^{\circ})$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Supply Voltage	Vcc	-	4.5	5.0	5.5	v
	V _{SS}	-	0	0	0	v
Input high voltage	VIH	-	2.4	-	6.5	v
Input low voltage	VIL	-	-1.0	-	0.8	v

DYNAMIC RAM · MSM414256RS =-

DC CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \text{ to } +70^{\circ}\text{C})$

Parameter	Symbol	Conditions	MSM 414256-10		MSM 414256-12		Unit	Note
			MIN	MAX	MIN	MAX		
Output high voltage	V _{OH}	I _{OH} = -5.0 mA	2.4	-	2.4	-	v	
Output low voltage	V _{OL}	I _{OL} = 4.2 mA	-	-0.4	-	0.4	v	
Input leakage current	LI	$0V \leq VI \leq 6.5V;$ all other pins not under test = $0V$	-10	10	-10	10	μA	
Output leakage current	ILO	D _{OUT} disable 0V ≦ VO ≦ 5.5V	-10	10	-10	10	μΑ	
Average power supply current* (Operating)	ICC1	RAS, CAS cycling, t _{RC} = min	_	75	_	70	mA	
Power supply current* (Standby)	ICC2	$\frac{\overline{RAS} = V_{IH}}{\overline{CAS} = V_{IH}}$	-	5	-	5	mA	
Average power supply current* (RAS only refresh)	Іссз	RAS cycling, CAS = V _{IH} t _{RC} = min	-	65	-	60	mA	
Average power supply current* (Page mode)	ICC4	RAS = V _{IL} , CAS cycling t _{PC} = min	-	70	_	65	mA	
Average power supply current* (CAS before RAS refresh)	ICC5	RAS cycling, CAS before RAS	-	70	-	65	mA	

*Note: I_{CC} is dependent on output loading and cycle rates. Specified values are obtained with the output open.

CAPACITANCE

 $(Ta = 25^{\circ}C, f = 1 MHz)$

Parameter	Symbol	Conditions	TYP	МАХ	Unit
Input capacitance (A0 to A8)	C _{IN1}	-		5	pF
Input capacitance (RAS, CAS, WE, OE)	C _{IN2}	-	_	10	pF
I/O capacitance (DQ1 to DQ4)	с	-	-	7	pF

AC CHARACTERISTICS

Note 1, 2, 3 ($V_{CC} = 5V \pm 10\%$, Ta = 0 to +70°C)

Parameter	Sumbol	MSM41	4256-10	MSM41	4256-12		Nete
Parameter	Symbol	MIN	МАХ	MIN	MAX	Unit	Note
Refresh period	tREF	-	8	_	8	ms	
Random read/write cycle time	tRC	200	-	230	-	ns	
Read/write cycle time	tRWC	275	-	305	-	ns	
Page mode cycle time	tPC	100	-	120	-	ns	
Access time from RAS	tRAC	-	100	-	120	ns	4,6
Access time from CAS	tCAC	-	50	-	60	ns	5,6
Output buffer turn-off delay	tOFF	0	25	0	25	ns	
Transition time	tT	3	50	3	50	ns	
RAS precharge time	tRP	90	-	100	-	ns	
RAS pulse width	t _{RAS}	100	10000	120	10000	ns	
RAS hold time	^t RSH	50	_	60	-	ns	
CAS precharge time (Page mode cycle only)	tCP	40	_	50	-	ns	
CAS pulse width	tCAS	50	10000	60	10000	ns	
CAS hold time	tCSH	100	-	120	-	ns	
RAS to CAS delay time	tRCD	25	50	25	60	ns	7,8
CAS and RAS set-up time	tCRS	15	-	20	-	ns	
Row address set-up time	^t ASR	0	-	0	-	ns	
Row address hold time	tRAH	15	-	15	-	ns	
Column address set-up time	tASC	0	-	0	-	ns	
Column address hold time	^t CAH	20	-	20	-	ns	
Column address hold time from RAS,	tAR	70	-	80	-	ns	
Read command set-up time	tRCS	0	-	0	-	ns	
Read command hold time	^t RCH	0	-	0	-	ns	10
Write command hold time from RAS	twcR	80	-	95	-	ns	
Write command set-up time	twcs	0	-	0	-	ns	9
Write command hold time	twch	30	-	35	_	ns	

AC CHARACTERISTICS (CONT.)

Parameter	Sumbal	MSM41	4256-10	MSM414	4256-12	11	Note
Parameter	Symbol	MIN	МАХ	MIN	MAX	Unit	
Write command pulse width	twp	30	_	35	_	ns	
Write command to RAS lead time	tRWL	40	-	40	-	ns	
Write command to CAS lead time	tCWL	40	-	40		ns	
Data-in set-up time	tDS	0	-	0	-	ns	
Data-in hold time	^t DH	30	-	35	-	ns	
Data-in hold time from RAS	tDHR	80	-	95	-	ns	
CAS to WE delay	tCWD	80	-	90	-	ns	9
RAS to WE delay	tRWD	130	-	150	-	ns	9
Read command hold time reference to RAS	tRRH	20	-	20	-	ns	10
Access time from OE	^t OEA	-	30	-	30	ns	
OE data delay time	tOED	25	-	25	-	ns	
OE hold time	^t OEH	0	-	0	-	ns	11
Turn-off delay time from OE	tOEZ	0	25	0	25	ns	
OE set-up time	tOES	30	-	30	-	ns	
RAS to CAS set-up time (CAS before RAS)	tFCS	20	-	25	-	ns	
RAS to CAS hold time (CAS before RAS)	tFCH	30	-	30	-	ns	
CAS active delay from RAS precharge	^t RPC	20	-	20	_	ns	
CAS precharge time (CAS before RAS)	tCPR	20	_	25	-	ns	
Read/write cycle (Refresh counter test)	^t RTC	385	-	435	-	ns	11
RAS pulse width (Refresh counter test)	^t TRAS	285	10000	325	10000	ns	11
CAS precharge time (Refresh counter test)	^t CPT	50	_	60	-	ns	11
Read/write cycle time (Page mode)	^t PRWC	175	-	195	-	ns	

- Notes: 1 An initial pause of 100 μ s is required after power-up followed by any 8 RAS cycles (Example: RAS only) before proper device operation is achieved.
 - 2 The AC characteristics assume at t_T = 5 ns
 - 3 V_{IH} (Min.) and V_{IL} (Max.) are reference levels for measuring of input signals. Also, transition times are measured between V_{IH} and V_{IL}.
 - 4 Assumes that $t_{RCD} \leq t_{RCD}$ (Max.). If $t_{RCD} > t_{RCD}$ (Max.), t_{RAC} will increase by { $t_{RCD} t_{RCD}$ (Max.)}.
 - **5** Assumes that $t_{RCD} \ge t_{RCD}$ (Max.).
 - 6 Measured with a load circuit equivalent to 2TTL + 100 pF.
 - 7 Operation within the t_{RCD} (Max.) limit insures that t_{RAC} (Max.) can be met. t_{RCD} (Max.) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (Max.) limit, then access time is controlled exclusively by t_{CAC} .
 - 8 Assumes that t_{RCD} (Min.) = t_{RAH} (Min.) + $2t_T$ + t_{ASC} (Min.).
 - **9** t_{WCS}, t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical charcteristics only; if t_{WCS} \geq t_{WCS} (Min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{CWD} \geq t_{CWD} (Min.) and t_{RWD} \geq t_{RWD} (Min.) the cycle is read-write cycle and the data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
 - 10 Either tRRH or tRCH must be satisfied for a read cycle.
 - 11 CAS before RAS refresh counter test cycle only.

DYNAMIC RAM · MSM414256RS

READ CYCLE

WRITE CYCLE (EARLY WRITE)

READ/WRITE AND READ MODIFY WRITE CYCLE

PAGE MODE READ CYCLE

DYNAMIC RAM · MSM414256RS =-

PAGE MODE WRITE CYCLE

PAGE MODE READ/WRITE CYCLE

RAS ONLY REFRESH CYCLE

CAS BEFORE RAS REFRESH CYCLE

DYNAMIC RAM MSM414256RS =-

HIDDEN REFRESH CYCLE

CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

FUNCTIONAL DESCRIPTION

Address Inputs:

18 bits of binary address input are required to decode any one of the 262,144 words by 4 bits storage cell locations.

9 row-address bits are set up on address input pins A0 through A8 and latched onto the chip by the row address strobe (RAS). Then 9 column-address bits are set up on pins A0 through A8 and latched onto the chip by the column address strobe (CAS).

All addresses must be stable on or before the falling edges of \overline{RAS} . \overline{CAS} is internally inhibited (gated) by the \overline{RAS} to permit triggering of \overline{CAS} as soon as the Row Address Hold Time (t_{RAH}) specification has been satisfied and the address inputs have been changed from row-addresses to column-addresses.

Therefore specifications permit column addresses to be input immediately after the row address hold time (t_{BAH}).

Write Enable:

The read mode or write mode is selected with the WE input. The logic high of the WE input selects the read mode and a logic low selects the write mode. The data input is disabled when the read mode is selected. Data-out will remain in the high-impedance state allowing a write cycle with WE grounded.

Data Input:

Data is written during a write or read-modify write cycle. Depending on the mode of operation, the falling edge of CAS or WE strobes data into the on-chip data latches. In an early-write cycle, WE is brought low prior to CAS and the data is strobed in by CAS with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, CAS will already be low, thus the data will be strobed in by WE with setup and hold times referenced to this signal. In delayed or read-modify-write, OE must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

Data Output:

The three-state output buffer provides direct TTL compatibility with a fan-out of two standard TTL loads. Data-out is the same polarity as datain. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval t_{CAC} that begins with the negative transition of CAS as long as t_{RAC} and t_{OEA} are satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS and OE is low. CAS or OE going high returns it to a high impedance state. In an early-write cycle, the output is always in the high impedance state. In a delayed-write or read-modify-write cycle, the output must be put in the high impedance state prior to applying data to the DQ input. This is accomplished by bringing \overline{OE} high prior to applying data, thus satisfy t_{OED}.

Output Enable:

The \overline{OE} controls the impedance of the output buffers. When \overline{OE} is high, the buffers will remain in the high impedance state. Bringing \overline{OE} low during a normal cycle will activate the output buffers putting them in the low impedance state. It is necessary for both RAS and CAS to be brought low for the output buffers to go into the low impedance state. Once in the low impedance state, they will remain in the low impedance state until CAS or \overline{OE} is brought high.

Page Mode:

Page-mode operation permits strobing the row-address while maintaining RAS at a logic low (0) throughout all successive memory operations in which the row-address doesn't change. Thus the power dissipated by the negative going edge of RAS is saved. Further, access and cycle times are decreased because the time normally required to strobe a new row-address is eliminated.

RAS Only Refresh:

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 512 row-addresses (A_0 to A_8) at least every eight milliseconds. RAS only refresh avoids any output during refresh because the output buffer is in the high impedance state unless CAS is brought low. Strobing each of 512 (A_0 to A_8) row-addresses with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation.

CAS Before RAS Refresh:

CAS before RAS refreshing offers an alternate refresh method. If CAS is held on low for the specified period (t_{FCS}) before RAS goes to low, on chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next CAS before RAS refresh operation.

Hidden Refresh:

Hidden refresh cycle may take place while maintaining latest valid data at the output by extending CAS active time. Hidden refresh means CAS before RAS refresh and the internal refresh addresses from the counter are used to refresh addresses, because CAS is always low when RAS goes to low in this mode.

CAS Before RAS Refresh Counter Test Cycle:

A special timing sequence using CAS before RAS counter test cycle provides a convenient method of verifying the functionality of CAS before RAS refresh activated circuitry. As shown in CAS before RAS Counter Test Cycle, if CAS goes to high and goes to low again while RAS is held low, the read and write operation are enabled. This is shown in the CAS before RAS counter test cycle. A memory cell address, consisting of a row address (9 bits) and a column address (9 bits), to be acceded can be defined as follows:

- * A ROW ADDRESS
- Bits A_0 through A_8 are defined by the refresh counter.
- * A COLUMN ADDRESS
 - All the bits A₀ through A₈ are defined by latching levels on A₀ through A₈ at the second falling edge of CAS.

Suggested CAS before RAS Counter Test Procedure:

The timing, as shown in \overline{CAS} before \overline{RAS} Counter Test Cycle, is used for all the operations described as follows:

- (1) Initialize the internal refresh counter. For this operaton, 8 cycles are required.
- (2) Write a test pattern of lows into memory cells at a single column address and 512 row addresses.
- (3) By using read-modify-write cycle, read the low written at the last operation (Step (2)) and write a new high in the same cycle. This cycle is repeated 512 times, and highs are written into the 512 memory cells.
- (4) Read the high written at the last operation (Step (3)).
- (5) Complement the test pattern and repeat the steps (2), (3) and (4).