OKI semiconductor MSM6052

CMOS 4BIT SINGLE CHIP LOW POWER MICROCONTROLLER FOR TELEPHONE

GENERAL DESCRIPTION

The OKI MSM6052 is low-power, high-performance single-chip 4-bit microcontroller employing complementary metal oxide semiconductor technology, especially designed for use in sophisticated telephone sets. Integrated onto a single chip are 4 bits of ALU, 28K bits of mask programmable ROM, 2560 bits of data RAM, programmable timer, oscillator, 12-bits of input port, 12-bits of output port and 4-bits of input/output port. In addition to these units, a DTMF generator is provided.

With the MSM6052, sophisticated telephone sets become feasible through a single chip instead of the conventional 3-chip configuration.

FEATURES

- Low Power Consumption 0.3mA Typical @3V (DTMF output off)
- 2048 × 14 Internal ROM
- 640 × 4 Internal RAM
- 3 × 4 Input Port
- 3 × 4 Output Port
- 1 × 4 Input/Output Port
- DTMF Generator
- Buzzer Sound Output
- 4-Bit Programmable Timer Applicable for Output of Dial Pulse

- Interrupt by Progammable Timer
- 5 Level Stack
- Power Down Mode
- 52 Instructions
- Instructions Useful for Data Management (Data Search and Block Data Transfer)
- 2.5 to 6.0V Operating Voltage
- 3.58 MHz Oscillator
- 17.9 μs Instruction Cycle
 - -20 to 75°C Operating Temperature
 - 28 Pin DIP or 40 Pin DIP

FUNCTIONAL BLOCK DIAGRAM

• MSM6052 •

PIN DESCRIPTION

.

Designation	Function
V _{DD}	Pource source
V _{SS}	Circuit ground potential
AC	Terminal to clear internal logic, pulled down to V _{SS} . After power is turned on, the MSM6052 must be reset by this terminal.
TEST	Terminal to test internal logic, pulled down to V _{SS} . This terminal must be open in normal operation.
хт, 🛛	Input and output terminals of oscillator inverter. 3.58 MHz ceramic resonator is connected to these terminals.
HS	Input terminal connected to the hook switch, pulled up tp V _{DD} .
DP OUT	Output terminal of dial pulse. Dial pulse rate (10 pps or 20 pps) and Make Break ratio (40% or 33 %) can be selected by software.
DTMF OUT	Output terminal of DTMF signal
BD	Output terminal of buzzer sound
32 kHz	Output terminal of 32 kHz clock
$\begin{array}{l} R_1 \sim R_4 \\ R_5 \sim R_8 \end{array}$	Input port pulled down to V _{SS} .
11~14	Input port having clocked pull-down resistor to $V_{SS}.$ Only when this port is accessed, pull-down resistors are connected to this port.
$\begin{array}{c} C_1 \sim C_4 \\ O_1 \sim O_4 \end{array}$	Output port
101~i04	Tri-state bidirectional port
IOE	Output terminal When IO_4 is accessed, input completion signal (when read) or load signal (when written) is output from IOE terminal.

• MSM6052 •

FUNCTIONAL DESCRIPTION

A block diagram of the MSM6052 is given on page 129. Each block of logic will be briefly discussed. For more information, please refer to the MSM6052 user's manual.

Program ROM

The MSM6052 will address up to 2 K words of internal mask programmable ROM. Each word consists of 14-bits and all instructions are one word. The instructions are routed to a programmed logic array which generates the signals necessary for control of logic.

Data RAM

Data is organized in 4-bit nibbles. Internal data RAM consists of 640 nibbles.

All locations are addressed by 10-bit address registers (AR₁, AR₂), 2-bit bank register (B), 4-bit page register (P) or a part of the instruction's operand.

ALU

The ALU performs a 4-bit parallel operation on RAM and ACC contents, or on RAM contents and an immediate digit. It sets or resets the three flags (Z, C, G) depending on the condition.

Program Counter (PC)

The program counter is an 11-bit wide counter that specifies the address of program ROM.

The PC is incremented by one at every execution of the instruction, and then specifies the next instruction to be executed. However, the contents of the PC are rewritten by the execution of a Jump, Call or Branch instruction.

As there is no boundary in the ROM, and a Jump, Call or Branch instruction can be put anywhere in the ROM.

Stack

The MSM6052 has a 5 level stack apart from the data RAM. The contents of the PC are loaded into stack when a Call instruction is executed or an interrupt is generated. Nesting of subroutines within subroutines can continue up to 4 times, including the interrupt.

Input Port

Port (R1 \sim R4)

4-bit input port. Each pin of the port is pulled down to V_{SS} by an internal resistor, and status of the port is fetched by an input instruction.

Port (R5 ~ R8)

4-bit input port. Each pin of the port is pulled down to V_{SS} by an internal resistor, and the status of the port is fetched by an input instruction.

Port (11 ~ 14)

4-bit input port. Each pin of the port is pulled down to V_{SS} by an internal resistor and transistor. Only when it is desired to fetch status of the port, input current flows through these pins. Status of the port is fetched by an input instruction.

Output Port

Port (C1 \sim C4)

4-bit output port. These ports consist of data latches and buffers, and the contents of the data latches are rewritten by an output instruction.

Port (01 ~ 04)

4-bit output port. This port consists of data latches and buffers, and the contents of the data latches are rewritten by an output instruction.

Electrical characteristics of O3 and O4 are different from those of O1 and O2 O3 and O4 of the ports are used as XMIT MUTE and MUTE normally.

Port (EO1 ~ EO4)

4-bit output port. This port consists of data latches and buffers, and the contents of data latches are rewritten by an output instruction.

Input/Output Port

Port (IO1 ~ IO4)

4-bit bidirectional port. This port consists of data latches, output buffers and input buffers. The contents of the data latches are rewritten by an output instruction, and status of the port is fetched by an input instruction.

Address Registers (AR1, AR2)

The address registers are used to specify the 10-bit address of data RAM, when a data search instruction (RDAR) or block data transfer instruction (MVAR) is executed.

This register is an up/down counter, and is incremented or decremented by 1 with execution of the instruction.

Timing Generator

By connecting a 3.58 MHz ceramic resonator to the XT and \overline{XT} terminal, the timing generator generates a basic timing signal to control the MSM6052.

The MSM6052 can operate in 2 modes, normal operating mode and power down mode. STOP instruction is used to place the MSM6052 in the power down mode. The oscillation stops and all functions are stopped. However, the contents of RAM and all registers are maintained.

Programmable Timer

The programmable timer consists of a 4-bit down counter and a 1/100 prescaler.

Any of a 7990.1 Hz clock, 1997.5 Hz clock and 998.8 Hz clock is input to the 1/100 prescaler. Output of the 1/100 prescaler decrements the 4-bit down counter by 1.

When the contents of the 4-bit down counter is decremented to 0, the programmable timer generates an interrupt.

This programmable timer can be used as a dial pulse generator. The dial pulse rate (10 pps, 20 pps) and Make/Break ratio (40%, 33%) of the

dial pulse which the programmable timer generates are selectable.

DTMF Circuit

DTMF circuit is used to generate a DTMF signal. 12 kinds of DTMF signal (0 to 9, #, *) can be output by an output instruction.

BD Circuit

The BD circuit generates the square wave which can be used as the confirmation sound, warning sound and so on. 15 kinds of sound (4.66 to 0.82 kHz) are output by an output instruction specifying the frequency.

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	V _{DD}	Ta = 25°C	-0.3 to 7.0	v
Input Voltage	VI	Ta = 25°C	-0.3 to V _{DD} +0.3	V
Output Voltage	Vo	Ta = 25°C	-0.3 to V _{DD} +0.3	v
Storage Temperature	Tstg	-	-55 to 125	°C
Power Dissipation	PD	Ta = 25°C	200	mW

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

Parameter	Symbol	Limits	Unit
Operating Voltage	V _{DD}	2.5 to 6.0	v
Memory Retension Voltage	VDDM	1.2 to 6.0	v
Operating Temperature	Topr	-20 to 75	°C

DC CHARACTERISTICS

 $(VDD = 3V, Ta = -20 \text{ to } 75^{\circ}C)$

Descenden					Limits		
Parameter	Symbol		onditions	Min.	Тур.	Max.	Unit
"H" Input Voltage		V _{DD} =3V		2.2	-	-	V
H input voltage	VIH	V _{DD} =6V		4.4	-	-	v
"L" Input Voltage		V _{DD} =3V		-	-	0.8	V
L input voltage	VIL	V _{DD} =6V		-	-	1.6	v
"H" Output Current (1)	ЮН	O3, O4	V _{OH} =2.6V	-200	-	-	μA
"L" Output Current (1)	IOL1	DP OUT	V _{OL} =0.4V	500	-	-	μA
"H" Output Current (2)	IOH ₂	C1~C4	V _{OH} =2.6V	-1	-	-	mA
"L" Output Current (2)	IOL2	01~04	V _{OL} =0.4V	10	-	-	μA
"H" Output Current (3)	lOH₃	01, 02, BD	V _{OH} =2.6V	-20	0.00	-	μA
"L" Output Current (3)	IOL3	01, 02, BD	V _{OL} =0.4V	10	-	-	μA

DC CHARACTERISTICS (CONT.)

Descenter						41-14	
Parameter	Symbol	Cond	itions	Min.	Тур.	Max.	Unit
"H" Output Current (4)	IOH₄	₀₁ ~ ₀₄ _{0E}	V _{OH} = 2.6V	-150	1		μA
"L" Output Current (4)	IOL4	$E_{O_1} \sim E_{O_4}$	V _{OL} = 0.4V	300	-	-	μA
"H" Output Current (5)	IOH₅	32 kHz	VOH=2.6V	-40	-	-	μA
"L" Output Current (5)	lOL₅	32 KHZ	V _{OL} =0.4V	25	-	-	μA
Pull-up Resistance	RUP	HS		17	-	150	kΩ
Pull down Resistance (1)	Rdwon 1	$R_1 \sim R_8$		33	-	300	kΩ
Pull down Resistance (2)	Rdwon 2	$I_1 \sim I_4$, AC, TEST		10	4	100	kΩ
Input Leak Current	الد ت	1 ₀₁ ~1 ₀₄	$\begin{array}{l} 0 \leq V_{\text{IN}} \leq V_{\text{DD}} \\ V_{\text{DD}} = 2.5 \text{ to } 6.0 \end{array}$	-	1	±2	μA
Current	IDDP	DTMF output	V _{DD} = 3V	-	0.3	0.6	mA
Consumption (1)	-	off	V _{DD} = 6V	-	1.2	2.4	mA
Current	IDDT	DTMF output	V _{DD} = 3V	-	1.2	2.4	mA
Consumption (2)		on	V _{DD} =6V	-	3.5	7.0	mA
Memory retention	IDDM	ON HOOK	Ta=25°C	-	0.01	0.2	μA
Current		V _{DD} =2.5V	Ta=-20to75°C	-	-	2	μA

AC CHARACTERISTICS

(VDD = 3V, Ta = -20 to 75°C)

	0	0			Limits		
Parameter	Symbol	Condi		Min.	Тур.	Max.	Unit
Key Input Time	T _{KIN}	V _{DD} =2.5 to 6.0V		33		-	ms
			V _{DD} =2.5V	150	250	350	
Tone Output Voltage	VOUT	Row only Rլ =1 kΩ	V _{DD} =4.0V	200	350	570	m∨
		E	V _{DD} =6.0V	300	480	850	rms
High/Low Level Ratio	dBCR	V _{DD} =2.5 to 6.0V	· · · · ·	1	2	3	dB
Distortion Ratio	%DIS	R _L =1 kΩ		-	1	5	%
Rise/Fall Time (1)	tTLH1	O₃, O₄, DP OUT		-	-	0.5	_
Rise/Fail Fille (1)	t _{THL1}	CL=50 pF		-	-	0.5	μS
Rise/Fall Time (2)	tTLH₂	C1 ~ C4		_	-	0.5	
	t _{THL2}	CL=50 pF		-	-	10	μS
Rise/Fall Time (3)	t⊤LH₃	O1, O2, BD, 32 kHz		-	-	5	
	t⊤HL₃	CL=50 pF		-	-	10	μS
Rise/Fall Time (4)	t⊤LH₄	101~104, 10E, EO1	~ EO4	-	-	1	
	t⊤HL₄	CL=50 pF		-	-	1	μS

DESCRIPTION OF INSTRUCTIONS

	Mnemonic				nst	ruc	ctio	n Co	ode							Operation
	whenome	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Operation
	ADD ACC, AP	0	0	0	0	0	Ρ	0	1	0	0		A	<u> </u>		AP ← (AP) + ACC
	ADD #D, AP	0	1	1	0	0	Ρ		C)			A	1		AP ← (AP) + D
<u>o</u>	ADC AP	0	0	0	0	0	Ρ	0	1	0	1		A	١.		$AP \leftarrow (AP) + ACC + C$
Arithmetic and logic	SUB ACC, AP	0	0	0	0	1	Ρ	0	1	0	0		A	1		AP ← (AP) - ACC
anc	SUB #D, AP	0	1	1	0	1	Ρ		0)			A	\		AP ← (AP) – D
etic	SBC AP	0	0	0	0	1	Ρ	0	1	0	1		A	۱		$AP \leftarrow (AP) - ACC - C$
Ę	CMP ACC, AP	0	0	0	0	1	Ρ	1	1	1	0		A			(AP) - ACC
Ari	CMP #D, AP	0	1	0	1	1	Ρ		0)			A	١.		(AP) – D
	XOR ACC, AP	0	0	0	0	0	Ρ	0	1	1	1		A	١.		AP ← (AP) ♥ ACC
	XOR #D, AP	0	1	1	1	1	Ρ		0)			A		_	AP ← (AP) ★D
	BIT ACC, AP	0	0	0	0	0	Ρ	1	1	1	0		A	1		(AP) V ACC
E	BIT #D, AP	0	1	0	1	0	Ρ		0)			F	1		(AP) V D
operation	BIS ACC, AP	0	0	0	0	0	Ρ	0	1	1	0		F	1		AP ← (AP) V ACC
ope	BIS #D, AP	0	1	0	0	0	Ρ		0)			ŀ	1		AP ← (AP) V D
Bit	BIC ACC, AP	0	0	0	0	1	Ρ	0	1	1	0		A	۱.		AP ← (AP) ∧ ACC
	BIC #D, AP	0	1	0	0	1	Ρ		0	2			F	1		$AP \leftarrow (AP) \land \overline{D}$
	ROR AP	0	0	0	0	0	Ρ	0	0	1	0		ŀ	1		└─ (AP) → C ─
Rotate	ROL AP	0	0	0	0	1	Ρ	0	0	1	0		F	١		
Bo	ASR AP	0	0	0	0	0	Ρ	0	0	1	1		F	4		$0 \rightarrow (AP) \rightarrow C$
	ASL AP	0	0	0	0	1	Ρ	0	0	1	1		F	4		C ← (AP) ← 0
	SEZ	0	0	0	0	1	0	1	0	1	0	0	0	0	0	Z ← 1
	CLZ	0	0	0	0	0	0	1	0	1	0	0	0	0	0	Z ← 0
5	SEC	0	0	0	0	1	0	1	0	0	1	0	0	0	0	C ← 1
erati	CLC	0	0	0	0	0	0	1	0	0	1	0	0	0	0	C ← 0
Flag operation	SEG	0	0	0	0	1	0	1	0	0	0	0	0	0	0	G ← 1
Flag	CLG	0	0	0	0	0	0	1	0	0	0	0	0	0	0	G ← 0
	SEA	0	0	0	0	1	0	1	0	1	1	0	0	0	0	Z ← 1, C ← 1, G ←1
	CLA	0	0	0	0	0	0	1	0	1	1	0	0	0	0	Z ← 0, C ← 0, G ← 0
	MOV ACC, AP	1	1	1	1	0	1	0	0	0	0		ŀ	٩		AP ← ACC
fer	MOV ACC, AX	1	1	1	1	0	0			Х			ŀ	١_		AX — ACC
Data transfer	MOV #D, AP	0	1	1	1	0	Ρ		(2			ŀ	١		AP ← D
ta tr	MOV AP, ACC	1	1	1	1	1	1	0	0	0	0		1	۹		ACC ← (AP)
Da	MOV AX, ACC	1	1	1	1	1	0			Х			/	٩		$ACC \leftarrow (AX)$
	CHG AP	1	1	1	0	0	1	0	0	0	0		1	A		(AP) ↔ ACC

• MSM6052 •-----

DESCRIPTION OF INSTRUCTIONS (CONT.)

	Magmonia				Inst	ruc	tior	n Co	ode							
	Mnemonic	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Operation
	CHG AX	1	1	1	0	0	0			х			A			
	RDAR	1	1	0	0	0	0	0	0	0	0	0	0	0	0	ACC ← (AR 1)
	RDAR + ()	1	1	0	0	0	0	0	0	1	D/I	0	0	0	0	ACC \leftarrow (AR 1), AR 1 \leftarrow AR 1 \pm 1
	RDAR + (–), Z	1	1	0	0	0	0	0	1	0	D/I	0	0	0	0	ACC \leftarrow (AR ₁) if (AR ₁)=0 then PC \leftarrow PC + 1 else AR ₁ \leftarrow AR ₁ ±1, repeat
	RDAR + (), N	1	1	0	0	0	0	1	0	0	D/I	0	0	0	0	ACC \leftarrow (AR ₁) if (AR ₁) \neq 0 then PC \leftarrow PC + 1 else AR ₁ \leftarrow AR ₁ ± 1, repeat
	RDAR + (–), Z, L	1	1	0	0	1	0	0	1	0	D/I	0	0	0	0	ACC \leftarrow (AR i), L \leftarrow L - 1 if (AR i)=0 or L=0 then PC \leftarrow PC+1 else AR i \leftarrow AR i \pm 1, repeat
	RDAR + (–), N, L	1	1	0	0	1	0	4	0	0	D/I	0	0	0	0	ACC \leftarrow (AR ₁), L \leftarrow L - 1 if (AR ₁) \neq 0 or L=0 then PC \leftarrow PC + 1 else AR ₁ \leftarrow AR ₁ \pm 1, repeat
ē	MVAR	1	1	0	1	0	0	0	0	0	0	0	0	0	0	AR₂ ← (AR 1)
Data transfer	MVAR + (-)	1	1	0	1	0	0	0	0	1	D/I	0	0	0	0	$\begin{array}{l} AR_2 \leftarrow (AR_1), \\ AR_1 \leftarrow AR_1 \pm 1, AR_2 \leftarrow AR_2 \pm 1 \end{array}$
Data	MVAR + (-), Z	1	1	0	1	0	0	0	1	0	D/I	0	0	0	0	$AR_2 \leftarrow (AR_1),$ if $(AR_1)=0$ then PC \leftarrow PC +1 else $AR_1 \leftarrow AR_1 \pm 1,$ $AR_2 \leftarrow AR_2 \pm 1,$ repeat
	MVAR + (-), N	1	1	0	1	0	0	1	0	0	D/I	0	0	0	0	$AR_{2} \leftarrow (AR_{1})$ if (AR_{1}) \neq 0 then PC \leftarrow PC + 1 else AR_{1} \leftarrow AR_{1} \pm 1, AR_{2} \leftarrow AR_{2} \pm 1, repeat
	MVAR + (-), L	1	1	0	1	1	0	0	0	0	D/I	0	0	0	0	$AR_2 \leftarrow (AR_1), L \leftarrow L - 1$ if L=0 then PC \leftarrow PC + 1 else AR_1 \leftarrow AR_1 \pm 1, AR_2 ← AR_2 ± 1, repeat
	MVAR + (), Z, L	1	1	0	1	1	0	0	1	0	D/I	0	0	0	0	$AR_2 \leftarrow (AR_1), L \leftarrow L - 1$ if (AR_1)=0 or L=0 then PC \leftarrow PC +1 else AR_1 \leftarrow AR_1 \pm 1, AR_2 \leftarrow AR_2 \pm 1, repeat
	MVAR + (), N, L	1	1	0	1	1	0	1	0	0	D/I	0	0	0	0	$AR_2 \leftarrow (AR_1), L \leftarrow L - 1$ if $(AR_1) \neq 0$ or $L=0$ then PC \leftarrow PC +1 else $AR_1 \leftarrow AR_1 \pm 1$, $AR_2 \leftarrow AR_2 \pm 1$, repeat
ne	CALL adrs	1	0	1	a ,,	a,	a _s	a,	a ₆	a,	a₄	a ₃	a ₂	a,	a _o	STACK ← (PC), PC ← adrs
outi	RET	0	0	0	0	0	0	1	1	0	0	0	0	0	0	PC ← (STACK) + 1
Sub routine	RTI	0	0	0	0	1	0	1	1	0	0	0	0	0	0	$PC \leftarrow (STACK) \text{ or} \\ PC \leftarrow (STACK) + 1$

DESCRIPTION OF INSTRUCTIONS (CONT.)

					Inst	truc	tio	n C	ode							
	Mnemonic	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Operation
	JMP adrs	1	0	0	a 10	a,	a _s	a,	a,	a₅	a4	a ₃	a2	a 1	a _o	PC ← adrs
dmuL	JMP @AP	0	0	0	0	0	Ρ	1	1	0	1		A	1		PC (PC) + (AP) + 1
7	JMPIO @AP	0	0	0	0	1	Ρ	1	1	0	1		A	-		PC ← (PC) + {(AP) ∧ 7H} +1
	BEQ n (BZE n)	1	1	1	0	1	Ρ	0	1	0	n4	n ₃	n₂	n ₁	n _o	if Z=1 then $PC \leftarrow PC - n$ or $PC \leftarrow PC + n + 1$ else $\leftarrow PC \leftarrow PC + 1$
	BNE n (BNZ n)	1	1	1	0	1	Ρ	1	1	0	n₄	n ₃	n₂	n,	n _o	if Z=0 then $PC \leftarrow PC - n$ or $PC \leftarrow PC + n + 1$ else $PC \leftarrow PC + 1$
	BCS n	1	1	1	0	1	Ρ	0	0	0	n₄	n ₃	n ₂	n,	n _o	if C=1 then PC \leftarrow PC -n or PC \leftarrow PC + n + 1 else PC \leftarrow PC +1
ch	BCC n	1	1	1	0	1	Ρ	1	0	0	n4	n ₃	n ₂	n,	n _o	if C=0 then PC \leftarrow PC $-$ n or PC \leftarrow PC+n+1 else PC \leftarrow PC +1
Branch	BGT n	1	1	1	0	1	Ρ	0	0	1	n₄	n ₃	n ₂	n,	n _o	if G=1 then PC \leftarrow PC – n or PC \leftarrow PC + n + 1 else PC \leftarrow PC +1
	BLE n	1	1	1	0	1	Ρ	1	0	1	n ₄	n ₃	n ₂	n ₁	n _o	if G=0 then PC \leftarrow PC - n or PC \leftarrow PC +n+1 else PC \leftarrow PC +1
	BGE n	1	1	1	0	1	Ρ	o	1	1	n ₄	n ₃	n ₂	n,	n _o	if G=1 or Z=1 then PC \leftarrow PC $-$ n or PC \leftarrow PC+n+1, else PC \leftarrow PC +1
	BLT n	1	1	1	0	1	Р	1	1	1	n₄	n ₃	n ₂	n,	n _o	if G=0 and Z=0 then PC \leftarrow PC $-$ n or PC \leftarrow PC+n+1 else PC \leftarrow PC+1
+	IN PORT, AP	0	0	0	1	0	Ρ		F	Ľ			F	1		AP ← (PORT)
Input/ Output	OUT AP, PORT	0	0	1	0	Рн	Ρ		F	Ľ			4	۱		PORT (AP)
ΞŌ	OUT #D, PORT	0	0	1	1	PH	0		F	Ľ			0)		PORT - D
	STOP	0	0	1	1	1	0	0	0	0	0	0	0	0	0	Stop system clock
S	HALT	0	0	1	1	1	0	0	0	0	1	0	0	0	0	Halt CPU
others	ACT	0			1	1		L	0		0	_	0			Activate CPU
-	EI	0	0	1	1	1	0	0	1	1	0	1	0	0	0	Enable timer interrupt
CPU control and	DI	0	0	1	1	1	0	0	1	1	0	0	1	0	0	Disable timer interrupt
cont	ET	0	0	1	1	1	0	0	1	1	0	0	0	1	0	Enable timer activate
PUC	DT -	0	0	1	1	1	0	0	1	1	0	0	0	0	1	Disable timer activate
ö	EC	0	0	1	1	1	0	0	1	1	1	1	0	0	0	Enable output port (C1~C4)
	DC	0	0	1	1	1	0	0	1	1	1	0	1	0	0	Disable output port (C1~C4)

• MSM6052 •-

DESCRIPTION OF INSTRUCTIONS (CONT.)

	Magnania				Inst	truc	tio	n C	ode	•						Operation			
	Mnemonic	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Operation			
	ОМ	0	0	1	1	1	0	0	1	1	1	0	0	1	0	Set I/O port (IO1~IO4) to output mode			
others	IM a	0	0	1	1	1	0	0	1	1	1	0	0	0	1	Set I/O port (IO1~IO4) to input mode			
and	RST	0	0	1	1	1	0	1	0	0	1	0	0	0	0	Reset divider			
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	No operation			

ĺ