OKI semiconductor MSM5056

CMOS 4BIT SINGLE CHIP VERY LOW POWER MICROCONTROLLER WITH LCD DRIVER

GENERAL DESCRIPTION

The OKI MSM5056 is a low-power, high-performance single-chip microcontroller employing complementary metal oxide semiconductor technology. Integrated onto a single chip are a 4-bit ALU, 25K bits of mask programmable ROM, 360 bits of data RAM, crystal oscillator, voltage doubler, timer, LCD driver, input port, output port and overcharge protection circuit for connection to a solar cell.

The MSM5056 is widely used in electronic products requiring low power operation, for example, solar calculator watches and games.

FEATURES

- Low Power Consumption 3 μA Typical
- 1792 × 14 Internal ROM
- 90 × 4 Internal RAM
- 4 Input Port
- 4 Output Port
- 4 × 4 Key Matrix Input (K1~K4, M1~M4)
- 38 LCD Driver (1/2 Duty, 1/2 Bias, 88 Segment)

- 42 Instructions
- 1.5 V Operating Voltage (The solar cell can be connected.)
- 32.768 kHz Crystal Oscillator
- 122.1 µs Instruction Cycle
- –20 to 75°C Operating Temperature
- 68 pad die

FUNCTIONAL BLOCK DIAGRAM

• MSM5056 •

LOGIC SYMBOL

CHIP PAD LAYOUT

PIN DESCRIPTION

Designation	Function
V _{DD}	Circuit ground potential
V _{SS1}	Power source (-1.5 V)
V _{SC}	Solar cell connection terminal
V _{SS2}	Power source for LCD driver (–3.0 V) This terminal is connected to V _{DD} terminal through a 0.1 μ F capacitor.
VEE	Power source for internal logic (-1.5 to -3.0 V) This terminal is connected to V _{DD} terminal through a 0.1 μ F capacitor.
V _{CP} , V _{CM}	Booster capacitor connection terminals VCP terminal is connected to VCM terminal through a 0.1 μ F capacitor.
хт, хт	Input and output terminals of oscillator inverter, 32.768 kHz crystal is connected to these terminals.
T ₁ ~T ₅	Terminals to test internal logic, $T_1 \sim T_3$ and T_5 are pulled down to V_{SS_1} . T_4 is output. Test pins must be normaly open.
AC	Terminal to clear internal logic pulled down to V _{SS1} . After power is turned on, the MSM5056 must be reset by this terminal.
BD	Buzzer output
LD	Lamp output
VIN	Adjustment for solar cell cramp voltage This terminal is connected to V_{SS_1} terminal through 50 ~ 200 k Ω resistor.

MSM5056

FUNCTIONAL DESCRIPTION

A block diagram of the MSM5056 is given on page 111. Each block of logic will be briefly discussed. For more information, please refer to the MSM5056 user's manual.

Program ROM

The MSM5056 will address up to 1.75 K words of internal mask programmable ROM. Each word consists of 14 bits and all instructions are one word. The instructions are routed to a programmed logic array which generates the signals necessary for control of logic.

Data RAM

Data is organized in 4 bit nibbles. Internal data RAM consists of 90 nibbles.

The RAM is addressed by page address and column address. Normally page address is specified with the page register, but direct addressing is available at Page 0.

Column address is directly addressed by the operands of various instructions.

ALU

The ALU performs 4-bit parallel operation of RAM and AC contents, or RAM contents and an immediate digit. It sets or resets the flags (Z, C) depending on the condition.

Program Counter (PC)

The program counter is an 11-bit wide counter and specifies the address of the program ROM.

The PC is incremented by one at every execution of an instruction, and then specifies the next instruction to be executed. However, the contents of the PC are rewritten by the execution of a Jump or Branch instruction.

There is no boundary in the ROM, so a Jump or Branch instruction can be put anywhere in the ROM.

Input/Output Port

Input Port (K1 \sim K2)

The input port (K1 \sim K4) is a 4-bit parallel input port. Each pin of the port is pulled down to V_{SS1} by an internal resistor, and the status of the port can be fetched by an input instruction.

Output Port (M1 \sim M4)

The output port (M1 \sim M4) is a 4-bit parallel output port. This port consists of data latches and buffers. The contents of data latches are rewritten by an output instruction. A key matrix is used in combination with K1 to K4.

Display Function

The MSM5056 is provided with a segment output terminal which can directly drive a 1/2 bias, 1/2 duty LCD and common drive output terminals. COM1 and COM2. The segment drive circuit consists of the display data latch, multiplexer and driver. If the data is sent to the display data latch with the display instruction, the LCD drive waveform is output to the segment drive output terminal.

Time Base

Time base of the CPU is provided by connecting a 32.768 kHz crystal to the OSC1 and OSC3 pin. One machine cycle is 122.1μ s.

A hardware divider up to 1 Hz is provided enabling programs to implement and a clock function by counting signals between 16 and 1 Hz.

Solar Cell Overcharge Protection Circuit

When a solar cell is connected to prolong the usefull life of the battery, a resistor is inserted between the V_{IN} pin and V_{SS1} to adjust the overcharge protection voltage.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage 1	V _{DD} - V _{SS1}	Ta = 25°C	-0.3 to +3.0	V
Supply Voltage 2	V _{DD} - V _{SC}	Ta = 25°C	-0.3 to +3.5	V
Supply Voltage 3	V _{DD} - V _{SS2}	Ta = 25°C	-0.3 to +6.0	V
Supply Voltage 4	V _{DD} V _{EE}	Ta = 25°C	-0.3 to +6.0	V
Input Voltage	VIN1	Ta = 25°C	V _{SS1} -0.3 to +0.3	V
Storage Temperature	Tstg		-55 to 125	°C

OPERATING CONDITIONS

Parameter	Symbol	Limits	Unit
Operating Voltage	V _{DD} -V _{SS1}	1.25 to 1.65	v
Operating Temperature	Topr	-20 to 75	°C

DC CHARACTERISTICS

 $(V_{DD} = 0V, V_{SS_{1}}, V_{EE} = -1.55V, V_{SS_{2}} = -3.0V, C_{I} = 30k \Omega, C_{G} = 30pF, Ta = 25^{\circ}C)$

				Limits					
Parameter	Symbol	Condit	Min.	Тур.	Unit				
Operating voltage 1	-V _{SS1}	V _{SS1} terminal		1.25	1.55	2.0	V		
Operating voltage 2	-v _{sc}	V _{SC} terminal		0	2.0	3.0	V		
Power supply current	IDD	V _{SS1} terminal		-	3.0	-	μΑ		
Oscillation start voltage	-vosc	Within 10 seconds V _{SS1} terminal		1.45	-	-	v		
	ЮН	$V_{OH_1} = -0.2V$		-4	-	-	μA		
Output current 1 COM	IOM1	$V_{OM_1} = V_{SS_1} \pm 0.2$	4/-4	4/-4					
001	IOL1	$V_{OL_1} = -2.8V$		4	-	-			
Output current 2	IOH2	$V_{OH_2} = -0.2V$		-0.4	-	-			
SEGMENT	IOL2	$V_{OL_2} = -2.8V$		0.4	-	-	μΑ		
Output current 3	lOH₃	V _{SS1} , V _{EE} -1.25V	VOH₃0.4 V	-100	-	-			
M1~M4	IOL3	V _{SS2} -2.3V	V _{OL3} -0.85V	3	-	8	μA		
Output current 4	IOH4	$V_{OH_4} = -0.4V$		-50	-100	-100 -200			
BD	IOL4	$V_{OL_4} = -1.15V$		3	10	30	μΑ		
Input current	Чн₁	$V_{IN} = -0V$		5	10	15			
K1~K4	μLi	$V_{IN} = -1.55V$		-	_	-0.2	μA		
Oscillator built-in capacitor	CD			-	20	-	рF		
Solar battery cramp resistor	RIN	V _{SS1} = -1.8V V _{IN} terminal		50	-	200	kΩ		

• MSM5056 ----

MEASURING CIRCUIT

TYPICAL APPLICATION

DESCRIPTION OF INSTRUCTIONS

	Managaria					Ins	stru	ctic	on C	Cod	е					Onoration	
	Mnemonic	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Operation	
	ADD ACC, AP	0	0	0	0	0	Ρ	0	1	0	0		A			AP ← (AP) + (ACC)	
	ADD #D, AP	0	1	1	0	0	Ρ		0)		A			AP ← (AP) – D		
	ADC AP	0	0	0	0	0	Ρ	0	1	0	1		Α			AP ← Decimal adjust {(AP) + (ACC) + (C)}	
5	SUB ACC, AP	0	0	0	0	1	Ρ	0	1	0	0		A			AP ← (AP) – (ACC)	
erat	SUB #D, AP	0	1	1	0	1	Ρ		()			A			AP ← (AP) – D	
Arithmetic operation	SBC AP	0	0	0	0	1	Ρ	0	1	0	1		A			AP ← Decimal adjust {(AP) - (ACC) - (C)}	
Ĕ	CMP ACC, AP	0	0	0	0	1	Ρ	1	1	1	0		Α			(AP) — (ACC)	
Arit	CMP #D, AP	0	1	0	1	1	Ρ		0)			A			(AP) – D	
	INC AP	0	1	1	0	0	Ρ	0	0	0	1		A			AP ← (AP) + 1	
	DEC AP	0	1	1	0	1	Ρ	0	0	0	1		Ä			A ← (AP) - 1	
	XOR ACC, AP	0	0	0	0	0	Ρ	0	1	1	1		A			AP ← (AP) ★ (ACC)	
	XOR #D, AP	o	1	1	1	1	Ρ		()			Α			AP ← (AP) V D	
	BIT ACC, AP	0	0	0	0	0	Ρ	1	1	1	0		A			(AP) V (ACC)	
Ē	BIT #D, AP	0	1	0	1	0	Ρ		()			A			(AP) V D	
ratio	BIS ACC, AP	0	0	0	0	0	Ρ	0	1	1	0		A		AP ← (AP) V (ACC)		
Bit operation	BIS #D, AP	0	1	0	0	0	Ρ		[)			A			AP - (AP) V D	
Ē	BIC ACC, AP	0	0	0	0	1	Ρ	0	1	1	0		Α			$AP \leftarrow (AP) \Lambda(\overline{ACC})$	
	BIC #D, AP	0	1	0	0	1	Ρ	-	(2			A	,		AP ← (AP) Λ D	
Ŧ	ASR AP	0	0	0	0	0	Ρ	0	0	1	1		A			(C) 0 → (AP)	
Shift	ASL AP	0	0	0	0	1	Ρ	0	0	1	1		A	•		(C) ← (AP) ← 0	
	CLZ	0	0	0	0	0	0	1	0	1	0	0	0	0	0	Z ← 0	
б	CLC	0	0	0	0	0	0	1	0	0	1	0	0	0	0	C ← 0	
erat	CLA	0	0	0	0	0	0	1	0	1	1	0	0	0	0	Z ← 0, C ← 0	
Flag operation	SEZ	0	0	0	0	1	0	1	0	1	0	0	0	0	0	Z ← 1	
Flag	SEC	0	0	0	0	1	0	1	0	0	1	0	0	0	0	C ← 1	
	SEA	0	0	0	0	1	0	1	0	1	1	0	0	0	0	Z ← 1, C ← 1	
	MOV ACC, AP	1	1	1	1	0	Ρ	0	0	0	0		A			AP (ACC)	
	MOV ACC, AX	1	1	1	1	0	0	0		Х			A			$AX \leftarrow (ACC)$	
sfer	MOV #D, AP	0	1	1	1	0	Ρ			D		A			AP ← D		
tran	MOV AP, ACC	1	1	1	1	1	Ρ	0	0	0	0		A	1		ACC ← (AP)	
Data transfe	MOV AX, ACC	1	1	1	1	1	0	0		Х			A	1		ACC (AX)	
Δ	CHG AP	1	1	1	0	0	Ρ	0	0	0	0		A	1		(ACC) ←→ (AP)	
	CHG AX	1	1	1	0	0	0	0		Х			A	1		(ACC) ← (AX)	

• MSM5056 +-----

DESCRIPTION OF INSTRUCTIONS (CONT.)

			I	nst	ructi	ion	Co	de									Oceration	
	Mnemonic		12	11	10	9	8	7	6	5	4	3	2	1	I	0	Operation	
	JMP adrs	1	0	0	a ₁₀	a _e	a _e	a,	a ₆	a ₅	a4	a ₃	a 2	a	1	a 0	PC ← adrs	
	JMP @AP	0	0	0	0	0	Ρ	1	1	0	1			A			PC ← (PC) + (AP) + 1	
	JMPIO @AP	0	0	0	0	1	Ρ	1	1	0	1			A			PC ← (PC) + {(AP)∧7H } + +	
	BEQ +n BZE +n	0	0	0	1	1	0	0	1	0	n₄	n ₃	n₂	₂ n	1	n _o	$PC \leftarrow (PC) + n + 1$, if $Z = 1$	
dmn	BNE +n BNZ +n	0	0	0	1	1	0	1	1	0	n₄	n ₃	n₂	2 n	1	n _o	$PC \leftarrow (PC) + n + 1$, if $Z = 0$	
٦ ۲	BCS +n BLT +n	0	0	0	1	1	0	0	0	1	n₄	n ₃	n	₂ n	1	n _o	$PC \leftarrow (PC) + n + 1, \text{ if } C = 1$	
	BCC +n BGE +n	0	0	0	1	1	0	1	0	1	n₄	n ₃	n	₂ n	1	n _o	$PC \leftarrow (PC) + n + 1$, if $C = 0$	
	BGT +n	0	0	0	1	1	0	1	1	1	n4	n ₃	n	₂ n	1	n _o	$PC \leftarrow (PC) + n + 1$, if $Z = 0$ and $C = 0$	
	BLE +n	0	0	0	1	1	0	0	1	1	n4	n ₃	n,	₂ n	1	n _o	$PC \leftarrow (PC) + n + 1, \text{ if } Z = 1 \\ \text{or } C = 1$	
	INP Port, AP	1	1	0	1	0	Ρ		Po	ort				Α			AP ← (Port)	
Input/ Output	OUT AP, Por	t 1	1	0	1	1	Ρ	÷	P	ort				Α			Port ← (AP)	
	OUT #D, Por	t 0	0	0	1	0	0		P	ort				D			Port ← D	
lay	DSP digit, AF	, 0	0	1	0	0	Ρ		di	git				Α			digit ← (AP), (ACC)	
Disp	DSPF digit, A	(P 0	0	1	1	0	Ρ		di	git				A			digit ← (AP) via table	
ro	HALT	0	0	0	1	0	0	0	0	0	0	0	0) (0	0	Halt CPU	
CPU control Display	NOP	0	0	0	0	0	0	0	0	0	0	0	0) (0	0	No Operation	