OKI semiconductor MSM6352

CMOS 4BIT SINGLE CHIP LOW POWER MICROCONTROLLER FOR TELEPHONE

GENERAL DESCRIPTION

The OKI MSM6352 is a low-power, high-performance single-chip 4-bit microcontroller employing complementary metal oxide semiconductor technology, especially designed for use in sophisticated telephone sets. Integrated onto a single chip are a 4-bit ALU, 28K bits of mask programmable ROM, 2560 bits of data RAM, programmable timer, oscillator, 12-bits of input port, 12-bits of output port and 4-bits of input/output port. In addition to these units, a DTMF generator is provided.

With the MSM6352, sophisticated telephone sets become feasible through a single chip instead

FEATURES

- Low Power Consumption 1.8mA Typical @3V (DTMF output off)
- 2048 × 14 Internal ROM
- 640 × 4 Internal RAM
- 3 × 4 Input Port
- 3 × 4 Output Port
- 1 × 4 Input/Output Port
- DTMF Generator (Single Tone Mode or Dual Tone Mode)
- Buzzer Sound Output
- 4 Bits Programmable Timer Applicable for Output of Dial Pulse
- Watch Dog Timer
- On Hook Dialing and Off Hook Dialing Function

- Interrupt Programmable Timer-Interrupt Real Time Interrupt
- 5 Level Stack
- Power Down Mode
- 52 Instruction Set
- Instructions Useful for Data Management (Data Search and Block Data Transfer)
- 2.0 to 5.5V (2.2 to 5.5V at TONE MODE) Operating Voltage
- Low Voltage Detector
- 3.58 MHz Oscillator
- 17.9 μs Instruction Cycle
- -20 to 75°C Operating Temperature
- 28 Pin DIP. 40 Pin DIP or 44 Pin FLAT
- Software Compatibility with MSM6052

FUNCTIONAL BLOCK DIAGRAM

------ • MSM6352 •

PIN DESCRIPTION

Designation	Function
V _{DD}	Pource source
V _{SS}	Circuit ground potential
AC	Terminal to clear internal logic, pulled down to V_{SS} . After power is turned on, the MSM6052 must be reset by this terminal.
TEST	Terminal to test internal logic, pulled down to V _{SS} . This terminal must be open in normal operation.
хт, 🛛	Input and output terminals of oscillator inverter. 3.58 MHz ceramic resonator is connected to these terminals.
HS	Input terminal connected to the hook switch, pulled up tp V _{DD} .
DP OUT	Output terminal of dial pulse. Dial pulse rate (10 pps or 20 pps) and Make Break ratio (40% or 33 %) can be selected by software.
DTMF OUT	Output terminal of DTMF signal
BD	Output terminal of buzzer sound
32 kHz	Output terminal of 32 kHz clock
$\begin{array}{l} \mathbf{R}_1 \sim \mathbf{R}_4 \\ \mathbf{R}_5 \sim \mathbf{R}_8 \end{array}$	Input port pulled down to V _{SS} .
11~14	Input port having clocked pull-down resistor to V_{SS} . Only when this port is accessed, pull-down resistors are connected to this port.
$\begin{array}{c} C_1 \sim C_4 \\ O_1 \sim O_4 \end{array}$	Output port
101~104	Tri-state bidirectional port
IOE	Output terminal When IO ₁ \sim IO ₄ is accessed, input completion signal (when read) or load signal (when written) is output from IOE terminal.

FUNCTIONAL DESCRIPTION

A block diagram of the MSM6352 is given on page 149. Each block of logic will be briefly discussed. For more information, please refer to the MSM6352 user's manual.

Program ROM

The MSM6352 will address up to 1 K words of internal mask programmable ROM. Each word consists of 14-bits and all instructions are one word. The instructions are routed to a programmed logic array which generales the signals necessary for control of logic.

Data RAM

Data is organized in 4-bit nibbles. Internal data RAM consists of 640 nibbles.

All locations are addressed by 10-bit address registers (AR_1, AR_2) , 2-bit bank register (B), 4-bit page register (P) or a part of the instruction's operand.

Program Counter (PC)

The PC is an 11-bit counter to specify the ROM's address. The PC is normally incremented by one by every execution of the instruction, and then specifies the next instruction to be executed. However, Jump, Conditional branch, and Subroutine instructions are exceptions.

When the JMP adrs or CALL adrs instruction is executed, all of the PC contents are rewritten, so jump can be done to any address of the ROM.

Bank Register (B)

The bank register is a 2 bits register which specifies the bank of the RAM. Read/Write operation is performed by the Input/Output instruction.

Page Register (P)

The page register is a 4 bits register which specifies the page of the RAM. Read/Write operation is performed by the Input/Output instruction.

Address Register 1 (AR₁)

The address register AR₁ is a 10 bits register which specifies the RAM's address. This register is used by the RDAR instruction or the MVAR instruction. Read/Write operation is performed by the Input/Output instruction.

Address Register 2 (AR₂)

The address register AR_2 is a 10 bits register which specifies the RAM's address. This register is used by the MVAR instruction. Read/Write operation is performed by the Input/Output instruction.

Loop Counter (L)

The loop counter is a 10 bits down counter which specifies a number of words of the data to be searched or to be moved by the RDAR instruction or the MVAR instruction. Its contents can be rewritten by the output instruction.

ALU, Conditional Flag, ACC

) A		

The ALU performs 4-bits parallel operation of the RAM contents and ACC contents, or the RAM contents and an immediate data. The arithmetic, logic, comparison and rotate operations can be done.

(b) Conditional flag

The zero flag (Z), carry flag (C) and greater flag (G) are provided. These flags are set or reset depending on the operation result and referred to by the conditional branch instruction.

The flag operation instruction enables these flags to be set or reset individually or alloge-ther.

(c) ACC

The ACC is 4-bits register for arithmetic, and equipped with data transfer instruction between ACC and RAM.

Stack

The stack consists of a RAM of 5 words \times 11 bits. It is used to save the PC contents when the sub-routine is called or a timer interrupt is generated, and 5-level nesting can be done including a timer interrupt. The PC contents saved in the stack is popped to the PC by the RETURN instruction.

Interrupt

- MSM6352 has two kinds of interrupt as below.
- Realtime interrupt
- Programmabletimer interrupt

Stop Mode

Stop mode is established by the execution of the STOP instruction. In the stop mode, oscillation of system clock stops and all operations are suspended, but the RAM contents and all register contents are maintained.

Halt Mode

Halt mode is established by the execution of the HALT instruction and the execution of program of main routine is suspended. In the halt mode, all RAM contents and register contents are maintained.

Timer Activation and Realtime Interrupt Circuit

The timer activation and realtime interrupt circuit are to release HALT mode (timer activiation) and to generate interrupt (Realtime interrupt) at the tailing edge of the 31.21 Hz clock obtained by dividing the 3.579545 MHz system clock by 114688. The timer activation and realtime interrupt circuit can be used for the generation of timer activation and realtime interrupt by setting or resetting the mode setting flag (TMF).

Divider Circuit

The 3 stage binary divider circuit to which 31.21 Hz clock is supplied is provided. The divider circuit's contents can be read by the input instruction (IN2, AP), and at the same time HS input port data is also read. The divider circuit can be reset by the RST instruction.

Programmable Timer and Programmable Timer Interrupt

The programmable timer is used for dial pulse output or timer interrupt generation. This timer consists of control resistor PTL, 1/100 divider circuit, 4 bit presettable down counter PTC, interrupt flag IRQF, interrupt enable flag EIF, selection flag EOF of off and on-hook dialing made, and dial pulse phase selection flag DPE, 1/100 divider circuit, PTC, IRQF, EIF, EOF and DPF are reset at system reset.

DTMF Output Circuit

The DTMF output circuit is to generate DTMF tone signal and is controlled by DTMF and TONE register. Rewriting the contents of the output latch for DTMF circuit by output instructions, 12 kinds of dual or single tones can be output to the DTMF output port. The tone output frequency is selected by the DTMF register.

BD Circuit

The BD circuit generates the square wave which can be used as the confirmation sound, warning sound and so on. 15 kinds of sound (4.66 to 0.82 kHz) are output by an output instruction specifying the frequency.

Watchdog Timer WDT

The watchdog timer is to generate the system reset signal to recover from system ran away trouble.

Input Port ($R_1 \sim R_4$)

 $R_1 \sim R_4$ is 4-bits input port, which status is fetched by the input instruction. The port is pulled down to the low level (VSS) by resistor, so it can be used as keyboard input port.

Input $(R_s \sim R_s)$

 $R_s \sim R_8$ is 4-bits input port, which status is fetched by the input instruction. The port is pulled down to the low level (VSS) by resistor, so it can be used as keyboard input port.

Input Port ($I_1 \sim I_4$)

 $I_1 \sim I_4$ is 4-bits input port, which status can be fetched by the input instruction. It is pulled down to low level (VSS) by register via transistor only when it is desired to fetch the port status or input signal is low level.

As input current is restricted, it can be used being fixed at high level (V_{DD}) .

HS Input Pin

It is one bit input pin, which status can be fetched by the input instruction. It is pulled up to high level (V_{DD}) by resistor. It is used as a hook switch input pin.

Output Port ($C_1 \sim C_4$)

 $\dot{C}_1 \sim C_4$ is 4-bits output port. The contents of the output latch can be rewritten by the output instruction. The low level is output at each output pin after the system is reset. When the HS input pin is open or at high level, the low level is output to each output pin irrespective of the contents of the output latch.

The outputs of $C_1 \sim C_4$ are all CMOS output.

Output Port ($O_1 \sim O_4$)

 $\dot{O}_1 \sim O_4$ is 4-bit output port. The contents of the output latch can be rewritten by the output instruction.

Output latch of O_1 and O_2 are reset and O_3 and O_4 are set at system reset.

Each output from $O_1 \sim O_4$ port is C-MOS.

Output Port $EO_1 \sim EO_4$)

 $EO_1 \sim EO_4$ is 4-bits output port. The contents of the output latch can be rewritten by the output instruction. The level is output at each output pin after the system is reset. Each output of $EO_1 \sim$ EO_4 is CMOS output.

Input/Output Port (IO₁ \sim IO₄)

 $1O_1 \sim 1O_4$ is 4-bits input/output port. Fetching of the port status and rewriting of the output latch contents can be done by the input/output instruction.

Each Output of IO1 \sim IO4 is CMOS at output mode.

IOE Output Pin

It is one bit output pin. A load signal is output at this pin when the output latch's ($IO_1 \sim IO_4$) contents are rewritten.

DTMF Output Pin

It is output pin to output DTMF signals. Start and stop of the DTMF output are done by the output instruction.

DP Output Pin

It is an output pin for dial pulse output. Start and top of the dial pulse output can be done by the output instruction.

The DP OUT pin output is C-MOS output.

BD Output Pin

It is output pin for the buzzer output. The buzzer output can be started and stopped by the output instruction. Output of BD port is CMOS output.

32 kHz Output Pin

It is an output pin to output 31.960 kHz clock (duty: 50%) which is obtained by dividing the 3.579545 MHz system clock by 112. This clock keep outputting as long as system clock oscilation is executed. Output of 32 kHz pin is CMOS outout.

• MSM6352 •-

XT, XT Pins

These are input and output pins of the oscillator inverter, and the oscillator circuit is provided with the built in feed back resistor. By connecting to them oscillation of system clock status. 3.579545 MHz ceramic resonator and capacitors.

ELECTRIC CHARACTERISTICS

• Absolute Maximum Ratings

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	VDD	Ta = 25° C	-30 ~ 7	V
Input Voltage	V _I	Ta = 25°C	-0.3 ~ V _{DD} + 0.3	V
Output Voltage	Vo	Ta = 25°C	-0.3 ~ V _{DD} + 0.3	V
Power Dissipation	PD	Ta = 25°C	200 max.	mW
Storage Temperature	Tstg	_	-55 ~ +125	°C

• Operating Conditions

Parameter	Symbol	Conditions	Limits	Unit
Operating Voltage	V _{DD}	Pulse Mode f OSC = 3.58 MHz	2.0 ~ 5.5	v
Memory Retension Voltage	VDDM	_	1.2 ~ 5.5	V.
Operating Temperature	Topr	_	-20 ~ +75	°C

Note: Operating conditions for tone mode is $V_{DD} = 2.2 \sim 5.5 V$.

•

-• MSM6352 •

• DC Characteristics

 $(Ta = -20 \sim +75^{\circ}C)$

• DO Characteristics							(14 -	-20	+/5 0/
Parameter	Symbol	Con	ditions	Supply Voltage	Min.	Тур.	Max.	Unit	Survey Circuit
"H" Output Current (1)	ІОН1	O3, O4	V _{OH} = 2.6V	3.0 V	-0.2	-	_	mΑ	
"L" Output Current (1)	IOL,	DP OUT	V _{OL} = 0.4V	3.0V	0.5	_	_	mA	
"H" Output Current (2)	ЮН₂	C₁~C₄	V _{OH} = 2.6V	3.0V	-1.0	_	-	mA	
"L" Output Current (2)	IOL2	01.004	V _{OL} = 0.4V	3.0V	10	_	-	μΑ	
"H" Output Current (3)	ЮН₃	01, 02	V _{OH} ≈ 2.6V	3.0V	-2.0	-	-	μA	
"L" Output Current (3)	IOL3	BD	V _{OL} = 0.4V	3.0V	10	-	-	μA	1
"H" Output Current (4)	ІОН₄	$10_1 \sim 10_4$	V _{OH} = 2.6V	3.0V	-150	_		μA]
"L" Output Current (4)	IOL₄	IOE EO₁ ~ EO₄	V _{OL} = 0.4V	3.0V	300	_	-	μA	
"H" Output Current (5)	Іон₅	32kHz	V _{OH} = 2.6V	3.0V	-40	-	-	μA	
"L" Output Current (5)	IOL₅	528112	V _{OL} = 0.4V	3.0V	25	-	-	μA	
"H" Input Voltage	⊻н			3.0V	2.2	-	-	v	
	мн			5.5V	40	-	-	•	2
"L" Input Voltage	VIL		_	3.0V	-	-	0.8	v	
			5.1	5.5V	-	_	1.4		
"H" Input Current (1)	ЧΗ1		VIH = 5.5V	5.5V	-		2	μA	
"L" Input Current (1)	IIL1	нѕ	V _{IL} = 0V	3.0V	-2.0	_	-180	μA	
				5.5V	-40	_	-360		
"H" Input Current (2)	I _{IH2}		VIH = 5.5V	5.5V	20	_	180	μA	
	·IП2	$R_1 \sim R_3$	V _{IH} = 3.0V	3.0V	10	-	90		
"L" Input Current (2)	IIL2		V _{IL} = 0V	5.5V	_	-	-2	μA	
"H" Input Current (3)	Чн₃	$I_1 \sim I_4$	V _{IH} = 5.5V	5.5V	60	-	600	μA	3
	·IH3	AC,	VIH = 3.0V	3.0V	30	_	300		
"L" Input Current (3)	IIL3	TEST	V _{IL} = 0V	5.5V	-	_	-2	μΑ	
"H" Input Current (4)	Чн₄	10,~104	V _{IH} = 5.5V	5.5V		_	2	μA	
"L" Input Current (4)	IIL4	10] 104	V1L = 0V	5.5V		-	-2	μA	
Current Consumption (1)	DDP	Tone o	utput off	2.5V	-	0.25	0.5	mA	
	.006	With	no load	5.0V	-	1.5	2.4		
Current Consumption (2)	IDDT	Tone o	utput on	2.5V	-	1.3	2.4	mA	4
		With	on load	5.0V	-	4.2	6.8		
Current Consumption (3)	IDDM	ON HOOP With	K, Ta = 25°C no load	2.5V	-		0.2	μA	

• MSM6352 •----

• AC Characteristics

(Ta = -20 ~ +75°C)

Parameter	Symbol	Conditions	Supply Voltage	Min.	Тур.	Max.	Unit	Survey Circuit
Cycle Time	tCY	f = 3.579545MHz	3.0V	-	17.9	-	μs	
		Row side only	2.2V	-	180	-	mV	
Tone Output	∨о∪т		4.0V	-	260	-		
		R _L = 1kΩ	5.5V	-	330	-	rms	
High/Low Level Ratio	dBan		3.0V	1	2	3	dB	
High/ LOW Level Hallo	dBCR	-	5.5V	1	2	3	UB	
Distorsion Ratio	9/ dia	R ₁ = 1kΩ	3.0V	-	-	5	%	
Distorsion Natio	%dis	DL - 1832	5.5V	-	_	5	70	
Switch Input Time	tKIN		-	3.3	-	_	ms	5
Rise/Fall Time (1)	tTLH1	Q_3 , Q_4 , DP OUT	3.0V	-	-	0.5		
	tTHL ₁	C _L = 50pF	3.0V	-	-	0.5	μs	
Rise/Fall Time (2)	t⊤LH₂	$C_1 \sim C_4$	3.0V	-	-	0.5		
	tTHL ₂	C _L = 50pF	3.0V	_	-	10	μs	
Rise/Fall Time (3)	^t TLH₃	Q_1 , Q_2 , BD, 32kHz	3.0V	-	_	5		
	tTHL₃	CL = 50pF	3.0V	_	_	10	μs	
Rise/Fall Time (4)	tTLH₄	$IO_1 \sim IO_4$, IOE EO_1 \sim EO_4	3.0V	-	-	1	μs	
	tTHL₄	$C_L = 50pF$	3.0V	_	-	1	μs	

• DTMF Tone Output Frequency

	Standard Frequency (Hz)	Output Freqeuncy (Hz)	Deviation (%)
R1	697	699.1	+0.30
R2	770	766.2	-0.49
R3	852	847.4	-0.54
R4	941	948.0	+0.74
C1	1209	1215.9	+0.57
C2	1336	1331.7	-0.32
C3	1477	1471.9	-0.35

f OSC = 3.579545MHz

					Instruc	tion Code					er	
	Mnemonic	13 12	11 10	98	7654			ACC	Zero	Carry	Greater	Description
	ADD ACC, AP	0 0	0 0	0 P	0 1 0 0	A	А=0H~FH, P=0 or 1	•	•	•	-	AP ← (AP) + ACC
	ADD #D, AP	0 1	1 0	0 P	D	A	D=0;H~FH A=0H~FH, P=0 or 1	•	٠	•	-	AP ← (AP) + D
	ADC AP	0 0	0 0	0 P	0101	A	A=0H~FH, P=0 or 1	•	•	•	-	AP ← (AP) + ACC + C
R	SUB ACC, AP	0 0	0 0	1 P	0100	A	А=0H~FH, P=0 or 1	•	•	•	-	AP ← (AP)- ACC
Arithmetic operation	SUB #D, AP	0 1	1 0	1 P	D	A	D=0 _H ~F _H , A=0 _H ~F _H , P=0 or 1	•	•	•	-	AP ← (AP) – D
netic o	SBC AP	0 0	00	1 P	0101	A	А=0H~FH, P=0 or 1	•	•	•	-	$AP \leftarrow (AP) - ACC - C$
Arithn	CMP ACC, AP	0 0	0 0	1 P	1 1 1 0	A	А=0 _H ~F _H , P=0 or 1	-	•	-	٠	(AP) – ACC
-	CMP #D, AP	0 1	0 1	1 P	D	A	D=0H~FH, A=0H~FH, P=0 or 1	-	٠	-	٠	(AP) – D
	XOR ACC, AP	0 0	0 0	0 P	0111	A	A=0 _H ~F _H , P=0 or 1	•	٠	-	-	AP ← (AP) ¥ ACC
	XOR #D, AP	0 1	1 1	1 P	D	A	D=0 _H ~F _H , A=0 _H ~F _H , P=0 or 1	•	·	-	-	AP ← (AP) ∀ D
	BIT ACC, AP	0 0	0 0	0 P	1 1 1 0	A	A=0 _H ~F _H , P=0 or 1	-	•	-	-	
e	BIT #D, AP	0 1	01	0 P	D	A	D=0H~FH, A=0H~FH, p=0 or 1	-	•	-	-	$(AP) \lor \overline{D}$
operatior	BIS ACC, AP	0 0	00	0 P	1 1 1 0	A	A=0 _H ~F _H , P=0 or 1	•	•	-	-	AP ← (AP) ∨ ACC
Bit op	BIS #D, AP	0 1	0 0	0 P	D	A	D=0H~FH, A=0H~FH, P=0 or 1	•	•	-	-	AP ← (AP) ∨ D
	BIC ACC; AP	0 0	0 0.	1 P	0110	A	A=0 _H ~F _H , P=0 or 1	•	•	-	-	$AP \leftarrow (AP) \land \overline{ACC}$
	BIC #D, AP	0 1	00	1 P	D	A	D=0H~FH, A=0H~FH, P=0 or 1	•	•	-	-	$AP \leftarrow (AP) \land \overline{D}$
	ROR AP	0 0	0 0	0 P	0010	A	A=0 _H ~F _H , P=0 or 1	•	•	•	-	\rightarrow (AP) \rightarrow C
Rotate	ROLAP	0 0	00	1 P	0010	A	A=0H~FH, P=0 or 1	•	٠	•	-	- (AP) ← C +
Ř	ASR AP	0 0	00	0 P	0011	A	A≖0 _H ~F _H , P=0 or 1	•	•	•	-	0 → (AP) → C
	ASL AP	0 0	0 0	1 P	0011	A	A=0 _H ∼F _H , P =0 or 1	•	٠	•	-	C ← (AP) ← 0
	SEZ	0 0	0 0	1 0	1010	0 0 0 0		-	1	-	-	Z ← 1
	CLZ	0 0	0 0	0 0	1010	0000		-	0	-	-	Z ← 0
tion	SEC	0 0	0 0	1 0	1001	0 0 0 0		-	-	1	-	C ← 1
Flag operation	CLC	0 0	0 0	0 0	1001	0000		-	-	0	-	C ← 0
Flag	SEG	0 0	0 0	1 0	1000	0 0 0 0		-	-	-	1	G ← 1
	CLG	0 0	0 0	0 0	1000	0000		-	-	-	0	G ← 0
i	SEA	0 0	0 0	1 0	1011	0 0 0 0		-	1	1	1	Z ← 1, C ← 1, G ← 1
_	CLA	0 0	0 0	0 0	1011	0 0 0 0		-	0	0	0	Z ← 0, C ← 0, G ← 0
l	MOV ACC. AP	1 1	1 1	0 1	0000	A	A=0H~FH	-	-	-	-	
	MOV ACC, AX	1 1	1 1	00	×	A	Х=0H~FH А=0H~FH	-	-	-	-	AX ← ACC
nsfer	MOV #D, AP	0 1	1 1		D	A	D=0H~FH A=0H~FH, P=0 or 1	Ľ	٠	-	-	AP D
Data transfer	MOV AP, ACC	1 1	1 1	1 1	0 0 0 0	A	A=0H~FH	ŀ	•	-	-	ACC ← (AP)
Da	MOV AX, ACC		1 1	10	x	A	Х=0н∼Fн А=0н∼Fн	ŀ	•	-	-	ACC ← (AX)
	CHG AP	1 1	10		0000	Α	A=0H~FH	ŀ	-	-	-	(AP) ↔ ACC
	CHG AX	1 1	10	0 0	x	A	Х=0H~FH А=0H~FH	•	-	-	-	(AX) ↔ ACC

• MSM6352 •-

										nstr	ruc	tion	Co	de					>	iter	D
	Mnemonic	13	12	11	10	9	8	7	6	5	4	3	2	1	0		ACC	Zero	Carry	Greater	Description
	RDAR	1	1	0	0	0	0	0	0	0	0	0	0	0	0		•	•	-	-	$ACC \leftarrow (AR_1)$
	RDAR +()	1	1	0	0	0	0	0	0	1 0)/I	0	0	0	0	D/I = 0 or 1	•	•		-	$ACC \leftarrow (AR_1), AR_1 \leftarrow AR_1 \pm 1$
	RDAR +(), Z	1	1	0	0	0	0	0	1	0 0) /I	0	0	0	0	D/I = 0 or 1	0	1	-	-	$ACC \leftarrow (AR_1)$ if $(AR_1)=0$ then $PC \leftarrow PC+1$ else $AR_1 \leftarrow AR_1 \pm 1$, repeat
	RDAR +(), N	1	1	0	0	0	0	1	0	0 0) /I	0	0	0	0	D/I = 0 or 1	•	0	-	-	$ACC \leftarrow (AR_1)$ if $(AR_1)=0$ then $PC \leftarrow PC+1$ else $AR_1 \leftarrow AR_1 \pm 1$, repeat
	RDAR +(-),Z,L	1	1	0	0	1	0	0	1	0 0)/I	0	0	0	0	D/I = 0 or 1		•	-	-	ACC \leftarrow (AR ₁), L \leftarrow L-1 if (AR ₁)=0 or L=0 then PC \leftarrow PC+1 else AR ₁ \leftarrow AR ₁ ±1, repeat
nsfer	RDAR +(-),N,L	1	1	0	0	1	0	1	0	0 0	D/I	0	0	0	0	D/I = 0 or 1	•	•	-	-	$ACC \leftarrow (AR_1), L \leftarrow L-1$ if $(AR_1)=0$ or L=0 then PC \leftarrow PC+1 else $AR_1 \leftarrow AR_1 \pm 1$, repeat
Data transfer	MVAR	1	1	0	1	0	0	0	0	0	0	0	0	0	0		-	ŀ	-	-	(AR ₂) ← (AR ₁)
Dat	MVAR +()	1	1	0	1	0	0	0	0	1 0	>/I	0	0	0	0	D/I = 0 or 1	-	·	-	-	$(AR_2) \leftarrow (AR_1),$ $AR_1 \leftarrow AR_1 \pm 1, AR_2 \leftarrow AR_2 \pm 1$
	MVAR +(), Z	1	1	0	1	0	0	0	1	0 0) /I	0	0	0	0	D/I = 0 or 1	-	1	-	-	$(AR_2) \leftarrow (AR_1)$ if $(AR_1)=0$ then PC \leftarrow PC+1 else $AR_1 \leftarrow AR_1 \pm 1$, $AR_2 \leftarrow AR_2 \pm 1$, repeat
	MVAR +(), N	1	1	0	1	0	0	1	0	0 0	⊃/I	0	0	0	0	D/I = 0 or 1	-	0	-	-	$(AR_2) \leftarrow (AR_1)$ if $(AR_1)=0$ then PC \leftarrow PC+1 else AR_1 \leftarrow AR_1 ±1, AR_2 \leftarrow AR_2 ±1, repeat
	MVAR +(), L	1	1	0	1	1	0	0	0	0 0	2/1	0	0	0	0	D/I = 0 or 1	-	•	-	-	$(AR_2) \leftarrow (AR_1), L \leftarrow L-1$ if L=0 then PC ← PC+1 else AR_1 ← AR_1 ±1, AR_2 ← AR_2 ±1, repeat
	MVAR +(-),Z,L	1	1	0	1	1	0	0	1	0 0	7/1	0	0	0	0	D/I = 0 or 1	-	·	-	-	$(AR_2) \leftarrow (AR_1), L \leftarrow L-1$ if $(AR_1)=0$ or L=0 then PC ← PC+1 else AR_1←AR_1 ±1, AR_2←AR_2 ±1, repeat
	MVAR +(-),N,L	1	1	0	1	1	0	1	0	0 0	J∕I	0	0	0	0	D/I = 0 or 1	-	•	-	-	$(AR_2) \leftarrow (AR_1), L \leftarrow L-1$ if $(AR_1)=0$ or L=0 then PC \leftarrow PC+1 else AR_1 \leftarrow AR_1 ±1, AR_2 \leftarrow AR_2 ±1, repeat
e	CALL adrs	1	0	1	a ₁₀	a,	a,	a 7	a,	a,	a4	a,	a,	a,	a,	a₁₀~a₀=000H~7FFH	-	-	-	-	$STACK \leftarrow (PC), PC \leftarrow adrs$
Subroutine	RET	0	0	0	0	0	0	1	1	0	0	0	0	0	0		-	-	-	-	PC ← (STACK) + 1
Sut	RTI	0	0	0	0	1	0	1	1	0	0	0	0	0	0		-	-	-	-	PC ← (STACK) or PC ↔ (STACK) + 1
	JMP adrs	1	0	0	a ₁₀	a,	a,	а,	a,	a, i	84	a,	a,	а,	a,	a ₁₀ ~a₀=000H~7FFH	-	-	-	-	PC ← adrs
dmul	JMP @ AP	0	0	0	0	0	P	1	1	0	1		A	•		A=0 _H ~F _H , P≖0 or 1	-	-	-	-	PC ← (PC) + (AP) + 1
	JMPIO @ AP	0	0	0	0	1	P	1	1	0	1		A	۱		A=0H~FH, P=0 or 1	-	-	-	-	PC ← (PC) + [(AP) A 7] + 1
	BEQ n (BZE n)	1	1	1	0	1	Ρ	0	1	0	n₄	n,	n,2	n,	n,	n₄∼n₀=00H~1FH P=0 or 1	-	-	-	-	if Z=1 then PC←PC-n or PC←PC+n+1 else PC←PC+1
	BNE n (BNZ n)	1	1	1	0	1	Ρ	1	1	0	n4	n,	n,	n,	n,	n₄∼n₀=00H~1FH P=0 or 1	-	-	-	-	if Z=0 then PC←PC–n or PC←PC+n+1 else PC←PC+1
	BCS n	1	1	1	0	1	Ρ	o	0	0	n4	n,	n 2	n,	n,	$n \sim n = 0.0 \text{ m} \sim 1.5 \text{ m}$	-	-	-	-	if C=1 then PC←PC-n or PC←PC+n+1 else PC←PC+1
ranch	BCC n	1	1	1	0	1	Ρ	1	0	0	n4	n,	n ₂	n,	n,	n ~n =00u~1Eu	†-	-	_	1	if C=0 then PC←PCn or PC←PC+n+1 else PC+-PC+1
Brai	BGTn	1	1	1	0	1	Ρ	0	0	1	n4	n,	n ₂	n,	n,	0 ~0 =000~1EU	-	-	-	-	if G=1 then PC←PC-n or PC+-PC+n+1 else PC←PC+1
	BLEn	1	1	1	0	1	Ρ	1	0	1	n₄	n,	n,	n,	n,	a ~n ≡00u~1Eu	-	1-	-	_	if G=0 then pC←PC-n or PC+-PC+n+1 else PC+-PC+1
	BGE n	1	1	1	0	1	Ρ	0	1	1	Π₄	n,	n ₂	n,	n,	n.~n.=00u~1Fu	-	-	[-	†-	if Z=1 or G=1 then PC←PC-n or PC+n+1 else PC←PC+1
	BLTn	1	1	1	0	1	Ρ	1	1	1	n4	n,	n ₂	n,	n,	n ~n ≡00u~1Eµ	1-	-	-	-	if Z=0 then PC←PC−n or PC←PC+n+1 and G=0 else PC←PC+1
out	IN PORT, AP	0	0	0	1	0	Ρ		P	L			4	1		PL=0H~FH A=0H~FH, P=0 or 1	•	1.	-	-	AP ← (PORT)
Input/Output	OUT AP, PORT	0	0	1	0	PH	Ρ	t	P	L			,	4		PL=0H~FH,PH=0 or A=0H~FH, P=0 or 1		-	1-	† -	PORT ← (AP)
Indul	OUT #D, PORT	0	0	1	1	Рн	0	t	P	L	-		C	>		PL=0H~FH,PH=0 or D=0H~FH	_	1-	-	-	PORT - D
	I	Ĺ						1		-	_	L	_		_		1	1	1	1	

-----• MSM6352 •

									Ins	tru	ctic	n C	od	e				~	ater	Developing
Mnemonic	13 12	2	11	10	9	8	7	6	5	4	3	2	1	(0	ACC	Zero	Carry	Greater	Description
STOP	0 0	T	1	1	1	0	0	0	0	0	0	0	0	(0	-	-	-	-	Stop system clock
HALT	0 0		1	1	1	0	0	0	0	1	0	0	0	(0	-	-	-	-	Halt CPU
A.CT	0 0	ŀ	1	1	1	0	0	0	1	0	0	0	0	(0	-	-	-	-	Activate CPU
EI	0 0		1	1	1	0	0	1	1	0	1	0	0	(0	-	-	-	-	Enable timer interrupt
DI	0 0		1	1	1	0	0	1	1	0	0	1	0	(0	-	-	-	-	Disable timer interrupt
ET	0 0	ŀ	1	1	1	0	0	1	1	0	0	0	1	(0	 -	-	-	-	Enable timer activate
DT	0 0		1	1	1	0	0	1	1	0	0	0	0		1	-	-	-	-	Disable timer activate
EC	0 0		1	1	1	0	0	1	1	1	1	0	0	(0	-	-	-	-	Enable output port $(C_1 \sim C_4)$
DC	0 0	Ι	1	1	1	0	0	1	1	1	0	1	0	(0	-	-	-	-	Disable output port ($C_1 \sim C_4$)
DC OM IM	0 0		1	1	1	0	0	1	1	1	0	0	1	(0	-	-	-	-	Set I/O port (IO ₁ ~IO ₄) to output mode
IM	0 0	ŀ	1	1	1	0	0	1	1	1	0	0	0		1	-	-	-	-	Set I/O port $(IO_1 \sim IO_4)$ to input mod
RST	0 0		1	1	1	0	1	0	0	1	0	0	0	(0	-	-	-		Reset divider
SELINT	0 0		1	1	1	0	1	1	0	0	1	0	0	(0	-	-	-	-	Select interrupt mode
SELHR	0 0		1	1	1	0	1	1	0	0	0	1	0	1	0	_	-	-	-	Select timer activation mode
EHLH	0 0	Ī	1	1	.1	0	1	1	0	0	0	0	1	1	0	-	-	-	-	Enable hook switch low to high trans mission
DHLH	0 0		1	1	1	0	1	1	0	0	0	0	0		1	 -	-	-	-	Disable hook switch low to high tran mission
SELN	0 0		1	1	1	0	1	0	1	1	0	0	1	(0	-	-	-	-	Select negative phase
SELP	0 0		1	1	1	0	1	0	1	1	0	0	0		1	-	-	-	-	Select positive phase
EO	0 0	'	1	1	1	0	1	0	1	1	1	0	0	1	0	-	-	-	-	Enable on-hook dial
DO	0 0		1	1	1	0	1	0	1	1	0	1	0	1	0	 -	-	-	-	Disable on-hook dial
NOP	0 0	1	0	0	0	0	0	0	0	0	0	0	0		0	_	_	-	_	No operation