OKI semiconductor MSM6411

CMOS 4-BIT SINGLE CHIP MICROCONTROLLER

GENERAL DESCRIPTION

The OKI MSM6411 microcontroller is a low-power, high-performance single-chip device implemented in complementary metal oxide semiconductor technology. 1024×8 bits of program ROM, 32×4 bits of data RAM, 11 Input/Output lines and oscillator. Program memory is byte wide and data paths are organized as 4-bit wide. 63 instructions include binary, logical operations; bit set, reset, test; multifunctional.

FEATURES

- 1024 × 8 Internal ROM
- 32 × 4 Internal RAM
- 11 I/O Lines (8 I/O Lines, 3 Input Lines)
- 8-bit serial I/O Register
- 2 Interrupt Levels
- 8 Stack Levels
- 952 ns 4.2MHz (V_{DD} 5V±10%)

- 63 Instructions
- Self-Contained Oscillator
- -40 to +85°C Operating Temperature
- 3 to 6V Operating VDD
- Low Power Consumption 5 μW Typical (STOP, V_{DD} = 5V, no load)
- Mask Option Crystal/Ceramic Oscillator

RAM 32 × 4 ROM INST. ACC 3 0 DEC DEC AL U SF L н 0 3 0 INT. P2 P1 P0 SR 17 0 φ. 210 321 3210 TG SI SO RESET OSC. OSC VDD GNC SCK

FUNCTIONAL BLOCK DIAGRAM

LOGIC SYMBOL

PIN DESCRIPTION

Designation	Input/Output	Pin No.	Function	Reset
P00 P01/SCK P02/SO P03/SI	Input/Output	10 11 12 13	4 Bits I/O port. P01 to P03 are used both I/O port and terminal of shift resister	"1"
P10 P11 P12 P13	Input/Output	14 15 1 2	4 Bits I/O port	"1"
P20/ INT P21 P22	Input	3 4 5	3 Bits input port with latch. P20 is used as both input port and input terminal of INT (input of falling edge trigger).	Latch is reset. ("O")
OSC₀	Input	7	Input terminal of system clock. Oscillation circuit consists of OSCo and OSC1.	Clock pulse In
OSC 1	Output	6	Oscillation circuit consists of OSC ₀ and OSC ₁ .	
RESET	Input	÷ 9	Input terminal of system reset	
V _{DD} GND	Input	16 8	Main power source and circuit GND potential.	

FUNCTIONAL DESCRIPTION

ROM

ROM is organized in 1024 words by 8 bits. It is used to stored developed application programs (instructions). It is addressed by the program counter (PC).

PC

The PC consists of a 10-bit binary counter and is used to address ROM.

Stack and Stack Pointer

An interrupt or CAL instruction causes the contents of the PC to be saved in the stack. The PC is restored from the stack by RT instruction.

All RAM locations (up to 8 levels) are available as the stack. Note that four words of RAM are used for each level.

The stack pointer is a 5-bit up-down counter that points to the address of the next stack to be used. It allows the RAM locations to be used as a push-down stack.

RAM

RAM consists of up to 32 words 4 bits wide. It is addressed by the H- and L-registers or by the contents of the second byte of an instruction.

L-REGISTER

A 4-bit register which specifies RAM locations A3-A0.

H-REGISTER

A 1-bit register which specifies RAM location A4.

ALU

A 4-bit logic circuit that provides arithmetic and logical operations.

ACC

Consisting of a 4-bit register, the accumulator holds the result of operations or the data present on ports.

C FLAG

The flag that holds a carry generated from the result of operations.

INPUT/OUTPUT Ports (2×4 bit)

Organized into 4 bits, 2 ports are provided for effecting and controlling data transfer to and from an external source. The ports are selected by codes included in instructions.

Input Ports (1×4 bit)

Contained port 2 (P2), which is an input port with latching function. P20 is set at falling edge of the input signal P21 and P22 are set at "0" level inputs. Also, P20 is used as an interrupt request flag. When P20 is set and an interrupt operation occurs, it is automatically reset.

TIMING CONTROL (TC)

A 0 level on the RESET pin for longer than 2 machine cycles initializes the internal circuitry.

Clock pulses are supplied to the XT pin from an external source. Also, by mask-option, it organizes a circuit of oscillation with P20 and produces clock pulses (by connecting externally to crystal, ceramic or CR).

INSTRUCTION LIST

	Mnemon	ic	Description	Code	Byte	Cycle	
	LAI	n	A ← n	90 – 9F	1	1	
	LLI	n	L⊷n	80 – 8F	1	1	
	LHLI	nn	HL←nn	15nn	2	2	
	LAL		A←L	21	1	1	
	LLA		L←A	2D	1	1	
9, Po	LAM		A←M	38	1	1	
Pus	LMA		M ← A	2F	1	1	
Load, Push, Pop	LAMD	mm	A ← Md	10mm	2	2	
	LMAD	mm	Md ← A	11mm	2	2	
F	LMSR	· · · ·	M(w) ← SR	3E5A	2	2	
Ī	LSRM		SR ← M(w)	3E52	2	2	
Ī	PUSH		ST ← C, A, H, L, SP ← SP-1	1C	1	3	
	POP		C, A, H, L ← ST, SP ← SP+1	1D	1	3	
but	IPD	р	A ← Pp	3DpD	2	2	
Output	OPD	р	Pp ← A	3DpC	2	2	
	ADS		A ← A+M, SKIP IF Cy = "1"	02	1	1	
	ADC		C, A ← C+A+M	03	1	1	
ſ	AIS	n	A ← A+n, SKIP IF Cy = "1"	3E4n	2	2	
	DAS		A ← A+10	0A	1	1	
	AND		A ← A ∧ M ·	OD	1	1	
Arithmetic	EOR		A←A₩M	04	1	1	
Tithu	СМА		A←Ā	OB	1	1	
Ā	CAM		SKIP IF A = M	16	1	1.0	
	SC		C ← "1"	07	1	1	
Ī	RC		C ← "0"	08	1	1	
	тс		SKIP IF C = "1"	09	1	1	
	RAL			OE	1	1	
Ex- change	х		A ←→ M	28	1	1	
	INL		L ← L+1, SKIP IF L = "0"	31	1	1	
Increment/ Decrement	INH		H ← H+1, SKIP IF H = "0"	32	1	1	
	INM		M ← M+1, SKIP IF M = "0"	33	1	1	

• MSM6411 •

INSTRUCTION LIST (CONT.)

1	Mnemon	ic	Description	Code	Byte	Cycle
1	INMD	mm	Md ← Md+1, SKIP IF Md = "0"	12mm	2	2
Increment/ Decrement	DCL)	$L \leftarrow L-1$, SKIP IF $L = "F"$	35	1	~ 1
ecre	DCH	1	H ← H1	36	1	1
	DCM	1	$M \leftarrow M-1$, SKIP IF $M = "F"$	37	1	1
	TAB	n2	SKIP IF [A bit n2] = "1"	54-57	1	1
Γ	тмв	n2	SKIP IF [M bit n2] = "1"	58-5B	1	1
tion	RMB n2		[M bit n2] ← "0"	68-6B	1	1
Bit operation	SMB	n2	[M bit n2] ← "1"	78-7B	1	1
Bito	TPBD	p, n2	SKIP IF [Pp bit n2] = "1"	3D p0~3	2	2
Ī	RPBD	p, n2	[Pp bit n2] ← "0"	3D p4~7	2	2
Ī	SPBD	p, n2	[Pp bit n2] ← "1"	3D p8~B	2	2
	JCP	a6	PC ← a6	C0~FF	1	1
-c-	JP	a10	PC ← a10	40_43 00~FF	2	2
Branch	CAL	a10	$ST \leftarrow PC+2, PC \leftarrow a10, SP \leftarrow SP-1$	A0_A3 00_FF	2	4
RT			PC ← ST, SP ← SP+1	1E	1	4
N	MEI		MEIF ← "1"	3E60	2	2
	MDI		MEIF ← "0"	3E61	2	2
ſ	EICT		EICTF ← "1"	3DCB	2	2
ſ	EIEX		EIEXF ← "1"	3DC8	2	2
	DICT		EICTF "0"	3DC7	2	2
upt	DIEX		EIEXF ← "0"	3DC4	2	2
Interrupt	TICT		SKIP IF EICTF = "1"	3DC3	2	2
-	TIEX		SKIP IF EIEXF = "1"	3DC0	2	2
	TQEX		SKIP IF IRQEX = "1"	3D20	2	2
ĺ	TQSR		SKIP IF IRQSR = "1"	3DD3	2	2
	RQEX		IRQEX ← "0"	3D24	2	2
Ī	RQSR		IRQSR ← "0"	3DD7	2	2
۲	ESR		SRF ← "1"	3DBA	2	2
snin resistor	DSR		SRF ← "0"	3DB6	2	2
52	TSR		SKIP IF SRF = "1"	3DB2	2	2
Irol	STOP		STOP CLOCK	3DB9	2	2
CPU control	NOP	·····	NO OPERATION	00	1	1

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	V _{DD}		-0.3 ~ 7	v
Input Voltage	VI	Ta = 25°C	$-0.3 \sim V_{DD}$	V
Output Voltage	Vo	1	-0.3 ~ V _{DD}	V
Deven Dissipation	D -	Ta = 25°C per one package	200 max.	mW
Power Dissipation	PD	Ta = 25°C per one output	50 max.	mW
Storage Temperature	Tstg		-55~+150	°C

OPERATING CONDITIONS

Parameter	Symbol	Condition	Limits	Unit	
Oversky Velka se		f(OSC) ≦ 1MHz	3~6	v	
Supply Voltage	VDD	f(OSC) ≦ 4.2MHz	4.5 ~ 5.5	v	
Data-Hold Voltage	VDDH	f(OSC) = 0Hz	2~6	v	
Operating Temperature	ТОР	(\rightarrow)	-40~+85	°C	
Fan Out		MOS Load	15		
Fan Out	Ν	TTL Load	1		

• MSM6411 ---

DC CHARACTERISTICS

 $(V_{DD} = 5V \pm 10\%, Ta = -40 \sim +85^{\circ}C)$

Parameter	Symbol	Condition	Miņ.	Тур	Max.	Unit
"H" Input Voltage *1, *2	VIH		2.4	-	VDD	v
"H" Input Voltage *3, *4	VIH		3.6	-	VDD	v
"L" Input Voltage	VIL		-0.3	-	0.8	v
"H" Output Voltage *1, *5	Voн	$I_{O} = -15\mu A$	4.2	-	-	V
"L" Output Voltage *1	VOL	I _O = 1.6mA	-	-	0.4	v
"L" Output Voltage *5	VOL	$I_{O} = 15\mu A$	-	-	0.4	v
Input Current *3		$V_{I} = V_{DD}/0V$	-	-	15 -15	μA
Input Current *2, *4		IL VI = VDD/0V		4	130	μA
"H" Output Current *1	ЮН	$V_{O} = 2.4V$	-0.1	-	-	mA
"H" Output Current *1	ЮН	$V_{O} = 0.4V$	-	-	-1.2	mA
Input Capacitance	CI		_	5	_	
Output Capacitance	с _о	f = 1 MHz, Ta = 25°C	-	7	_	pF
Power Consumption		V _{DD} = 2V, no load Ta = 25°C	-	0.2	5	μA
(STOP)	DDS	No load	-	1	100	μA
Power Consumption	IDD	Crystal oscillation, No load, 4.2MHz	-	6	12	mA

*1 Applied to P0 and P1.

*2 Applied to P2.

*3 Applied to OSCo

*4 Applied to RESET

*5 Applied to OSC1

AC CHARACTERISTICS

 $(V_{DD} = 5V \pm 10\%, Ta = -40 \sim +85^{\circ}C)$

Parameter	Symbol	Condition	Min.	Тур	Max.	Unit
Clock (OSC ₀) Pulse Width	tøw	-	119	L.	<u> </u>	ns
Cycle Time	tCY	-	952	_	-	ns
Input Data Setup Time	tDS	-	120	-	-	ns
Input Data Hold Time	^t DH	-	120	-	-	ns
Input Data/Input Clock Pulse Width	tow	-	120	-	-	ns
SR Clock Pulse Width	tsw	-	tøw	-	-	ns
SR Data Setup Time	tss	-	120	-	-	ns
SR Data Hold Time	^t SH	-	120	-	-	ns
Data Delay Time	tDR -	CL=15pF	-	-	tCY +300	ns
SR Data Delay Time*	tSR	CL=15pF	-	-	tCY +480	ns
SR Data Delay Time Using External Clock	tSP	CL=15pF	-	÷	360	ns
SR Clock Invalid Time	tSINH	-	2/8 tCY	-	-	ns

* When SR clock is oscillated by alternate output of "1" or "0" to P01.

• MSM6411 •-

TIMING CHART

TYP. Current vs Voltage for High State Output

40

Ta(°C)

20

80

100

60

120

0

2

1

-40

-20

TYP. Maximum Oscillator Frequency

MSM6411 +

TYP. Supply Current vs Supply Voltage (I_{DD}) (V_{DD})

4