OKI semiconductor MSM5165RS/JS

8,192-WORD x 8-BIT CMOS STATIC RAM (E3-S-017-32)

GENERAL DESCRIPTION

The MSM5165RS/JS is a 8192-word by 8-bit CMOS static RAM featuring 5V power supply operation and direct TTL input/output compatibility. Since the circuitry is completely static, external clock and refreshing operations are unnecessary, making this device very easy to use. The MSM5165RS/JS is also a CMOS silicon gate device which requires very low power during standby (standby current of 1mA) when there is no chip selection.

A byte system is adopted, and since there is pin compatibility with standard ultra-violet EPROMs, this device is ideal for use as a peripheral memory for microcomputers and data terminal units etc. In addition, \overline{CE}_1 , \overline{CE}_2 and \overline{OE} signals enable OR ties with the output terminals of other chips, thereby facilitating simple memory expansion and bus line control etc.

FEATURES

- Single 5V Supply
- 0° C ~ 70° C
- Low Power Dissipation Standby; 5.5 mW MAX Operation; 248 mW MAX
- High Speed (Equal Access and Cycle Time) 120 - 200 ns MAX
- Direct TTL Compatible. (Input and Output)
- 3-State Output
- Pin Compatible with 64K EPROM (MSM2764)
- 28-pin DIP PKG
- 32-pin PLCC

TRUTH TABLE

Mode	CE,	CE2	WE	ŌE	I/O Operation
	н	×	x	×	High Z
Standby	×	L	×	x	
	L	н	н	н	High Z
Read	L	н	н	L	DOUT
Wreite	L	н	L	×	DIN

X : H or L

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit	Conditions	
Supply Voltage	Vcc	-0.3 to 7.0	v	Respect to GND	
Input Voltage	VIN	-0.3 to V _{CC} + 0.3	v		
Operating Temperature	T _{opr}	0 to 70	°C		
Storage Temperature	T _{stg}	-55 to 150	°C		
Power Dissipation	PD	1.0	w	Ta = 25°C	

RECOMMENDED OPERATING CONDITION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	
Supply Valage	Vcc	4.5	5	5.5	v	5V ± 10%	
Supply Voltage	∨ _{SS}		0		v		
	VIH	2.2		V _{CC} + 0.3	v	5∨ ± 10%	
Input Voltage	VIL	-0.3		0.8	v] 5V ± 10%	
Output Load	CL			100	рF		
	TTL		1	1			

DC CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, T_a = 0^{\circ}C \text{ to } + 70^{\circ}C)$

Paramter Sy	Sumb at	MSM5165			Unit	Tan Ora Pala		
Paramter	Symbol	Min.	Тур.	Max.		Test Condition		
Input Leakage Current	ILI	-1		1	μΑ	VIN = 0 to VCC		
Output Leakage Current	۱LO	-1		1	μА	$\overline{CE}_{1} = V_{1H} \text{ or } CE_{2} = V_{1L} \text{ or}$ $\overline{OE} = V_{1H}$ $V_{1/O} = 0 \text{ to } V_{CC}$		
Output	∨он	2.4			V	IOH = -1 mA		
Voltage	VOL			0.4	V	I _{OL} = 2.1 mA		
Standby Supply	^I ccs		0.02	1	mA	$\overline{CE}_{1} \stackrel{\geq}{=} V_{CC} - 0.2V, CE_{2} \stackrel{\geq}{=} V_{CC} - 0.2V$ $V_{IN} = 0 \text{ to } V_{CC}$ $CE_{2} \stackrel{\leq}{=} 0.2V$ $V_{IN} = 0 \text{ to } V_{CC}$		
Current	ICCS1			3	mA	$\overline{CE}_{1} = V_{1H}, CE_{2} = V_{1L}$ t _{cyc} = Min, cycle		
Operating Supply	ICCA			1	mA	T _{CYC} = Min, cycle		
Current				15		$T_{CYC} = 1 \mu s$		

AC CHARACTERISTICS

Test Condition

Parameter	Conditions		
Input Pulse Level	V _{IH} =2.4V, V _{IL} =0.6V		
Input Rise and Fall Times	10 ns		
Input and Output Timing Reference Level	1.5V		
Output Load	CL=100 pF, 1 TTL Gate		

READ CYCLE

 $(V_{cc} = 5V \pm 10\%, T_a = 0^{\circ}C \text{ to } 70^{\circ}C)$

D	Sumbal	MSM5165-12		MSM5165-15		MSM5165-20		Unit
Parameter	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Onit
Read Cycle Time	^t RC	120		150		200		ns
Address Access Time	tAC		120		150		200	ns
Chip Enable Access Time	tCO	1	120		150		200	ns
Output Enable to Output Valid	tOE		60		70		90	ns
Chip Selection to Output Active	tCX	10		10		10		ns
Output Hold Time From Address Change	tона	10		15		20		ns
Output Enable to Output Active	tox	5		5		5		ns
Output 3-state from Output Disable	tOTD	0	40	0	50	0	60	ns
Output 3-state from Chip Deselectio	ⁿ ^t CTD	0	60	0	70	0	80	ns

READ CYCLE

WRITE CYCLE

 $(V_{cc} = 5V \pm 10\%, T_a = 0^{\circ}C \text{ to } +70^{\circ}C)$

		MSM5165-12		MSM5165-15		MSM5165-20		Unit
ltem	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle Time	twc	120		150		200		ns
Address to Write Setup Time	tAS	0		0		0		ns
Write Time	tw	70		90		120		ns
Write Recovery Time	twR	15		15		15		ns
Data Setup Time	tDS	50		60		80		ns
Data Hold from Write Time	^t DH	0		0		0		ns
Output 3-State from Write	tотw	0	40	0	50	0	60	ns
Chip Selection to End of Write	tCW	100		120		150		ns
Address Valid to End of Write	taw	100	1	120		150		ns
Output Active from End of Write	twx	5		5		5		ns

Notes: 1. A Write Cycle occurs during the overlap of a low \overline{CE}_1 , a high CE_2 and a low \overline{WE} .

2. OE may be both high and low in a Write Cycle.

3. t_{AS} is specified from \overline{CE}_1 , CE_2 or \overline{WE} , whichever occurs last.

4. tw is an overlap time of a low \overline{CE}_1 , a high CE_2 and a low \overline{WE} .

5. tWR, tDS and tDH are specified from CE1, CE2 or WE, whichever occurs first.

6. toTW is specified by the time when DATA OUT is floating, not defined by output level.

7. When I/O pins are Data output mode, don't force inverse signal to those pins.

WRITE CYCLE

CAPACITANCE

(Ta = 25°C, f = 1MHz)

Parameter	Symbol	Min.	Тур.	Ma×.	Unit
Input/Output Capacitance	C _{I/O}			8	pF
Input Capacitance	CIN			6	pF

Note: This parameter is periodically sampled and not 100% tested.