OKI semiconductor MSM5055

CMOS 4 BIT SINGLE CHIP VERY LOW POWER MICROCONTROLLER WITH LCD DRIVER

GENERAL DESCRIPTION

The OKI MSM5055 is a low-power, high-performance single-chip microcontroller employing complementary metal oxide semiconductor technology. Integrated onto a single chip are 4 bits of ALU, 25K bits of mask programmable ROM, 384 bits of data RAM, crystal oscillator, voltage doubler, timer, LCD driver, input port, output port and interface circuit for voice LSI (MSM6212).

The MSM5055 is widely used in electronic products requiring low power operation, for example, multi-functioned watches, voice synthesizer watches and games.

FEATURES

- Low Power Consumption 3 µA Typical
- 1792 × 14 Internal ROM
- 96 × 4 Internal RAM
- 4 × 2 Input Port
- 4 × 1 Output Port
- 4 × 4 Key Matrix Input (K1~K4, M1~M4)
- 60 LCD Driver (1/2 Duty, 1/2 Bias, 120 Segment)

- 42 Instructions
- 1.5 V or 3 V Operating Voltage (Masking Option)
- 32.768 kHz Crystal Oscillator
- 122.1 µS Instruction Cycle
- –20 to 75°C Operating Temperature
- 94 pad die

FUNCTIONAL BLOCK DIAGRAM

LOGIC SYMBOL

CHIP PAD LAYOUT

PIN DESCRIPTION

Designation	Function
V _{DD}	Circuit ground potential
V _{SS1}	Power source (-1.5 V)
V _{SS2}	Power source for LCD driver (-3.0 V) This terminal is connected to V _{DD} terminal through a 0.1 μ F capacitor.
VEE	Power source for internal logic (-1.5 to -3.0 V) This terminal is connected to V _{DD} terminal through a 0.1 μ F capacitor.
VCP, VCM	Booster capacitor connection terminals V _{CP} terminal through a 0.1 μ F capacitor.
хт, хт	Input and output terminals of oscillator inverter, 32.768 kHz crystal is connected to these terminals.
T1~T5	Terminals to test internal logic, T1 \sim T3 and T5 are pulled down to V _{SS1} . T4 is output. Test pins must be normally open.
AC	Terminal to clear internal logic pulled down to V_{SS_1} . After power is turned on, the MSM5055 must be reset by this terminal.
BD	Buzzer output
LD	Lamp output
LO	Load data terminal of M1 to M4
AC2	Reset terminal for external circuit
XT OUT	Clock output for external circuit

MSM5055 •-

FUNCTIONAL DESCRIPTION

A block diagram of the MSM5055 is given on page 104. Each block of logic will be briefly discussed. For more information, please refer to the MSM5055 user's manual.

Program ROM

The MSM5055 addresses up to 1 K word of internal mask programmable ROM. Each word consists of 14 bits, and all instructions are one word. The instructions are routed to a programmed logic array which generates the signals necessary for control of logic.

Data RAM

Data is organized in 4-bit nibbles. Internal data RAM consists of 62 nibbles.

The RAM is addressed by page address and column address. Normally page address is specified by the page register, but direct addressing is available in Page 0.

Column address is directly addressed by the operand of various instructions.

ALU

The ALU performs 4-bit parallel operation of RAM and ACC contents, or RAM contents and an immediate digit. It sets or resets the flags (Z, C) depending on the condition.

Program Counter (PC)

The program counter is 10 bits wide and specifies the address of the program ROM.

The PC is incremented by one at every execution of the instruction, and then specifies the next instruction to be executed. However, the contents of the PC are rewritten by the execution of the Jump or Branch instruction.

There is no boundary in the ROM, so the Jump or Branch instruction can be put anywhere in the ROM.

Input/Output Port

Input Port (S1 \sim S4)

The input port (S1 \sim S4) is a 4-bit parallel input port. Each pin of the port is pulled down to V_{SS1} by an internal resistor, and the status of the port is fetched by the SWITCH instruction.

Input Port (K1 \sim K4)

The input port (K1 \sim K2) is a 2-bit parallel input port. Each pin of the port is pulled down to V_{SS1} by an internal resistor, and the status of the port is fetched by the KSWITCH instruction.

Output Port (M1 \sim M4)

The output port (M1 \sim M4) is a 4-bit parallel output port. This port consists of data latches and buffers, and the contents of the data latches are rewritten by a matrix instruction.

Display Function

The MSM5055 is provided with a segment output terminal which can directly drive a 1/2 bias, 1/2 duty LCD, and the common drive output terminal COM1 and COM2. The segment drive circuit consists of the display data latch, multiplexer and driver. If the data is sent to the display data latch with a display instruction, the LCD drive waveform is output to the segment drive output terminal.

Time Base

The time base of the CPU is provided by connecting a 32.768 kHz crystal to the XT and \overline{XT} pins. One machine cycle is 122.1 μ s.

A hardware divider of up to 1 Hz is provided, enabling programs to implement a clock function by counting signals between 32 and 1 Hz.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage 1	V _{DD} - V _{SS1}	Ta = 25°C	-0.3 to +2.0	V
Supply Voltage 2	V _{DD} – V _{SS2}	Ta = 25°C	-0.3 to +4.0	v
Supply Voltage 3	V _{DD} - V _{EE}	Ta = 25°C	-0.3 to +4.0	V
Input Voltage	VIN1	Ta = 25°C	V _{SS1} -0.3 to +0.3	V
Storage Temperature	Tstg		-55 to 125	°C

OPERATING CONDITIONS

Parameter	Symbol	Limits	Unit
Operating Voltage	VDD-VSS1	1.25 to 1.65	v
Operating Temperature	Topr	-20 to 75	°C

DC CHARACTERISTICS

(VDD =0V, V_{SS_1} , $V_{EE} = -1.55V$, $V_{SS_2} = -3.0V$, $C_I = 30k\Omega$, $Ta = 25^{\circ}C$)

Parameter	Sumbol	0	4141		Limits		
Parameter	Symbol	Con	Min.	Тур.	Max.	Unit	
Power supply current	IDD			-	3.0	-	μA
Oscillation start voltage	-Vosc	Within 5 seconds V _{SS1} terminal		1.45	-	÷ —	v
	IOH1	$V_{OH_1} = -0.2V$		-4	-		3.5
Output current 1 COM	IOM ₁	$V_{OM_1} = V_{SS_1} \pm 0.$.2V	4/-4	-	÷	μA
	IOL1	$V_{OL_1} = -2.8V$		4	Ŧ	-	
Output current 2	IOH2	$V_{OH_2} = -0.2V$		-0.4	-		
SEGMENT	IOL ₂	$V_{OL_2} = -2.8V$	0.4	-		μΑ	
Output current 3	ІОН₃	$V_{OH_3} = -0.5V$	-10	-	-	μΑ	
AC2 LOAD, XTOUT	IOL ₃	$V_{OL_3} = -1.05V$	10	_			
Output current 4	IOH₄	V _{OH₄} = −0.5V	-100	_	_		
M1~M4	lOL₄	$V_{OL_4} = -1.0V$	1.5	-	12.7	μA	
Output current 5	lOH₅	V _{OH5} = −0.55V	$V_{SS_1} = -1.25V$ $V_{EE} = -2.4V$	-21.6	_	-83	
LD	lol₅	V _{OL5} = −1.15V	$V_{SS_2} = -2.4V$	1	-	-	μA
Output current 5	IOH₀	$V_{OH_6} = -0.4V$	$V_{SS_1} = VEE$ =-1.25V	-50	-	-	
BD	Юн₀	$V_{OL_6} = -0.8V$	-	5		μA	
Input current 1	Чн	V _{IH1} = 0V		1	10	.50	
S1~S4	1 _{L1}	$V_{ L_1} = -1.55V$	-	-	-0.2	μA	
Input current 2	liH2	$V_{IH_2} = 0V$	2.5	6	12		
K1~K₄	IIL2	$V_{1L_2} = -1.55V$	-	_	-0.2	μA	
Oscillator built-in capacitor	CD	-		-	20	_	pF

• MSM5055 •

MEASURING CIRCUIT

TYPICAL APPLICATION

DESCRIPTION OF INSTRUCTIONS

	Mnemonic	Instruction Code													Operation	
		13	12	11	10	9	8	7	6	5	4	З	2	I	ò	Operation
	ADD ACC, AP	0	0	0	0	0	Р	0	1	0	0		Α			$AP \leftarrow (AP) + (ACC)$
	ADD #D, AP	0	1	1	0	0	Ρ		()			Α			AP ← (AP) + D
	SUB ACC, AP	0	0	0	0	1	Ρ	0	1	0	0		Α	-		$AP \leftarrow (AP) - (ACC)$
Arithmetic operation	SUB #D, AP	0	1	1	0	1	Ρ		[)			Α			AP ← (AP) – D
oera	ADJUST N, AP	1	1	0	0	0	Ρ		N.	+ 1			A			AP ← N adjust {(AP)}
ic ol	CMP ACC, AP	0	0	0	0	1	Ρ	1	1	1	0	- 1 -	Α			(AP) – (ACC)
met	CMP #D, AP	0	1	0	1	1	Ρ		()			Α			(AP) – D
rith	INC AP	0	1	1	0	0	Ρ	0	0	0	1		Α			AP ← (AP) + 1
A	DEC AP	0	1	1	0	1	Ρ	0	0	0	1		Α			A ← (AP) – 1
	XOR ACC, AP	0	0	0	0	0	Ρ	0	1	1	1	~~	Α			$AP \leftarrow (AP) \forall (ACC)$
	XOR #D, AP	0	1	1	1	1	Ρ		()			Α			AP ← (AP) ★ D
	BIT ACC, AP	0	0	0	0	0	Ρ	1	1	1	0		A			(AP) V (ACC)
5	BIT #D, AP	0	1	0	1	0	Ρ		()			Α			(AP) V D
ratio	BIS ACC, AP	0	0	0	0	0	Ρ	0	1	1	0		A			AP V (ACC)
operation	BIS #D, AP	0	1	0	0	0	Ρ		I	5			Α			(AP) V D
Bit	BIC ACC, AP	0	0	0	0	1	Ρ	0	1	1	0		Α			AP A (ACC)
	BIC #D, AP	0	1	0	0	1	Ρ		1	5			Α			AP AD
ŧ	ASR AP	0	0	0	0	0	Ρ	0	0	1	1		Α			$(C) 0 \rightarrow (AP)^{-1}$
Shift	ASL AP	0	0	0	0	1	Ρ	0	0	1	1		Α			(C) ← (AP) ← 0
	CLZ	0	0	0	0	0	0	1	0	1	0	0	0 0	5	0	Z←0
ion	CLC	0	0	0	0	0	0	1	0	0	1	0	0 (5	0	C ← 0
era	CLA	0	0	0	0	0	0	1	0	1	1	0	0	2	0	Z ← 0, C ← 0
Flag operation	SEZ	0	0	0	0	1	0	1	0	1	0	0	0	D	0	Z ← 1
Fla	SEC	0	0	0	0	1	0	1	0	0	1	0	0	D	0	C ← 1
	SEA	0	0	0	0	1	0	1	0	1	1	0	0	C	0	Z←1,C←1
	MOV ACC, AP	1	1	1	1	0	Ρ	0	0	0	0	-	Α			AP ← (ACC)
ata transfer	MOV ACC, AX	1	1	1	1	0	0	0		Х			Α			AX (ACC)
tran	MOV #D, AP	0	1	1	1	0	Ρ		(D			Α		-	AP ← D
ata	MOV AP, ACC	1	1	1	1	1	Ρ	0	0	0	0		A			ACC (AP)
Δ	MOV AX, ACC	1	1	1	1	1	0	0		Х	-		Α		2	$ACC \leftarrow (AX)$
	JMP adrs	1	0	0	a 10	a,	a ₈	a,	a,	a₅	a₄	a ₃	a2 a	a ,	ao	PC ← adrs
0	JMP @AP	0	0	0	0	0	Ρ	1	1	0	1		A			PC ← (PC) + (AP) + 1
dmu	JMPIO @AP	0	0	0	0	1	Ρ	1	1	0	1		Α			PC ← (PC) + {(AP) ∧ 7H } +1
ר	BEQ +n BZE +n	0	0	0	1		0	0	1	0	n₄	n ₃	n ₂ 1	1	n _o	PC ← (PC)+n+1, if Z=1

• MSM5055 •-

DESCRIPTION OF INSTRUCTIONS (CONT.)

	Mnemonic		1	I	nst	ruc	tior		ode							Operation
		13	12	11	10	9	8	7	6	5	4	З	2	1	0	oporation
đ	BNE +n BNZ +n	0	0	0	1	1	0	1	1	0	n₄	n ₃	n ₂	n,	n _o	PC ← (PC)+n+1, if Z=0
dunc	BCS +n	Ó	0	0	1	1	0	0	0	0	n₄	n ₃	n ₂	n ₁	n _o	$PC \leftarrow (PC)+n+1$, if $C=1$
	BCC +n	0	0	0	1	1	0	1	0	0	n₄	n ₃	n ₂	n,	n _o	PC ← (PC)+n+1, if C=0
	SWITCH AP	1	1	0	1	0	Ρ	0	0	0	1		. /	Ą	2	AP \leftarrow INPUT PORT (S1 \sim S4)
	KSWITCH AP	1	1	0	1	0	Ρ	0	0	1	0			Ą		AP \leftarrow INPUT PORT (K1 \sim K4
ŧ	MATRIX AP	1	1	0	1	1	Ρ	0	0	1	0			Ą		OUTPUT PORT (M1 \sim M4) \leftarrow (AP)
Input/Output	MATRIX Mn	0	0	0	1	0	0	0	0	1	0	M₄	Мз	Ma	M 1	OUTPUT PORT (M1∼M4) ← Mn (n=1, 2, 3, 4)
put	XTCP ON/OFF	0	0	0	1	0	0	1	0	0	0	0	0	b١	b٥	XTOUT ON/OFF
-	FREQ N	0	0	0	1	0	0	1	1	0	1		I	N		Freq ← N
	BUZZER sound	0	0	0	1	0	0	1	1	0	0	bз	b۶	1	0	Mreg ← sound, Buzzer start
	BSO	0	0	0	1	0'	0	1	1	0	0	0	0	0	0	Buzzer stop
	LAMP ON/OFF	0	0	0	1	0	0	0	0	0	1	0	0	bı	b٥	LD ON/OFF
	DSP digit, AP	0	0	1	0	0	Ρ		di	git				A		Digit (Low part) ← (AP), (ACC
	DSPH digit, AP	0	0	1	0	1	Ρ		di	git				A		Digit (High part) ← (AP), (ACC
>	FORMAT AP	1	1	0	1	1	Ρ	0	0	1	1			A		FMT reg. ← (AP)
Display	FORMAT N	0	0	0	1	0	0	0	0	1	1		1	N		FMT reg. ← N
Ö	DSPF digit, AP	0	0	1	1	0	Ρ		di	git				A		Digit (Low part) ← (AP) via table
	DSPFH digit, AP	0	0	1	1	1	Ρ		di	git				A	0	Digit (High part) ← (AP) via table
	HALT	0	0	0	1	0	0	0	0	0	0	0	0	0	0	Halt
	INTENAB	0	0	0	1	0	0	1	0	1	1	1	0	0	0	Enable timer
	32/16	0	0	0	1	0	0	0	1	0	0	0	0	1	0	Enable timer
	INTDSAB 32/16	0	0	0	1	0	0	1	0	1	1	0	1	0	0	Disable timer
ers	INTMODE AP	0	0	0	1 1	0	0 P	0	1	0	0	0	-	-	1	AP ← Interrupt mode
Others	PAGE A0	1	1	0	1	1	-0	0	1	0	1	-		A A		Preg ← (A0)
0 8	PAGE AU PAGE N	0	0	0	1	0	0	0	1	0	1 1	00		<u>~</u> N		Preg - (AU)
-	ADRS AP	1				1		-								Areg ← (AP)
CPU Cont	ADRS AP	0	1	0	1			0 0	1	1	0	–		A N		Areg ← N
Q O	RATE AP	┢──	1		1	0		1	0		1	\vdash		A	-	Areg — N AP ← DIVIDER (8 Hz~1 Hz)
	RSTRATE	1						\vdash				1			0	DIVIDER (8 Hz \sim 1 Hz) \leftarrow 0
	BACKUP	0		0	1	0		1	0	0	1	<u> </u>		2 0		Backup ON/OFF
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	No operation