# **OKI semiconductor** MSM41464RS

### 65,536-WORD imes 4-BITS DYNAMIC RANDOM ACCESS MEMORY

# **GENERAL DESCRIPTION**

The Oki MSM41464 is a fully decoded, dynamic NMOS random access memory organized as 65,536 words by 4 bits. The design is optimized for high-speed, high performance applications such as mainframe memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout is required.

Multiplexed row and column address inputs permit the MSM41464 to be housed in a standard 18 pin DIP. Pin-outs conform to the JEDEC approved pin out. Additionally, the MSM41464 offers new functional enhancements that make it more versatile than previous dynamic RAMs. "CAS-before-RAS" refresh provides an on-chip refresh capability.

The MSM41464 is fabricated using silicon gate NMOS and Oki's advanced VLSI Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimum chip size. Dynamic circuitry is employed in the design, including the sense amplifiers.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and output are TTL compatible.

### FEATURES

- 65,536 × 4 RAM, 18 pin package
- Silicon-gate, Double Poly NMOS, single transistor cell
- Row access time: 100 ns max (MSM41464-10RS) 120 ns max (MSM41464-12RS) 150 ns max (MSM41464-15RS)
- Cycle time:
   200 ns min (MSM41464-10RS)
   230 ns min (MSM41464-12RS)
   260 ns min (MSM41464-15RS)
- Low power:
  - 385 mW active, 28 mW max standby
- Single +5V Supply, ±10% tolerance
- All inputs TTL compatible, low capacitive load

- Three-state TTL compatible output
- "Gated" CAS
- 256 refresh cycles/4 ms
- Output impedance controllable through early write and OE operations
- Output unlatched at cycle end allows extended page boundary and two-dimensional chip select
- Read-Modify-Write, RAS-only refresh, capability
- On-chip latches for Addresses and Data-in
- On-chip substrate bias generator for high performance
- CAS-before-RAS refresh capability
- "Page Mode" capability

|         |                                                                          | PIN C | ONFIGUR                                                                                                                                               | ATION (TO                                             | P VIEW)                                                                                                                                                             |
|---------|--------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROMAN A | OE 1<br>DQ1 2<br>DQ2 3<br>WE 4<br>RAS 5<br>A6 6<br>A5 7<br>A4 8<br>VCC 9 |       | <ul> <li>18 VSS</li> <li>17 DQ4</li> <li>16 CAS</li> <li>15 DQ3</li> <li>14 A0</li> <li>13 A1</li> <li>12 A2</li> <li>11 A3</li> <li>10 A7</li> </ul> | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ | Function<br>Address Inputs<br>Row Address Strobe<br>Column Address Strobe<br>Data In/Data Out<br>Output Enable<br>Write Enable<br>Power Supply (+5V)<br>Ground (0V) |



# ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (See Note)

| Rating                                                        | Symbol    | Value       | Unit |  |
|---------------------------------------------------------------|-----------|-------------|------|--|
| Voltage on any pin relative to $V_{SS}$                       | VIN, VOUT | -1 to +7    | v    |  |
| Voltage on V <sub>CC</sub> supply relative to V <sub>SS</sub> | Vcc       | -1 to +7    | v    |  |
| Operating temperature                                         | Topr      | 0 to 70     | °C   |  |
| Storage temperature                                           | Tstg      | -55 to +150 | °C   |  |
| Power dissipation                                             | PD        | 1.0         | w    |  |
| Short circuit output current                                  | ,         | 50          | mA   |  |

Note: Parmanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **RECOMMENDED OPERATING CONDITIONS**

(Referenced to VSS)

| Parameter                      | Symbol          | Min. | Тур. | Max. | Unit | Operating<br>Temperature |
|--------------------------------|-----------------|------|------|------|------|--------------------------|
| Supply Voltage                 | Vcc             | 4.5  | 5.0  | 5.5  | v    |                          |
| Supply voltage                 | V <sub>SS</sub> | 0    | 0    | 0    | v    | 0°C to +70°C             |
| Input High Voltage, all inputs | VIH             | 2.4  |      | 6.5  | v    |                          |
| Input Low Voltage, all inputs  | VIL             | -1.0 |      | 0.8  | v    |                          |

### DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

| Parameter                                                                                                                        | Symbol     | Min. | Max. | Unit   | Notes |
|----------------------------------------------------------------------------------------------------------------------------------|------------|------|------|--------|-------|
| OPERATING CURRENT*<br>Average power supply current<br>(RAS, CAS cycling; t <sub>RC</sub> = min.)                                 | ICC1       |      | 70   | mA     |       |
| STANDBY CURRENT*<br>Power supply current<br>(RAS = CAS = V <sub>IH</sub> )                                                       | ICC2       |      | 5.0  | mA     |       |
| REFRESH CURRENT 1*<br>Average power supply current<br>(RAS cycling, CAS = V <sub>IH</sub> ; t <sub>RC</sub> = min.)              | Іссз       |      | 55   | mA     |       |
| PAGE MODE CURRENT*<br>Average power supply current<br>(RAS = V <sub>IL</sub> , CAS cycling; t <sub>PC</sub> = min.)              | ICC4       |      | 60   | mA     |       |
| REFRESH CURRENT 2*<br>Average power supply current<br>(CAS before RAS; t <sub>RC</sub> = min.)                                   | ICC5       |      | 60   | mA     |       |
| INPUT LEAKAGE CURRENT<br>Input leakage current, any input<br>( $0V \le V_{IN} \le 5.5V$ , all other pins not<br>under test = 0V) | LI         | -10  | 10   | μΑ     |       |
| OUTPUT LEAKAGE CURRENT (Data out is disabled, $0V \le V_{OUT} \le 5.5V$ )                                                        | ILO        | -10  | 10   | μA     |       |
| OUTPUT LEVELS<br>Output high voltage ( $I_{OH} = -5 \text{ mA}$ )<br>Output low voltage ( $I_{OL} = 4.2 \text{ mA}$ )            | Voh<br>Vol | 2.4  | 0.4  | v<br>v |       |

Note\*: I<sub>CC</sub> is dependent on output loading and cycle rates. Specified values are obtained with the output open.

## ■ DYNAMIC RAM · MSM41464RS ■-----

### CAPACITANCE

 $(Ta = 25^{\circ}C, f = 1 \text{ MHz})$ 

| Parameter                                | Symbol           | Тур. | Max. | Unit |
|------------------------------------------|------------------|------|------|------|
| Input capacitance ( $A_0 \sim A_7$ )     | C <sub>IN1</sub> | _    | 7    | pF   |
| Input capacitance (RAS, CAS, WE, OE)     | C <sub>IN2</sub> | -    | 10   | pF   |
| Data I/O capacitance (DQ $_1 \sim$ DQ 4) | CD               | -    | 7    | pF   |

Capacitance measured with Boonton Meter.

### AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Note 1, 2, 3

| Parameter                                                     | Symbol           | Unit | 1    | 1464-<br>0 | 1    | 1464-<br>2 | MSM4<br>1 | Notes |     |
|---------------------------------------------------------------|------------------|------|------|------------|------|------------|-----------|-------|-----|
|                                                               |                  |      | Min. | Max.       | Min. | Max.       | Min.      | Max.  |     |
| Refresh period                                                | <sup>t</sup> REF | ms   |      | 4          |      | 4          |           | 4     |     |
| Random read or write cycle time                               | tRC              | ns   | 200  |            | 230  |            | 260       |       |     |
| Read-write cycle time                                         | <sup>t</sup> RWC | ns   | 275  |            | 320  |            | 360       |       |     |
| Page mode cycle time                                          | <sup>t</sup> PC  | ns   | 100  |            | 120  |            | 145       |       |     |
| Access time from RAS                                          | <sup>t</sup> RAC | ns   |      | 100        |      | 120        |           | 150   | 4,6 |
| Access time from $\overline{CAS}$                             | tCAC             | ns   |      | 50         |      | 60         |           | 75    | 5,6 |
| Output buffer turn-off<br>delay                               | tOFF             | ns   | 0    | 30         | 0    | 35         | 0         | 40    |     |
| Transition time                                               | tT               | ns   | 3    | 50         | 3    | 50         | 3         | 50    |     |
| RAS precharge time                                            | t <sub>RP</sub>  | ns   | 90   |            | 100  |            | 100       |       |     |
| RAS pulse width                                               | t <sub>RAS</sub> | ns   | 100  | 10µs       | 120  | 10µs       | 150       | 10µs  |     |
| RAS hold time                                                 | t <sub>RSH</sub> | ns   | 50   |            | 60   |            | 75        |       |     |
| CAS precharge time<br>(Page mode cycle only)                  | tCP              | ns   | 40   |            | 50   |            | 60        |       |     |
| CAS pulse width                                               | tCAS             | ns   | 50   | 10µs       | 60   | 10µs       | 75        | 10µs  |     |
| CAS hold time                                                 | <sup>t</sup> CSH | ns   | 100  |            | 120  |            | 150       |       |     |
| $\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ delay time | <sup>t</sup> RCD | ns   | 22   | 50         | 22   | 60         | 25        | 75    | 7,8 |
| CAS to RAS set-up time                                        | <sup>t</sup> CRS | ns   | 20   |            | 25   |            | 30        |       |     |
| Row address set-up time                                       | <sup>t</sup> ASR | ns   | 0    |            | 0    |            | 0         |       |     |
| Row address hold time                                         | <sup>t</sup> RAH | ns   | 12   |            | 12   |            | 15        |       |     |
| Column address set-up time                                    | <sup>t</sup> ASC | ns   | 0    |            | 0    |            | 0         |       |     |
| Column address hold time                                      | <sup>t</sup> CAH | ns   | 15   |            | 15   |            | 20        |       |     |
| Read command set-up time                                      | <sup>t</sup> RCS | ns   | 0    |            | 0    |            | 0         |       |     |
| Read command hold time                                        | <sup>t</sup> RCH | ns   | 0    |            | 0    |            | 0         | ÷     | 10  |
| Write command set-up time                                     | twcs             | ns   | -5   |            | -5   |            | -5        |       | 9   |

.

### AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)

| Parameter                                    | Symbol            | Unit | 1    | 1464-<br>0 | MSM4<br>1 |      | MSM4<br>1 | Notes |     |
|----------------------------------------------|-------------------|------|------|------------|-----------|------|-----------|-------|-----|
|                                              |                   |      | Min. | Max.       | Min.      | Max. | Min.      | Max.  | _   |
| Write command pulse width                    | tWP               | ns   | 20   |            | 25        |      | 30        |       |     |
| Write command hold time                      | twcн              | ns   | 20   |            | 25        |      | 30        |       |     |
| Write command to RAS lead time               | tRWL              | ns   | 35   |            | 45        |      | 50        |       |     |
| Write command to CAS lead time               | tCWL              | ns   | 35   |            | 45        |      | 50        |       |     |
| Data-in set-up time                          | tDS               | ns   | 0    |            | 0         |      | 0         |       |     |
| Data-in hold time                            | <sup>t</sup> DH   | ns   | 20   |            | 25        |      | 30        |       |     |
| CAS to WE delay                              | tCWD              | ns   | 85   |            | 100       |      | 120       |       | 9   |
| RAS to WE delay                              | t <sub>RWD</sub>  | ns   | 135  |            | 160       |      | 195       |       | 9   |
| Read command hold time reference to RAS      | tRRH              | ns   | 20   |            | 20        |      | 25        |       | 10  |
| Access time from OE                          | tOEA              | ns   |      | 25         |           | 30   |           | 40    |     |
| OE data delay time                           | tOED              | ns   | 30   |            | 35        |      | 40        |       |     |
| OE hold time                                 | <sup>t</sup> OEH  | ns   | 0    |            | 0         |      | 0         |       |     |
| Turn-off delay time from OE                  | tOEZ              | ns   | 0    | 30         | 0         | 35   | 0         | 40    |     |
| RAS to CAS set-up time<br>(CAS before RAS)   | tFCS              | ns   | 20   |            | 25        |      | 30        |       |     |
| RAS to CAS hold time<br>(CAS before RAS)     | <sup>t</sup> FCH  | ns   | 20   |            | 25        |      | 30        |       |     |
| CAS active delay from RAS precharge          | <sup>t</sup> RPC  | ns   | 20   |            | 20        |      | 20        |       |     |
| CAS precharge time<br>(CAS before RAS)       | <sup>t</sup> CPR  | ns   | 20   |            | 25        |      | 30        |       |     |
| Read/write cycle<br>(Refresh counter test)   | <sup>t</sup> RTC  | ns   | 385  |            | 450       |      | 515       |       | 11  |
| RAS pulse width<br>(Refresh counter test)    | <sup>t</sup> TRAS | ns   | 285  | 10µs       | 340       | 10µs | 405       | 10µs  | -11 |
| CAS precharge time<br>(Refresh counter test) | tСРТ              | ns   | 50   |            | 60        |      | 70        |       | 11  |
| Read/write cycle time<br>(Page mode)         | <sup>t</sup> PRWC | ns   | 175  |            | 210       |      | 245       |       |     |

- Notes: 1 An initial pause of 100  $\mu$ s is required after power-up followed by any 8 RAS cycles (Example: RAS only) before proper device operation is achieved.
  - 2 The AC characteristics assume at  $t_T = 5$  ns
  - 3 VIH (Min.) and VIL (Max.) are reference levels for measuring of input signals. Also transition times are measured between VIH and VIL.
  - 4 Assumes that  $t_{RCD} \leq t_{RCD}$  (Max.) If  $t_{RCD} > t_{RCD}$  (Max.),  $t_{RAC}$  will increase by {  $t_{RCD} t_{RCD}$  (Max.)}.
  - **5** Assumes that  $t_{RCD} \ge t_{RCD}$  (Max.).
  - 6 Measured with a load circuit equivalent to 2TTL loads and 100 pF.
  - 7 Operation within the  $t_{RCD}$  (Max.) limit insures that  $t_{RAC}$  (Max.) can be met.  $t_{RCD}$  (Max.) is specified as a reference point only; if  $t_{RCD}$  is greater than the specified  $t_{RCD}$  (Max.) limit, then access time is controlled exclusively by  $t_{CAC}$ .
  - 8 Assumes that  $t_{RCD}$  (Min.) =  $t_{RAH}$  (Min.) +  $2t_T$  +  $t_{ASC}$  (Min.)
  - **9** twcs, t<sub>CWD</sub> and t<sub>RWD</sub> are not restrictive operating parameters. They are included in the data sheet as electrical charcteristics only; if twcs > twcs (Min.), the cycle is an early write cycle and the data in/data out pin will remain open circuit (high impedance) throughout the entire cycle; if t<sub>CWD</sub>  $\geq$  t<sub>CWD</sub> (Min.) and t<sub>RWD</sub>  $\geq$  t<sub>RWD</sub> (Min.) the cycle is read-write cycle and the data in/data out will contain data read from the selected cell; if neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
  - 10 Either t<sub>RRH</sub> or t<sub>RCH</sub> must be satisfied for a read cycle.
  - 11 CAS before RAS refresh counter test cycle only.



## **READ CYCLE**

# WRITE CYCLE (EARLY WRITE)



# **OE WRITE CYCLE**





# READ/WRITE AND READ MODIFY WRITE CYCLE

# PAGE MODE READ CYCLE



### DYNAMIC RAM · MSM41464RS -

# PAGE MODE WRITE CYCLE



# PAGE MODE OE WRITE CYCLE



# PAGE MODE READ/WRITE CYCLE



# **RAS ONLY REFRESH CYCLE**



### DYNAMIC RAM · MSM41464RS -

# CAS BEFORE RAS REFRESH CYCLE



### **HIDDEN REFRESH CYCLE**





# CAS BEFORE RAS REFRESH COUNTER TEST CYCLE

### **FUNCTIONAL DESCRIPTION**

#### Address Inputs:

16 bits of binary address input are required to decode any one of the 65,536 words by 4 bit storage cell locations.

8 row-address bits are set up on address input pins  $A_0$  through  $A_7$  and latched onto the chip by the row address strobe (RAS). Then 8 column-address bits are set up on pins  $A_0$ through  $A_7$  and latched onto the chip by the column address strobe (CAS).

All addresses must be stable on or before the falling edges of RAS. CAS is internally inhibited (gated) by the RAS to permit triggering of CAS as soon as the Row Address Hold Time ( $t_{RAH}$ ) specification has been satisfied and the address inputs have been changed from row-addresses to column-addresses.

Therefore specifications permit column addresses to be input immediately after the row address hold time ( $t_{RAH}$ ).

#### Write Enable:

The read mode or write mode is selected with the  $\overline{WE}$  input. The logic high of the  $\overline{WE}$  input selects the read mode and a logic low selects the write mode. The data input is disabled when the read mode is selected. Data-out will remain in the high-impedance state allowing a write cycle with  $\overline{WE}$  grounded.

### **Data Input:**

Data is written during a write or read-modify write cycle. Depending on the mode of operation, the falling edge of  $\overrightarrow{CAS}$  or  $\overrightarrow{WE}$  strobes data into the on-chip data latches. In an early-write cycle,  $\overrightarrow{WE}$  is brought low prior to  $\overrightarrow{CAS}$  and the data is strobed in by  $\overrightarrow{CAS}$  with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle,  $\overrightarrow{CAS}$  will already be low, thus the data will be strobed in by  $\overrightarrow{WE}$  with setup and hold times referenced to this signal. In delayed or read-modify-write,  $\overrightarrow{OE}$  must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

### Data Output:

The three-state output buffer provides direct TTL compatibility with a fan-out of two standard TTL loads Data-out is the same polarity as datain. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval tCAC that begins with the negative transition of CAS as long as tRAC and tOEA are satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS or OE are low. CAS or OE going high returns it to a high impedance state. In an early-write cycle, the output is always in the high impedance state. In a delayed-write or read-modify-write cycle, the output must be put in the high impedance state prior to applying data to the DQ input. This is accomplished by bringing OE high prior to applying data, thus satisfy tOFD.

#### **Output Enable:**

The  $\overline{OE}$  controls the impedance of the output buffers. When  $\overline{OE}$  is high, the buffers will remain in the high impedance state. Bringing  $\overline{OE}$  low during a normal cycle will activate the output buffers putting them in the low impedance state. It is necessary for both RAS and CAS to be brought low for the output buffers to go into the low impedance state. Once in the low impedance state, util  $\overline{OE}$  or CAS is brought high.

#### Page Mode:

Page-mode operation permits strobing the row-address while maintaining RAS at a logic low (0) throughout all successive memory operations in which the row-address doesn't change. Thus the power dissipated by the negative going edge of RAS is saved. Further, access and cycle times are decreased because the time normally required to strobe a new row-address is eliminated.

#### **RAS Only Refresh:**

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 256 row-addresses ( $A_0$  to  $A_7$ ) at least every four milliseconds. RAS only refresh avoids any output during refresh because the output buffer is in the high impedance state unless CAS is brought low. Strobing each of 256 ( $A_0$  to  $A_7$ ) row-addresses with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation.

#### CAS Before RAS Refresh:

CAS before RAS refreshing offers an alternate refresh method. If CAS is held on low for the specified period (t<sub>FCS</sub>) before  $\overline{\text{RAS}}$  goes to low, on chip refresh control clock generators and the refresh address counter are enabled, and an internal refresh operation takes place. After the refresh operation is performed, the refresh address counter is automatically incremented in preparation for the next  $\overline{\text{CAS}}$  before  $\overline{\text{RAS}}$  refresh operation.

#### Hidden Refresh:

Hidden refresh cycle may take place while maintaining latest valid data at the output by extending CAS active time. Hidden refresh means CAS before RAS refresh and the internal refresh addresses from the counter are used to refresh addresses, because CAS is always low when RAS goes to low in this mode.

#### CAS Before RAS Refresh Counter Test Cycle:

A special timing sequence using CAS before RAS counter test cycle provides a convenient method of verifying the functionality of CAS before RAS refresh activated circuitry. As shown in CAS before RAS counter Test Cycle, if CAS goes to high and goes to low again while RAS is held low, the read and write operation are enabled. This is shown in the CAS before RAS counter test cycle. A memory cell address, consisting of a row address (8 bits) and a column address (8 bits), to be acceded can be defined as follows:

- \* A ROW ADDRESS
- Bits A<sub>0</sub> through A<sub>7</sub> are defined by the refresh counter.
- \* A COLUMN ADDRESS
  - All the bits A<sub>0</sub> through A<sub>7</sub> are defined by latching levels on A<sub>0</sub> through A<sub>7</sub> at the second falling edge of CAS.

### Suggested CAS before RAS Counter Test Procedure:

The timing, as shown in  $\overline{CAS}$  before  $\overline{RAS}$ Counter Test Cycle, is used for all the operations described as follows:

- (1) Initialize the internal refresh counter. For this operaton, 8 cycles are required.
- (2) Write a test pattern of lows into memory cells at a single column address and 256 row addresses.
- (3) By using read-modify-write cycle, read the low written at the last operation (Step (2)) and write a new high in the same cycle. This cycle is repeated 256 times, and highs are written into the 256 memory cells.
- (4) Read the high written at the last operation (Step (3)).
- (5) Complement the test pattern and repeat the steps (2), (3) and (4).

### MSM41464 Bit Map (Physical-Decimal)

□ Pin 18

|            | DQ1 DQ2 DQ3 DQ4 |            |            |      |          |          |          |          |    |             |                  |          |          | Pin 18   |          |     |            |            |            |            |
|------------|-----------------|------------|------------|------|----------|----------|----------|----------|----|-------------|------------------|----------|----------|----------|----------|-----|------------|------------|------------|------------|
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | Ц  | Π           |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 0          | 0               | 0          | 0          |      | 0        | 0        | 0        | 0        |    |             |                  | 0        | 0        | 0        | 0        |     | 0          | 0          | 0          | 0          |
| 252<br>0   | 253<br>0        | 254<br>0   | 255<br>0   |      | 3        | 2        | 1        | 0        | 7  |             | K                | 0        | 1        | 2        | 3        | 1   | 255<br>0   | 254<br>0   | 253<br>0   | 252        |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        |    |             |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 1          | 1               | 1          | 1          |      | 1        | 1        | 1        | 1        | Π  |             |                  | 1        | 1        | 1        | 1        |     | 1          | 1          | 1          | 1          |
| 252<br>1   | 253<br>1        | 254        | 255        |      | 3        | 2        | 1        | 0        | 5  |             | K                | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 252        | 253             | 1<br>254   | 1<br>255   |      | 1        | 1        | 1        | 1        |    |             |                  | 0        | 1        | 2        | 3        |     | 1<br>255   | 1<br>254   | 1<br>253   | 1<br>252   |
| 2          | 2               | 2          | 2          |      | 2        | 2        | 2        | 2        | -  |             |                  | 2        | 2        | 2        | 2        | ]   | 2          | 2          | 2          | -2         |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | 1  | 0EB         | 2                | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 2          | 2               | 2          | 2          |      | 2        | 2        | 2        | 2        | 1  | ECODE       | 1                | 2        | 2        | 2        | 2        |     | 2          | 2          | 2          | 2          |
| )          | •               | ,          |            |      |          |          |          |          |    | N DE        |                  |          |          |          |          |     |            | •          |            |            |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        |    | COLUMN      |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 125        | 125             | 125        | 125        |      | 125      | 125      | 125      | 125      |    | В           |                  | 125      | 125      | 125      | 125      |     | 125        | 125        | 125        | 125        |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | L  |             | 2                | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 125        | 125             | 125        | 125        |      | 125      | 125      | 125      | 125      | ľ  |             | $\left[ \right]$ | 125      | 125      | 125      | 125      |     | 125        | 125        | 125        | 125        |
| 252<br>126 | 253<br>126      | 254<br>126 | 255<br>126 |      | 3<br>126 | 2<br>126 | 1<br>126 | 0<br>126 | H  |             |                  | 126      | 1<br>126 | 2<br>126 | 3<br>126 | 1   | 255<br>126 | 254<br>126 | 253<br>126 | 252<br>126 |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 126      | 126      | 11 |             |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 126        | 126             | 126        | 126        |      | 126      | 126      | 126      | 126      | 17 |             | 5                | 126      | 126      | 126      | 126      |     | 126        | 126        | 126        | 126        |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        |    |             |                  | 0        | 1        | 2        | 3        | )   | 255        | 254        | 253        | 252        |
| 127        | 127             | 127        | 127        |      | 127      | 127      | 127      | 127      |    |             |                  | 127      | 127      | 127      | 127      |     | 127        | 127        | 127        | 127        |
| 252<br>127 | 253<br>127      | 254<br>127 | 255<br>127 |      | 3<br>127 | 2<br>127 | 1<br>127 | 0<br>127 | 4  | 1           | K                | 0        |          | 2        | 3        | Ì   | 255        | 254        | 253        | 252        |
|            | 127             | 127        | 127        | _    | 121      | 121      | 127      | 121      |    | μ           |                  | 127      | 127      | 127      | 127      |     | 127        | 127        | 127        | 127        |
|            |                 |            | ROW        | DEC  | ODER     | ۱<br>    |          |          |    | ROW DECODER |                  |          |          |          |          |     |            |            |            |            |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | Ц  |             |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 255        | 255             | 255        | 255        |      | 255      | 255      | 255      | 255      | 17 |             | 1                | 255      | 255      | 255      | 255      |     | 255        | 255        | 255        | 255        |
| 252<br>255 | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | H  |             |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 255        | 255<br>253      | 255<br>254 | 255<br>255 |      | 255<br>3 | 255<br>2 | 255<br>1 | 255<br>0 |    |             |                  | 255      | 255<br>1 | 255<br>2 | 255      |     | 255<br>255 | 255        | 255        | 255        |
| 254        | 254             | 254        | 254        |      | 254      | 254      | 254      | 254      | ╞  |             | К                | 254      | 254      | 254      | 3<br>254 |     | 255        | 254<br>254 | 253<br>254 | 252<br>254 |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | 1  |             |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 254        | 254             | 254        | 254        |      | 254      | 254      | 254      | 254      |    |             |                  | 254      | 254      | 254      | 254      |     | 254        | 254        | 254        | 254        |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | Ц  |             | 4                | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 253<br>252 | 253<br>253      | 253<br>254 | 253<br>255 |      | 253<br>3 | 253<br>2 | 253      | 253      | I  | œ           |                  | 253      | 253      | 253      | 253      |     | 253        | 253        | 253        | 253        |
| 252        | 253             | 253        | 255        |      | 253      | 253      | 1<br>253 | 0<br>253 | -  | ODE         |                  | 0<br>253 | 1<br>253 | 2<br>253 | 3<br>253 |     | 255<br>253 | 254<br>253 | 253<br>253 | 252<br>253 |
|            |                 |            |            |      |          |          |          |          |    | DECOD       |                  |          |          |          |          |     |            |            |            |            |
|            | <u> </u>        | <b> </b>   |            |      |          |          |          | 1        |    | NWN         |                  |          |          | L        | L        |     | L          |            | L          |            |
| 252<br>130 | 253<br>130      | 254<br>130 | 255<br>130 |      | 3        | 2        | 1        | 0        | 5  | COL         | K                | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 252        | 253             | 254        | 255        |      | 130<br>3 | 130      | 130      | 130<br>0 |    |             |                  | 130      | 130      | 130      | 130      |     | 130        | 130<br>254 | 130<br>253 | 130        |
| 130        | 130             | 130        | 130        |      | 130      | 130      | 130      | 130      | H  |             |                  | 130      | 130      | 130      | 130      |     | 130        | 254<br>130 | 130        | 130        |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        | 11 |             | IJ               | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 129        | 129             | 129        | 129        |      | 129      | 129      | 129      | 129      | 17 |             | 5                | 129      | 129      | 129      | 129      | l   | 129        | 129        | 129        | 129        |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 1        | 0        |    |             |                  | 0        | 1        | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 129        | 129             | 129        | 129        |      | 129      | 129      | 129      | 129      |    |             |                  | 129      | 129      | 129      | 129      |     | 129        | 129        | 129        | 129        |
| 252<br>128 | 253<br>128      | 254<br>128 | 255<br>128 |      | 3<br>128 | 2<br>128 | 1<br>128 | 0<br>128 | ₿  |             | К                | 128      | 1<br>128 | 2<br>128 | 3<br>128 |     | 255<br>128 | 254<br>128 | 253<br>128 | 252<br>128 |
| 252        | 253             | 254        | 255        |      | 3        | 2        | 120      | 0        |    |             |                  | 0        | 120      | 2        | 3        |     | 255        | 254        | 253        | 252        |
| 128        | 128             | 128        | 128        |      | 128      | 128      | 128      | 128      |    |             |                  | 128      | 128      | 128      | 128      |     | 128        | 128        | 128        | 128        |
| _          |                 | R          | EFRES      | SHAD | DRES     | s        |          |          |    |             |                  |          |          | F        | REFRE    | SHA | DDRE       | SS         |            |            |
|            |                 |            |            |      |          |          |          |          |    |             |                  |          |          | _        |          |     |            |            |            |            |

(0 - 255)

Pin 9

А

в

: CELL

(0 – 255)

A = ROW ADDRESS (DECIMAL)

B = COLUMN ADDRESS (DECIMAL)