

16,384-WORD imes 4-BIT HIGH SPEED STATIC CMOS RAM

GENERAL DESCRIPTION

The MSM5188 is a static CMOS RAM organized as 16384 words by 4 bits. It features 5V single power supply operation and direct TTL input/output compatibility. Since the circuitry is completely static, external clock and refreshing operations are unnecessary which makes this device very easy to use.

The MSM5188 is offered in a 22-pin slim package.

FEATURES

- Single 5V supply (±10%)
- Completely static operation
- Operating temperature range Ta = 0 to 70°C
- Access time 45/55/70 ns MAX
- Direct TTL compatible (Input and output)
- 3-State output
- 22 pin DIP PKG (300 mil width)

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Condition	Value	Unit	
Supply Voltage	Vcc	7 0500 D 111 11	-0.3 to 7.0	V	
Input Voltage	VIN	$Ta = 25^{\circ}C$ Respect to V_{SS}	-0.3 to 7.0	V	
Power Dissipation	PD	Ta = 25°C	1.0	w	
Operating Temperature	Topr	_	0 to +70	°C	
Storage Temperature	Tstg	_	-55 to +150	°C	

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Supply Voltage	Vcc	_	4.5	5.0	5.5	v	
"H" Input Voltage	VIH	514 - 40%	2.2	-	V _{CC} +0.3	v	
"L" Input Voltage	VIL	$V_{\rm CC} = 5V \pm 10\%$	-0.3	-	0.8	v	
Output Load	CL	_	-	-	30	pF	
	N	TTL Load	-	-	5.5 V _{CC} +0.3 0.8		

* When pulse width is equal to or smaller than 20 ns, V_{IH} max = V_{CC} + 1.0V, V_{IL} min = -1.0V.

DC CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, Ta = 0^{\circ}C \text{ to } 70^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Leakage Current	ILI	$VI = 0$ to V_{CC}	-1		1	μΑ
Output Leakage Current	ILO	$\overline{CS} = V_{IH}$ VI/O = 0 to V _{CC}	-1		1	μΑ
"H" Output Voltage	V _{OH}	I _{OH} = -4 mA	2.4			v
"L" Output Voltage	VOL	I _{OL} = 8 mA			0.4	v
Standby Supply Current	lccs				2	mA
	ICCS1	$\overline{CS} = V_{IH}$ T _{CYC} = min cycle			18	mA
Operating Supply Current	ICCA	Min cycle			110	mA

CAPACITANCE

 $(Ta = 25^{\circ}C, f = 1 MHz)$

Parameter	Symbol	Condition	Min.	Max.	Unit
Input Capacitance	C ₁	$V_{I} = OV$		6	pF
I/O Capacitance	C _{I/O}	$V_{I/O} = 0V$		8	pF

AC CHARACTERISTICS TEST CONDITIONS

Parameter	Conditions
Input Pulse Level	$V_{IH} = 3.0V, V_{IL} = 0V$
Input Rise and Fall Times	5 ns
Input/Output Timing Reference Level	1.5V
Output Load	CL = 30 pF, 1 TTL GATE

READ CYCLE

 $(V_{CC} = 5V \pm 10\%, Ta = 0^{\circ}C \text{ to } 70^{\circ}C)$

Parameter	Symbol	5188-45		5188-55		5188-70		11-1-14
Parameter	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle Time	TRC		45		55		70	ns
Address Access Time	TAC		45		55		70	ns
Chip Select Access Time	тсо		45		55		70	ns
Chip Selection to Output Active	тсх	5		5		5		ns
Output Hold Time from Address Change	тона	5		5		5		ns
Output 3-state from Deselection	тотр	0	25	0	30	0	30	ns
Chip Selection to Power up Time	TPU	0		0		0		ns
Chip Deselection to Power Down Time	TPD	0	45	0	55	0	70	ns

Notes: 1. Read Condition: During the overlap of a low CS and a high WE.
 2. T_{CX} and T_{OTD} are measured ±200 mV from steady state voltage with specified loading in Figure 2.

Note: Cl includes scope and jig.

Figure 2 Output Load

WRITE CYCLE

 $(V_{CC} = 5V \pm 10\%, Ta = 0^{\circ}C \text{ to } 70^{\circ}C)$

Parameter	Symbol	5188-45		5188-55		5188-70		Linit
Faranieler	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle Time	тwс	45		55		70		ns
Chip Selection to End of Write	тсw	40		45		55		ns
Address Valid to End of Write	TAW	40		45		55		ns
Address to Write Setup Time	TAS	0		0		0		ns
Write Time	Τw	30		35		40		ns
Write Recovery Time	TWR	5		10		10		ns
Data Setup Time	TDS	25		25		30		ns
Data Hold from Write Time	трн	0		0		0		ns
Output 3-state from Write	тотw	0	25	0	25	0	30	ns
Output Active from End of Write	тоw	0		0		0		ns

Notes: 1. Write condition: During the overlap of a low CS and a low WE.

- 2. TAS is specified from a low CS or a low WE, whichever occurs last after the address is set.
- T_W is an overlap time of a low CS and a low WE.
 T_{WR}, T_{DS} and T_{DH} are specified from a high CS or a high WE, whichever occurs first.
- 5. TOTW and TOW are measured ±200 mV from steady state voltage with specified loading in Figure 2.
- 6. When I/O pins are Data output mode, don't force inverse input signals to those pins.

READ CYCLE TIMING 1

