OKI semiconductor MSM5126RS

2048-WORD x 8-BIT C-MOS STATIC RAM (E3-S-014-32)

GENERAL DESCRIPTION

The MSM5126RS is a 2048-word by 8-bit CMOS static RAM featuring 5V power supply operation and direct TTL input/output compatibility. Since the circuitry is completely static, external clock and refreshing operations are unnecessary, making this device very easy to use. The MSM5126RS is also a CMOS silicon gate device which requires very little power during standby (maximum standby current of 30µA) when there is no chip selection. Stored data is retained if the power voltage drops to 2V, thereby enabling battery back-up.

A byte system is adopted, and since there is pin compatibility with standard ultra-violet EPROMs, this device is ideal for use as a peripheral memory for microcomputers and data terminal units etc. In addition, CS and OE signals enable OR ties with the output terminals of other chips, thereby facilitating simple memory expansion and bus line control etc.

FEATURES

- Single 5V Supply
- Battery Back-up at 2V
- Operating temperature range Ta = -30°C to +85°C
- Low Power Dissipation

Standby; 1.0 μ A MAX T_a = 25°C 5.0 μ A MAX T_a = 60°C 30 μ A MAX T_a = 85°C Operation; 200 mW TYP

- High Speed (Equal Access and Cycle Time) MSM5126-20/25: 200 ns/250 ns MAX
- Direct TTL Compatible. (Input and Output)
- 3-State Output
- Pin Compatible with 16K EPROM (MSM2716) 16K NMOS SRAM (MSM2128)

STATIC RAM · MSM5126RS

TRUTH TABLE

Mode	CS	WE	OE	I/O Operation
Standby	н	x	x	High Z
	L	н	н	High Z
Read	L	н	L	DOUT
Write	L	L	x	DIN

X : H or L

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit	Conditions	
Supply Voltage	Vcc	-0.3 to 7.0	v	- Respect to GND	
Input Voltage	VIN	-0.3 to V _{CC} + 0.3	v		
Operating Temperature	Topr	-30 to 85	°C		
Storage Temperature	T _{stg}	-55 to 150	°C		
Power Dissipation	PD	1.0	w	Ta = 25° C	

RECOMMENDED OPERATING CONDITION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	
Supply Malage	Vcc	4.5	5	5.5	v	5V ± 10%	
Supply Voltage	∨ _{SS}		0		v		
Data Retention Voltage	∨ссн	2	5	5.5	v		
	⊻ін	2.2		V _{CC} + 0.3	v	5V ±10%	
Input Voltage	VIL	-0.3		0.8	v		
Output Load	CL			100	pF		
Output Load	TTL			1			

DC CHARACTERISTICS

 $(V_{cc} = 5V \pm 10\%, T_a = -30^{\circ}C \text{ to } +85^{\circ}C)$

Parameter Symbol		T . 0	MS	/25	11-14		
		Test Cond	Min.	Тур.	Max.	Unit	
Input Leakage Current	ILI I	VIN = 0 to VCC	-1		1	μA	
Output Leakage Current	۱LO	CS = VIH or OE = VIH VI/O = 0 to VCC	-5		5	μA	
Output	∨он	IOH = -1 mA		2.4			v
Voltage	VOL	IOL = 2.0 mA				0.4	V
		$CS \ge V_{CC} - 0.5V$	Ta = 25°C		0.05	1.0	
Standby	Iccs	$V_{CC} = 2V$ to 5.5V	Ta ≖ 60°C			5.0	μΑ
Supply		$V_1 = 0$ to V_{CC} $T_a = 85^{\circ}C$	1		30	1	
Current	ICCS1	CS = VIH t _{CYC} = Min. cycle			1	3	mA
Operating		CS = OV, VIN = VIH/V	IL IOUT = 0 mA		40	70	mA
Supply Current	ICCA	$\overline{\text{CS}} = 0\text{V}, \text{V}_{\text{IN}} = \text{V}_{\text{CC}}/6$	ND, IOUT = 0 mA		30	55	mA

AC CHARACTERISTICS

Test Condition

Parameter	Conditions
Input Pulse Level	V _{IH} = 2.4V, V _{IL} = 0.6V
Input Rise and Fall Times	10 ns
Input and Output Timing Reference Level	2.2V 0.8V
Output Load	CL=100 pF, 1 TTL Gate

READ CYCLE

 $(V_{cc} = 5V \pm 10\%, T_a = -30^{\circ}C \text{ to } +85^{\circ}C)$

D	Gumbal	MSM5126-20		MSM5126-25		Unit
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit
Read Cycle Time	tRC	200		250		ns
Address Access Time	tAC	-	200		250	ns
Chip Select Access Time	tCO		200		250	ns
Output Enable to Output Valid	tOE		100		100	ns
Chip Selection to Output Active	tCX	10		10		ns
Output Hold Time From Address Change	тона	10		10		ns
Output 3-state from Deselection	tOTD	0	80	0	80	ns

STATIC RAM · MSM5126RS

READ CYCLE

WRITE CYCLE

 $(V_{cc} = 5V \pm 10\%, T_a = -30^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	MSM5126-20		MSM5126-25		
Parameter		Min.	Max.	Min.	Max.	Unit
Write Cycle Time	twc	200		250		ns
Address to Write Setup Time	tAS.	0		0		ns
Write Time	tw	160		200		ns
Write Recovery Time	twR	10		10		ns
Data Setup Time	tDS	80		120		ns
Data Hold from Write Time	tDH	0		0		ns
Output 3-State from Write	тоту		80		80	ns

Notes: 1. A Write Cycle occurs during the overlap of a low CS and a low WE.

- 2. OE may be both high and low in a Write Cycle.
- 3. tAS is specified from CS or WE, whichever occurs last.
- 4. tw is an overlap time of a low CS and a low WE.
- 5. tWR, tDS and tDH are specified from CS or WE, whichever occurs first.
- 6. torw is specified by the time when DATA OUT is floating, not defined by output level.
- 7. When I/O pins are Data output mode, don't force inverse signal to those pins.

WRITE CYCLE

LOW VCC DATA RETENTION CHARACTERISTICS

 $(T_a = -30^\circ C \text{ to } +85^\circ C, \text{ unless otherwise noted})$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
V _{CC} for Data Retention	∨ссн	2			V	V _{IN} = 0V to V _{CC} , CS = V _{CC}
Data Retention Current	1ссн		0.05	30	μA	$V_{CC} = 2V$ to 5.5V, $V_I = 0V$ to V_{CC} $CS \ge = V_{CC} - 0.5V$
CS to Data Retention Time	tsu	0			ns	
Operation Recovery Time	tR	^t RC			ns	

CAPACITANCE

(Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input/Output Capacitance	C1/O		5	10	pF
Input Capacitance	CIN		5	10	pF

Note: This parameter is periodically sampled and not 100% tested.