OKI semiconductor MSM80C154/MSM83C154

CMOS 8-bit One-Chip Microcontroller

GENERAL DESCRIPTION

The MSM83C154/MSM80C154 is a high performance 8-bit one-chip microcontroller implementing large integration, high speed and low power consumption by 2 μ m silicon gate CMOS process technology. The MSM83C154 features 16K byte ROM, 256 byte RAM, 32 I/O ports, three 16-bit timer/counters, multifunctional serial port and clock generator. In addition, the MSM83C154 has three standby modes enabling further power reduction.

The MSM80C154 is identical to the MSM83C154 except the omission of 16K byte ROM.

FEATURES

٠	Fully static circuit	
•	On-chip program memory	: 16K x 8 bit ROM (MSM83C154 only)
٠	On-chip data memory	: 256 x 8 bit RAM
٠	External program memory address space	: 64K bytes
٠	External data memory address space	: 64K bytes
٠	I/O ports	
	(Port 1, 2, 3, impedance programmable)	: 32
٠	16-bit timer/counters	
	(includes watch dog timer & 32 bit timer)	: 3
٠	Multifunctional serial port	: I/O Expansion mode
		: UART mode (featuring error detection)
ž	6-source 2-priority level	
	interrupt and multi-level	
	interrupt available by programming IP and	IE registers
٠	Memory-mapped special function registers	
٠	Bit addressable data memory and SFRs	
٠	Minimum instruction cycle	: 0.75 μs @16 MHz operation
		16 MHz version of MSM83C154 (12 MHz < XTAL1+2
		≤ 16 MHz) is now under development.
•	"Multiply"/"divide" instruction cycle	: 3 μs @16 MHz operation
٠	Standby functions	: Idle mode (CPU halt)
		: Power down mode (Oscillator stop)
		Activated by Software or Hardware; Providing ports with
		floating or active status
		The software power down mode is terminated by
		interrupt signal enabling excution from the interrupted
		address.
٠	Lower power consumption achieved by 2,	
٠	Upward compatible with MSM80C51/80C	31
•	Packages	: 40-pin DIP, 44-pin flat package and 44-pin PLCC

CIRCUIT BLOCK DIAGRAM

PIN CONFIGURATION

PIN FUNCTIONS

Pin Name	Description						
P0.0 ~ P0.7	Bidirectional I/O ports. They are also the data/address bus (input/output of data and output of lower 8-bit address when external memory is accessed. They are open drain output when used as I/O ports, but tri-state output when used as data/address bus.						
P1.0 ~ P1.7	 P1.0 to P1.7 are quasi-bidirectional I/O ports. They are pulled up internally when used as input ports. Two of them have the following secondary functions: P1.0 (T2) : Used as external clock input pin for the timer/counter 2. P1.1 (T2EX) : Used as trigger input for the timer/counter 2 to be reloaded or captured; causing the timer/counter 2 interrput. 						

PIN FUNCTIONS (CONT.)

Pin Name	Description
P2.0 ~ P2.7	P2.0 to P2.7 are quasi-bidirectional I/O ports. They also output the higher 8-bit address when an external memory is accessed. They are pulled up internally when used as input ports.
P3.0 ~ P3.7	 P3.0 to P3.7 are quasi-bidirectional I/O ports. They are pulled up internally when used as input ports. They also have the following secondary functions: P3.0 (RXD) Serial data input/output in the I/O expansion mode and serial data input in the UART mode when the serial port is used. P3.1 (TXD) Synchronous clock output in the I/O expansion mode and serial data output in the UART mode when the serial port is used. P3.2 (INTO) Used as input pin for the external interrupt 0, and as count-up control pin for the timer/counter 0. P3.3 (INT1) Used as input pin for the external interrupt 1, and as count-up control pin for the timer/counter 1. P3.4 (T0) Used as external clock input pin for the timer/counter 0. P3.5 (T1) Used as external clock input pin for the timer/counter 1 and power down mode control input pin. P3.6 (WR) Output of the write strobe signal when data is written into external data memory.
ALE	Address latch enable output for latching the lower 8-bit address during external memory access. Two ALE pulses are activated per machine cycle except during external data memory access at which time one ALE pulse is skipped.
PSEN	Program store enable output which enable the external memory output to the bus during external program memory access. Two PSEN pulses are activated per machine cycle except during external data memory access at which two PSEN pulses are skipped.
EA	When EA is held at "H" level, the MSM83C154 executes instructions from internal program memory at address 0000H to 3FFFH, and executes instructions from external program memory above address 3FFFH. When EA is held at "L" level, the MSM80C154/MSM83C154 executes instructions from external program memory for all addresses.
RESET	If this pin remains "H" for at least 1 μ second, the MSM80C154/MSM83C154 is reset. Since this pin is pulled down internally, a power-on reset is achieved by simply connecting a capacitor between Vcc and this pin.
XTAL1	Oscillator inverter input pin. External clock is input through XTAL1 pin.
XTAL2	Oscillator inverter output pin.
V _{CC}	Power supply pin during both normal operation and standby operations.
V _{SS}	GND pin.

DATA MEMORY AND SPECIAL FUNCTION REGISTER LAYOUT DIAGRAM

- • MSM80C154/83C154 •

DETAILED DIAGRAM OF DATA MEMORY (RAM)

DETAILED DIAGRAM OF SPECIAL FUNCTION REGISTERS

Direct Byte									Special Function Register
Address	(MSB) WDT		Bin	t Addro		P2HZ	P1HZ	(LSB) ALF	Symbol
0F8H	FF	FE	FD	FC	FB	FA	F9	F8	IOCON
0F0H	F7	F6	F5	F4	F3	F2	F1	FO	в
0E0H	E7	E 6	E5	E4	E3	E2	E1	EO	ACC
	CY	AC	FO	RS1	RS0	0V	F1	Ρ	
0D0H	D7	D6	D5	D4	D3	D2	D1	D0	PSW
0CDH			No	t Bit A	ddressa	ble			TH2
оссн			No	t Bit A	ddressa	ble		1.	TL2
ОСВН			No	t Bit A	ddressa	ble			RCAP2H
0CAH			No	t Bit A	ddressa	ble			RCAP2L
	TF2	EXF2	RCLK	TCLK	EXEN	2 TR2	C/T2	CP/RL2	
0C8H	CF	CE	CD	сс	СВ	CA	C9	C8	T2CON
	РСТ		PT2	PS	PT1	PX1	РТО	PX0_	
0B8H	BF	-	BD	вс	BB	ВА	В9	B8	· IP
овон	B7	B6	B5	В4	B3	B2	B1	BO	P3
	EA		ET2	ES	ET1	EX1	ЕΤΟ	EX0	
0A8H	AF	-	AD	AC	AB	AA	A9	A8	IE
0A0H	A7	A6	A5	A4	A3	A2	A1	A0	P2
99H			f No	t Bit A	ddressa	ble			SBUF
	SMO	SM1	SM2	REN	тв8	RB8	ті	RI	
98H	9F	9E	9D	9C	19B	9A_	99	98	SCON
90H	97	96	95	94	93	92	91	90	P1

SPECIAL FUNCTION REGISTERS

Timer mode register (TMOD)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0		
TMOD	89H	GATE	C/T	M1	мо	GATE	C/T	М1	мо		
BIT LOCATION	FLAG				FUN	CTION					
TMOD.0	MO	M1	MO	Timer/c	ounter ()	mode sett	ing				
		0	0	8-bit tin	ner/coun	ter with 5-	bit presc	alar.			
		0	1	16-bit ti	mer/cou	nter.					
		1	0	8-bit tin	ner/coun	ter with 8-	bit auto	reloading).		
TMOD.1	М1	1	1 1 Timer/counter 0 separated into TL0 (8-bit) timer/ counter and TH0 (8-bit) timer/counter. TF0 is set by TL0 carry, and TF1 is set by TH0 carry.								
TMOD.2	C/T	XTAL1 0 when The ext	Timer/counter 0 count clock designation control bit. XTAL1 • 2 divided by 12 clocks is the input applied to timer/counter 0 when $C/\overline{T} = "0"$. The external clock applied to the T0 pin is the input applied to timer/counter 0 when $C/\overline{T} = "1"$.								
TMOD.3	GATE	When this bit is "0", the TRO bit of TCON (timer control register) is used to control the start and stop of timer/counter 0 counting. If this bit is "1", timer/counter 0 starts counting when both the TRO bit of TCON and INTO pin input signal are "1", and stops counting when either is changed to "0".									
TMOD.4	MO	M1	MO	Timer/c	ounter 1	mode sett	ing.				
		0	0	8-bit tin	ner/coun	ter with 5-	bit presc	alar.			
		0	1	16-bit ti	mer/cou	nter.					
TMOD.5	M1	1	0	8-bit tin	ner/coun	ter with 8-	bit auto	reloading).		
TWOD.5	IVI I	1	1	Timer/c	ounter 1	operation	stopped				
TMOD.6	C/T	XTAL1 1 when The ext	Timer/counter 1 count clock designation control bit. XTAL1 · 2 divided by 12 clocks is the input applied to timer/counter 1 when $C/\overline{T} = "0"$. The external clock applied to the T1 pin is the input applied to timer/counter 1 when $C/\overline{T} = "1"$.								
TMOD.7	GATE	When this bit is "0", the TR1 bit of TCON is used to control the start and stop of timer/counter 1 counting. If this bit is "1", timer/counter 1 starts counting when both the TR1 bit of TCON and INT1 pin input signal are "1", and stops counting when either is changed to "0".									

.

Power control register (PCON)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0		
PCON	87H	SMOD	HPD	RPD		GF1	GF0	PD	IDL		
BIT LOCATION	FLAG		L		FUNC	TION					
PCON.0	IDL	stopped and 2, th	DLE mode set when this bit is set to "1". CPU operations are stopped when IDLE mode is set, but XTAL1.2, timer/counters 0, 1, and 2, the interrupt circuits, and serial port remain active. IDLE mode s cancelled when the CPU is reset or when an interrupt is generated.								
PCON.1	PD	are stopp	PD mode set when this bit is set to "1". CPU operations and XTAL1 2 are stopped when PD mode is set. PD mode is cancelled when the CPU s reset or when an interrupt is generated.								
PCON.2	GF0	Testing t whether	General purpose bit. Testing this flag when IDLE mode is cancelled by an interrupt shows whether the interrupt is a normal interrupt or an IDLE mode release nterrupt.								
PCON.3	GF1	Testing whether	General purpose bit. Testing this flag when PD mode is cancelled by an interrupt shows whether the interrupt is a normal interrupt or a PD mode release interrupt.								
PCON.4	-	Reserved	l bit. The o	output d	ata is "1	" if the b	it is read				
PCON.5	RPD	PD) by it Power do is not en If the int this bit is from the	Bit used to specify cancellation of CPU power down mode (IDLE or PD) by interrupt signal. Power down mode cannot be cancelled by interrupt signal if interrupt is not enabled by IE (interrupt enable register) when this bit is "0". If the interrupt flag is set to "1" by an interrupt request signal when this bit is "1" (even if interrupt is disabled), the program is executed from the next address of the power down mode setting instruction. The flag is reset to "0" by software.								
PCON.6	HPD	The hard power down setting mode is enabled when this bit is set to "1". If the level of the power failure detect signal applied to the HPDI pin (pin 3.5) is changed from "1" to "0" when this bit is "1", XTAL1.2 oscillation is stopped and the system is put into hard power down mode. HPD mode is cancelled when the CPU is reset.							PDI pin AL1 •2		
PCON.7	SMOD	When the timer/counter 1 carry signal is used as a clock in mode 1, 2 or 3 of the serial port, this bit has the following functions. The serial port operation clock is reduced by 1/2 when the bit is "0" for delayed processing. And when the bit is "1", the serial port operation clock is normal for faster processing.							tis		

Timer control register (TCON)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0	
TCON	88H	TF1	TR1	TF0	TRO	IE1	IT1	IEO	ІТО	
BIT LOCATION	FLAG		FUNCTION							
TCON.0	IT0		External interrupt 0 signal used in level detect mode when this bit is "0", and in trigger detect mode when "1".							
TCON.1	IEO	Bit is res	Interrupt request flag for external interrupt 0. Bit is reset automatically when interrupt is serviced. Bit can be set and reset by software when ITO = "1".							
TCON.2	IT1		External interrupt 1 signal used in level detect mode when this bit is "0", and in trigger detect mode when "1".							
TCON.3	IE1	Bit is res	Interrupt request flag for external interrupt 1. Bit is reset automatically when interrupt is serviced. Bit can be set and reset by software when IT1 = "1".							
TCON.4	TRO	Timer/co	start and ounter 0 st when "O'	arts cour)\$	
TCON.5	TFO	Bit is res	Interrupt request flag for timer interrupt 0. Bit is reset automatically when interrupt is serviced. Bit is set to "1" when carry signal is generated from timer/counter 0.							
TCON.6	TR1	Timer/co	Counting start and stop control bit for timer/counter 1. Timer/counter 1 starts counting when this bit is "1", and stops counting when "0".							
TCON.7	TF1	Interrupt request flag for timer interrupt 1. Bit is reset automatically when interrupt is serviced. Bit is set to "1" when carry signal is generated from timer/counter 1.								

ſ

Serial port control register (SCON)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0		
SCON	98H	SM0	SM1	SM2	REN	тв8	RB8	ТІ	RI		
BIT LOCATION	FLAG		FUNCTION								
SCON.0	RI	This fla This fla mode 0 or 3, ho	"End of serial port reception" interrupt request flag. This flag must be reset by software during interrupt service routine. This flag is set after the eighth bit of data has been received when in mode 0, or by the STOP bit when in any other mode. In mode 2 or 3, however, RI is not set if the RB8 data is "0" with SM2 = "1". RI is set in mode 1 if STOP bit is received when SM2 = "1".								
SCON.1	ΤI	must be This fla	"End of serial port transmission" interrupt request flag. This flag must be reset by software during interrupt service routine. This flag is set after the eighth bit of data has been sent when in mode 0, or after the last bit of data has been sent when in any other mode.								
SCON.2	RB8	The ST	The ninth bit of data received in mode 2 or 3 is passed to RB8. The STOP bit is applied to RB8 if $SM2 = "0"$ when in mode 1. RB8 can not be used in mode 0.								
SCON.3	ТВ8				the ninth da set in TB8			ode 2 or	3.		
SCON.4	REN	No rece	ption w	le contro hen REN led wher		···.					
SCON.5	SM2	3, the " Nor is t	If the ninth bit of received data is "0" with $SM2 = "1"$ in mode 2 or 3, the "end of reception" signal is not set in the RI flag. Nor is the "end of reception" signal set in the RI flag if the STOP bit is not "1" when $SM2 = "1"$ in mode 1.								
SCON.6	SM1	SMO	SM1	MODE							
		0	0	0	8-bit shift	register	1/0				
		0	1	1	8-bit UAF	T variab	le baud r	ate			
SCON.7	SM0	1	1 0 2 9-bit UART 1/32 XTAL1, 1/64 XTAL1 baud rate								
		1	1	3	9-bit UAF	T variab	le baud r	ate			

· ·

Interrupt enable register (IE)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0	
IE	0A8H	EA	-	ET2	ES	ET1	EX1	ETO	EX0	
BIT LOCATION	FLAG				FUN	CTION				
IE.0	EXO	Interrup	Interrupt control bit for external interrupt 0. Interrupt disabled when bit is "0". Interrupt enabled when bit is "1".							
IE.1	ЕТО	Interrup	nterrupt control bit for timer interrupt 0. nterrupt disabled when bit is "0". nterrupt enabled when bit is "1".							
IE .2	EX1	Interrup	Interrupt control bit for external interrupt 1. Interrupt disabled when bit is "0". Interrupt enabled when bit is "1".							
IE .3	ET1	Interrup	Interrupt control bit for timer interrupt 1. Interrupt disabled when bit is "0". Interrupt enabled when bit is "1".							
IE.4	ES	Interrup	Interrupt control bit for serial port. Interrupt disabled when bit is "0". Interrupt enabled when bit is "1".							
IE .5	ET2	Interrupt control bit for timer interrupt 2. Interrupt disabled when bit is "O". Interrupt enabled when bit is "1".								
IE.6	-	Reserved	Reserved bit. The output data is "1" if the bit is read.							
IE.7	EA	Overall interrupt control bit, All interrupts are disabled when bit is "0". All interrupts are controlled by IE.0 thru IE.5 when bit is "1".								

Interrupt priority register (IP)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0		
IP	овен	РСТ	-	PT2	PS	PT1	PX1	РТО	PX0		
BIT LOCATION	FLAG		FUNCTION								
IP.0	PXO		nterrupt priority bit for external interrupt 0. Priority is assigned when bit is "1".								
IP.1	РТО		nterrupt priority bit for timer interrupt 0. Priority is assigned when bit is "1".								
IP.2	PX1		Interrupt priority bit for external interrupt 1. Priority is assigned when bit is "1".								
IP.3	PT1		Interrupt priority bit for timer interrupt 1. Priority is assigned when bit is "1".								
IP.4	PS	Interrup Priority		/ bit for s d when l	•						
IP.5	PT2	Interrup Priority	•	/ bit for d when		•					
IP.6	_	Reserved	bit. The	output	data is "	1" if the	bit is rea	ad.			
IP.7	РСТ	The prio interrup "1", the	Priority interrupt circuit control bit. The priority register contents are valid and priority assigned interrupts can be processed when this bit is "0". When the bit is "1", the priority interrupt circuit is stopped, and interrupts can only be controlled by the interrupt enable register (IE).								

Program status word register (PSW)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSE 0			
PSW	ODOH	CY	AC	FO	RS1	RS0	ov	F1	P			
BIT LOCATION	FLAG				FUNC	TION						
PSW.0	Р	"1" whe	Accumulator (ACC) parity indicator, '1" when the "1" bit number in the accumulator is an odd number, ind "0" when an even number.									
PSW.1	F1	User flag	User flag which may be set to " 0 " or " 1 " as desired by the user.									
PSW.2	ov	CY is "1 set to "1 instructio	Overflow flag which is set if the carry C6 from bit 6 of the ALU or CY is "1" as a result of an arithmetic operation. The flag is also set to "1" if the resultant product of executing a multiplication instruction (MUL AB) is greater than 0FFH, but is reset to "0" if the product is less than or equal to 0FFH.									
PSW.3	RS0	RAM register bank switch										
		RS1	RS0	BAN	K RA	RAM ADDRESS						
		0	0	0	0	0H – 07H						
PSW.4	RS1	0	1	1	0	08H – 0FH						
		1	0	2	1	10H – 17H						
		1	1	3.	1	8H 1FH						
PSW.5	FO	User flag	which n	hay be se	et to "0" o	r ''1'' as d	esired by	the user	·.			
PSW.6	AC	Auxiliary carry flag.This flag is set to "1" if a carry C_3 is generated from bit 3 of theALU as a result of executing an arithmetic operation instruction.In all other cases, the flag is reset to "0".Main carry flag.This flag is set to "1" if a carry C_2 is generated from bit 7 ofthe ALU as result of executing an arithmetic operation instruction.If a carry C_2 is not generated, the flag is reset to "0".										
PSW.7	CY											

I/O control	register	(IOCON)
-------------	----------	---------

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0	
IOCON	0F8H	WDT	т32	SERR	ızc	P 3HZ	P2HZ	P1HZ	ALF	
BIT LOCATION	FLAG				FUN	CTION				
IOCON.0	ALF	"1", the status.	outputs		s 0, 1, 2	2, and 3	are switc	hed to floa		
IOCON.1	P1HZ	Port 1 be	ecomes a	high impe	edance	input po	rt when	this bit is '	ʻ1″.	
IOCON.2	P2HZ	Port 2 be	ecomes a	high impe	edance	input po	rt when	this bit is '	'1''.	
IOCON.3	P3HZ	Port 3 becomes a high impedance input port when this bit is "1".								
IOCON.4	IZC		•	•		•	• •	3 is switch I-up resista		
IOCON.5	SERR	This flag when da	is set to ta is rece	ion error f "1" if an ived at a so by softwar	overrur erial po		ing error	is generat	ed	
IOCON.6	Т32	timer/co	unter wh	nen this bit	t is set 1	to "1".		rm a 32-bi ·bit timer/		
IOCON.7	WDT	is set to	"1" afte		g timer	mode ha	is been se	1". And if		

Timer 2 control register (T2CON)

NAME	ADDRESS	MSB 7	6	5	4	3	2	1	LSB 0			
T2CON	0C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2			
BIT LOCATION	FLAG				FUN	CTION		4				
T2CON.0	CP/RL2	Capture mode is set when TCLK + RCLK = "0" and CP/RL2 = "1". 16-bit auto reload mode is set when TCLK + RCLK = "0" and CP/RL2 = "0". CP/RL2 is ignored when TCLK + RCLK = "1".										
T2CON.1	C/T2	The in this bit	ternal clo is "O", a	2 count clocks (XTA and the ex er 2 when	L1 • 2 ÷ 1 ternal clo	2, XTAL1 ock applied	•2 ÷ 2) a	are used				
T2CON.2	TR2	Timer/		2 counting 2 commen ''0''.				is ''1'' an	d stops			
T2CON.3	EXEN2	T2EX timer/counter 2 external control signal control bit. Input of the T2EX signal is disabled when this bit is "0", and enabled when "1".										
T2CON.4	TCLK	Timer/ bit is " port tra Note, f	counter 1", and a ansmit cl nowever,	smit circui 2 is switch the timer/d lock. that the se erial port	ed to bai counter 2 erial port	ud rate ger ? carry sigr s can only	nerator m nal becor	nes the s	erial			
T2CON.5	RCLK	Timer/ bit is " port re Note, f	counter 1'', and t ceive clo nowever,	ive circuit 2 is switch the timer/o ck. that the so erial port	ed to bai counter 2 erial port	ud rate ger ? carry sigr s can only	nerator m nal becor	nes the s	erial			
T2CON.6	EXF2	Timer/counter 2 external flag. This bit is set to "1" when the T2EX timer/counter 2 external control signal level is changed from "1" to "0" while EXEN2 = "1". This flag serves as the timer interrupt 2 request signal. If an interrupt is generated, EXF2 must be reset to "0" by software.										
T2CON.7	TF2	This bi 16-bit This fla	t is set to auto relo ag serves	2 carry fla o ''1'' by a oad mode c as the tim =2 must be	carry sig or in capt er interru	ure mode. .pt 2 requ	est signal					

LIST OF INSTRUCTIONS

LIST OF INSTRUCTION SYMBOLS

Α	: Accumulator
AB	: Register pair
AC	: Auxiliary carry flag
В	: Arithmetic operation register
С	: Carry flag
DPTR	: Data pointer
PC	: Program counter
Rr	: Register indicator (r = 0 \sim 7)
SP	: Stack pointer
AND	: Logical product
OR	: Logical sum
XOR	: Exclusive OR
+	: Addition
-	: Subtraction
X	: Multiplication
1	: Division
(X)	: Denotes the contents of X
((X))	: Denotes the contents of address determined by the contents of X
	: Denotes the immediate data
@	: Denotes the indirect address
=	: Equality
¥	: Non equality
←	: Substitution
→	: Substitution
-	: Negation
<	: Smaller than
>	: Larger than
bit address	: RAM and the special function register bit specifier address $(b_0 \sim b_2)$
code address	: Absolute address $(A_0 \sim A_{1,s})$
	: Immediate data $(I_0 \sim I_7)$
	: Relative jump address offset value ($R_0 \sim R_7$)
	: RAM and the special function register byte specifier address $(a_0 \sim a_1)$

MSM80C154/MSM83C154 INSTRUCTION TABLE

L	0	1	2	3	4	5	6	7
н	0000	0001	0010	0011	0100	0101	0110	0111
00000	NOP	AJMP address 11 (Page 0)	LJMP address 16	RR A	INC A	INC direct	INC @R0	INC @R1
1 0001	JBC bit, rel	ACALL address 11 (Page 0)	LCALL address 16	RRC A	DEC A	DEC direct	DEC @ R0	DEC @R1
2 0010	JB bit, rel	AJMP address 11 (Page 1)	RET	RLA	ADD A, #data	ADD A, direct	ADD A, @R0	ADD A, @R1
3 0011	JNB bit, rel	ACALL address 11 (Page 1)	RETI	RLC A	ADDC A, #data	ADDC A, direct	ADDC A, @R0	ADDC A, @R1
4 0100	JC bit, rel	AJMP address 11 (Page 2)	ORL direct, A	ORL direct, #data	ORL A, #data	ORL A, direct	ORLA, @R0	ORL A, @R1
5 0101	JNC rel	ACALL address 11 (Page 2)	ANL direct, A	ANL direct, #data	ANL A, #data	ANL A, direct	ANLA, @R0	ANL A, @R1
6 0110	JZ rel	AJMP address 11 (Page 3)	XRL direct , A	XRL direct, #data	XRL A, #data	XRL A, direct	XRLA, @R0	XRL A, @R1
7 0111	JNZ rel	ACALL address 11 (Page 3)	ORL C, bit	JMP @A+DPTR	MOV A, #data	MOV direct, #data	MOV @R0, #data	MOV @R1 #data
8 1000	SJMP rel	AJMP address 11 (Page 4)	ANL C, bit	MOVC A, @A+PC	DIV AB	MOV direct 1, direct 2	MOV direct, @R0	MOV direct, @R1
9 1001	MOV DPTR #data 16	ACALL address 11 (Page 4)	MOV bit, C	MOVC A, @A+DPTR	SUBB A, #data	SUBB A, direct	SUBB A, @R0	SUBB A, @R1
A 1010	ORALC, bit	AJMP address 11 (Page 5)	MOV C, bit	INC DPTR	MUL AB		MOV @R0, direct	MOV @R1 direct
В 1011	ANL C, bit	ACALL address 11 (Page 5)	CPL bit	CPL C	CJNE A, #data, rel	CJNE A, direct, rel	CJNE @R0, #data, rel	CJNE @R1 #data, rel
C 1100	PUSH direct	AJMP address 11 (Page 6)	CLR bit	CLR C	SWAP A	XCH A, direct	XCH A, @R0	XCH A, @R1
D 1101	POP direct	ACALL address 11 (Page 6)	SETB bit	SE TB C	DA A	DJNZ direct, rel	XCHD A, @R0	XCH A, @R1
E 1110	MOVX A, @DPTR	AJMP address 11 (Page 7)	MOVX A, @R0	MOVX A, @R1	CLR A	MOV A, direct	MOV A, @R0	MOV A, @R1
F 1111	MOVX @DPTR, A	ACALL address 11 (Page 7)	MOVX @R0, A	MOVX @R1, A	CPL A	MOV direct, A	MOV @R0, A	MOV @R1, A
	ľ	2 BYTE		3 BYTE			0.0	
			INEMONIC					

L	8	9	A	В	С	D	E	F
н	1000	1001	1010	1011	1100	1101	1110	1111
0 0000	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
1 0001	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R
2	ADD A,	ADD A,	ADD A,	ADD A				
0010	R0	R1	R2	R3	R4	R5	R6	R7
3	ADDC A,	ADDC A,	ADDC A,	ADDC A				
0011	R0	R1	R2	R3	R4	R5	R6	
4	ORLA,	ORL A,	ORL A,	ORL A,	ORLA,	ORL A,	ORLA,	ORL A
0100	R0	R1	R2	R3	R4	R5	R6	R7
5	ANL A,	ANL A,	ANL A,	ANL A				
0101	RO	R1	R2	R3	R4	R5	R6	R7
6	XRLA,	XRL A,	XRL A,	XRL A,	XRLA,	XRL A,	XRLA,	XRL A
0110	R0	R1	R2	R3	R4	R5	R6	R7
7	MOV R0,	MOV R1,	MOV R2,	MOV R3,	MOV R4,	MOV R5,	MOV R6,	MOV R
0111	#data	#data	#data	#data	#data	#data	#data	#data
8 1000	MOV direct, R0	MOV direct, R1	MOV direct, R2	MOV direct, R3	MOV direct, R4	MOV direct, R5	MOV direct, R6	MOV direct, R7
9	SUBB A,	SUBB A,	SUBB A,	SUBB A				
1001	R0	R1	R2	R3	R4	R5	R6	R7
A	MOV R0,	MOV R1,	MOV R2,	MOV R3,	MOV R4,	MOV R5,	MOV R6,	MOV R
1010	direct	direct	⇔direct	direct	direct	direct	direct	direct
В 1011	CJNE R0, #data, rel	CJNE R1, #data, rel	CJNE R2, #data, rel	CJNE R3, #data, rel	CJNE R4, #data, ⊨ rel	CJNE R5, #data, rel	CJNE R6, #data, rel	CJNE R #data, rel
C	XCH A,	XCH A,	XCH A,	XCH A				
1100	R0	R1	R2	R3	R4	R5	R6	R7
D	DJNZ R0	DJNZ R1	DJNZ R2,	DJNZ R3,	DJNZ R4,	DJNE R5,	DJNE R6,	DJNE R
1101	rel	rel	rel	rel	rel	rel	rel	rel
E	MOV⊦A,	MOV A,	MOV A,	MOV A,	MOV A,	MOV A,	MOV A,	MOV A
1110	≊R0	R1	R2	R3	R4	R5	R6	R7
F 1111	MOV R0, A	MOV R1, A	MOV R2, A	MOV R3, A	MOV R4, A	MOV R5, A	MOV R6,	

• MSM80C154/83C154 •--

INSTRUCTION SET DETAILS

Type	м	nemonic		In	stru	cti	on (Cod	le		Bytes	Cycles	Description
F		0	D,	D6	D₅	D₄	D,	D 2	D,	D₀			
	ADD	A, Rr	0	0	1	0	1	r ₂	r1	r _o	1	1	$(AC), (0V), (C), (A) \leftarrow (A)+(Rr)$
ĺ	ADD	A, direct	0 a7	0 a6	1 a,	0 a₄	0 a3	1 a2	0 a1	1 a,	2	1	(AC) , (OV) , (C) , $(A) \leftarrow (A) + (direct address)$
	ADD	A, @Rr	0	0	1	0	0	1	1	r _o	1	1	$(AC), (0V), (C), (A) \leftarrow (A)+((Rr))$
	ADD	A, #data	0 17	0 I6	1 Is	0. I₄		1 ₂	0 1,	0 1 ₀	2	1	(AC), (0V), (C), (A) ← (A)+ #data
	ADD	CA, Rr	0	0	1	1	1	r ₂	r ₁	ro	1	1	$(AC), (0V), (C), (A) \leftarrow (A)+(C)+(Rr)$
	ADD	C A, direct	0 a7	0 a ₆	1 a₅	1 a₄	0 a₃	1 a₂	0 a1	1 a₀	2	1	(AC) , (OV) , (C) , $(A) \leftarrow (A)+(C)+(direct address)$
s	ADD	CA,@Rr	0	0	1	1	0	1	1	ro	1	1	$(AC), (0V), (C), (A) \leftarrow (A)+(C)+((Rr))$
ruction	ADD	CA, #data	0 17	0 I6	1 Is	1 14	0 I 3	1 ₂	0 1	0 1,	2	1	(AC), (0V), (C), (A) ← (A)+(C)+#data
inst	SUBB	SA, Rr	1	0	0	1	1	r ₂	r ₁	r _o	1	1	$(AC), (0V), (C), (A) \leftarrow (A) - ((C)) + ((Rr))$
eration	SUBB	A, direct	1 a7	0 a ₆	0 as	1 a₄	0 аз	1 a2	0 a1	1 a₀	2	1	(AC) , (OV) , (C) , $(A) \leftarrow (A) - ((C)+(direct address))$
c ob	SUBB	A, @Rr	1	0	0	1.,	0	1	1	ro	1	1	$(AC), (0V), (C), (A) \leftarrow (A) - ((C)+((Rr))$
Airthmetic operation instructions	SUBB	A, #data	1 17	0 16	0 1 s	1 I₄	0 I 3	1 ₂	0 1	0 I₀	2	1	(AC), (0V), (C), (A) ← (A)–((C)+#data)
Ā	MUL	AB	1	0	1	0	0	1	0	0	1	4	$(AB) \leftarrow (A) \times (B)$
	DIV	АВ	1	0	0	0	0	1	0	0	1	4	 (A) quotient, (B) remainder ← (A)/(B)
	DA	A	1	1	0	1	0	1	0	0	1	1	When the contents of accumulator bits 0 thru 3 are greater than 9, or when auxiliary carry (AC) is 1, 6 is added to bits 0 thru 3. Bits 4 thru 7 are then ex- amined, and when bits 4 thru 7 follow- ing compensation of lower bits 0 thru 3 is greater than 9, or when carry (C) is 1, 6 is added to bits 4 thru 7. As a result, the carry flag can be set, but cannot be cleared.
	CLR	Α	1	1	1	0	0	1	0	0	1	1	(A) ← 0
tion	CPL	A	1	1	1	1	0	1	0	0	1	1	$(A) \leftarrow \overline{(A)}$
Accumulation operati instructions	RL	A	0	0	1	0	0	0	1	1	1	1	Accumulator $ \begin{array}{c} $
Accumu	RLC	A	0	0	1	1	0	0	1	1	1	1	Accumulator

be				In	stru	uctio	on (Cod	е		0		Description
I ype	Mnemo	опіс	D,	D۵	D۶	D₄	D3	D ₂	D,	D₀		Cycles	Description
instructions	RR A		0	0	0	0	0	0	1	1	1	1	Accumulator $ \begin{array}{c} $
instructions	RRC A		0	0	0	1	0	0	1	1	1	1	Accumulator
	SWAP A		1	1	0	0	0	1	0	0	1	1	$(A_4 \sim _7) \Rightarrow (A_0 \sim _3)$
	INC A		0	0	0	0	0	1	0	0	1	1	(A) ← (A)+1
	INC Rr		0	0	0	0	1	r ₂	٢1	ro	1	1	(Rr) ← (Rr)+1
	INC dire	ect	0 a7	0 a6	0 as	0 a₄	0 а₃	1 a₂	0 a1	1 ao	2	1	(direct address) ← (direct address)+1
nucrement/decrement	INC @R	r	0	0	0	0	0	1	1	r _o	1	1	((Rr)) ← ((Rr))+1
ner	INC DPT	rr	1	0	1	0	0	0	1	1	1	2	(DPTR) ← (DPTR)+1
	DEC A		0	0	0	1	0	1	0	0	1	1	(A) ← (A)-1
	DEC Rr		0	0	0	1	1	r ₂	r ₁	r _o	1	1	(Rr) ← (Rr)−1
	DEC dire	ect	0 a,	0 a6	0 as	1 a₄	0 a₃	1 a2	0 a1	1 a₀	2	1	(direct address) ← (direct address)−1
	DEC @R	r	0	0	0	1	0	1	1	r _o	1	1	((Rr)) ← ((Rr))–1
	ANL A, F	٦r	0	1	0	1	1	٢2	r ₁	ro	1	1	(A) ← (A) AND (Rr)
	ANL A, c	direct	0 a ₇	1 a ₆	0 a₅	1 a₄	0 a₃	1 a2	0 a,	1 a₀	2	1	(A) ← (A) AND (direct address)
	ANL A, @	₽Rr	0	1	0	1	0	1	1	r o	1	1	(A) ← (A) AND ((Rr))
	ANL A, #	#data	0 ₇	1 1 ₆	0 I₅	1 I₄	0 I₃	1 12	0 1,	0 10	2	1	(A) ← (A) AND #data
	ANL dire	ect, A	0 a ₇	1 a6	0 as	1 a₄	0 a₃	0 a₂	1 a,	O a₀	2	1	(direct address) ← (direct address) AND (A)
	ANL dire #da		0 a ₇ I ₇			1 84 14		0 a2 12		1 ao Io	3	2	(direct address) ← (direct address) AND #data
	ORL A, F	Rr	0	1	0	0	1	r ₂	r1	r _o	1	1	(A) ← (A) OR (Rr)
Incident	ORL A, d	direct	0 a ₇	1 a6	0 as	0 a₄	0 a₃	1 a2	0 a1	1 a₀	2	1	(A) ← (A) OR (direct address)
	ORL A, @	@Rr	0	1	0	0	0	1	1	r o	1	1	(A) ← (A) OR ((Rr))
	ORL A, #	#data	0 1,	1 16	0 Is	0 I₄		1 12	0 1	0 10	2	1	(A) ← (A) OR #data

Type				In	stru	ictio	on (Cod	е				Description
1 L	IVIT	nemonic	D7	D6	D۶	D₄	D3	D 2	Di	D,	Byles	Cycles	Description
	ORL	direct, A	0 a,	1 a ₆		0 a₄			1 a,		2	1	(direct address) ← (direct address) OR (A)
su	ORL	direct, #data	0 a7 I7			0 a₄ I₄					3	2	(direct address) ← (direct address) OR #data
uctio	XRL	A, Rr	0	1	1	0	1	r ₂	r1	ro	1	1	(A) ← (A) XOR (Rr)
on instr	XRL	A, direct	0 a,	1 a ₆	1 as	0 a₄	0 a₃	1 a2	0 aı	1 a₀	2	1	(A) ← (A) XOR (direct address)
eratio	XRL	A, @Rr	0	1	1	0	0	1	1	r _o	1	1	(A) ← (A) XOR ((Rr))
Logical operation instructions	XRL	A, #data	0 ₇	1 16	1 s	0 I₄	0 I3	1 ₂	0 1,	0 10	2	1	(A) ← (A) XOR #data
Log	XRL	direct, A	0 a7	1 a6	1 as	0 a₄	0 a₃	0 a2	1 a1	0 a₀	2	1	(direct address) ← (direct address) XOR (A)
	XRL	direct, #data	0 a7 I7	1 a6 16		0 a₄ I₄	0 a3 I3			1 a₀ I₀	3	2	(direct address) ← (direct address) XOF #data
tions	моч	A, #data	0 7	1 I ₆	1 s	1 I₄	0 I 3	1 2	0 1	0 I₀	2	1	(A) ← #data
nstruct	мо∨	Rr, #data	0 ₇	1 1 ₆	1 s	1 I₄	1 ₃				2	1	(Rr) ← #data
Immediate data setting instructions	моv	direct, #data				1 a4 I4					3	2	(direct address) ← #data
ate data	моv	@Rr, #data	0 17	1 16	1 s	1 I4	0 13	1 12	1 ,	ro Io	2	1	(Rr)) ← #data
Immedia	MOV	DPTR, #data 16		I14	I ₁₃	1 ₁₂ ₄	111	110		0 ₈ ₀	3	2	(DPTR) ← #data 16
	CLR	С	1	1	0	0	0	0	1	1	1	1	(C) ← 0
	SETB	С	1	1	0	1	0	0	1	1	1	1	(C) ← 1
tions	CPL	С	1	0	1	1	0	0	1	1	1	1	$(C) \leftarrow \overline{(C)}$
on instructions	ANL	C, bit	1 b7	0 b ₆	0 bs	0 b₄	0 b3	0 b2	1 b,	0 Ь₀	2	2	(C) \leftarrow (C) AND (bit address)
	ANL	C,/bit	1 57			1 b₄					2	2	(C) \leftarrow (C) AND (bit address)
Carry flag operat	ORL	C, bit	-	1 b₀	1 bs		0 b₃		1 b1	0 Ь₀	2	2	(C) ← (C) OR (bit address)
Carry f	ORL	C,/bit	1. b7	-	1 bs		0 b3			0 b₀	2	2	(C) \leftarrow (C) OR (bit address)
-	моv	C, bit	1 b7	0 b ₆	1 bs	0 b₄	0 b3	0 b2	1 b,	0 Ь₀	2	1	(C) ← (bit address)

1

2014		amania		In	stru	ctic	on (Cod	e		Butor	Cycles	Description
:	IVIT	nemonic	D,	D ₆	D۶I	D₄	D3	D ₂	Dı	D,		Cycles	Description
	мо∨	bit, C	1 b7	0 b ₆		1 b₄			1 b,	0 b₀	2	2	(bit address) ← (C)
us	SETB	bit		1 b ₆		1 b₄			1 b,	0 b ₀	2	1	(bit address) ← 1
instructions	CLR	bit		1 b ₆	0 b,	-	-		1 b ₁	0 b₀	2	1	(bit address) ← 0
ins	CPL	bit	1 b7	0 b ₆	-	1 b₄			1 b,	0 b₀	2	1	(bit address) ← (bit address)
	MOV	A, Rr	1	1	1	0	1	r ₂	r1	ro	1	1	(A) ← (Rr)
	мо∨	A, direct	1 a ₇	1 a6	1 as	0 a₄	0 а ₃	1 a2	0 a1	1 a ₀	2	1	(A) ← (direct address)
	MOV	A, @Rr	1	1	1	0	0	1	1	r o	1	1	(A) ← ((Rr))
	MOV	Rr, A	1	1	1	1	1	r ₂	r ₁	r _o	1	1	(Rr) ← (A)
	моv	Rr, direct	1 a7	0 a6			1 a₃		r, a,		2	2	(Rr) ← (direct address)
	мо∨	direct, A	1 a7	1 a ₆	1 a,	1 a₄	0 a₃		0 a1	1 a₀	2	1	(direct address) ← (A)
	MOV	direct, Rr	1 a7	0_ a ₆	0 as		1 a3	-	r _i a ₁	-	2	2	(direct address) ← (Rr)
נ	мо∨	direct, @Rr	1 a7	0 a ₆	-	0 a₄	0 a₃	1 a ₂	1 a,	r _o a _o	2	2	(direct address) ← ((Rr))
	MOV	@Rr, A	1	1	1	1	0	1	1	r _o	1	1	((Rr)) ← (A)
instructions	мо∨	@Rr, direct	1 a ₇	0 a ₆		0 a₄	0 a3	1 a2	1 a1	r _o a _o	2	2	$((\mathbf{Rr})) \leftarrow (direct address))$
instructions	моло	A, @A+DPTR	1	0	0	1	0	0	1	1	1	2	(A) ← ((A) + (DPTR))
instru	MOVO	CA,@A+PC	1	0	0	0	0	0	1	1	1	2	(PC) ← (PC) + 1 (A) ← ((A) + (PC))
5	хсн	A, Rr	1	1	0	0	1	r ₂	r1	r _o	1	1	(A) ⇒ (Rr)
instructions	хсн	A, direct	1 a ₇	1 a6		0 a₄	0 a3	1 a₂	0 a,	1 a₀	2	1	(A) ⇒ (direct address)
instr	хсн	A, @Rr	1	1	0	0	0	1	1	r o	1	1	(A) ⇒ ((Rr))
	XCHD	A, @Rr	1	1	0	1	0	1	1	r _o	1	1	$(A_0 \sim _3) \rightleftharpoons ((Rr_0 \sim _3))$

• MSM80C154/83C154 •

Type	Mnemonic	Instruction Code	Bytes Cycle	Bescription
ŕ	Witemotic	$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$	- yes o yes	
	PUSH direct	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2	(SP) ← (SP)+1 ((SP)) ← (direct address)
	POP direct	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2	(direct address) ← ((SP)) (SP) ← (SP)-1
structions	ACALL addr 11	A ₁₀ A ₉ A ₈ 1 0 0 0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	2 2	$(PC) \leftarrow (PC)+2$ $(SP) \leftarrow (SP)+1$ $((SP)) \leftarrow (PC_{0} \sim _{7})$ $(SP) \leftarrow (SP)+1$ $((SP)) \leftarrow (PC_{8} \sim _{15})$ $(PC_{0} \sim _{10}) \leftarrow A_{0} \sim _{10}$
Subroutine instructions	LCALL addr 16	0 0 0 1 0 0 1 0 A ₁₅ A ₁₄ A ₁₃ A ₁₂ A ₁₁ A ₁₀ A ₉ A ₈ A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	32	$(PC) \leftarrow (PC)+3$ $(SP) \leftarrow (SP)+1$ $((SP)) \leftarrow (PC_0 \sim_7)$ $(SP) \leftarrow (SP)+1$ $((SP)) \leftarrow (PC_8 \sim_{15})$ $(PC_0 \sim_{15}) \leftarrow A_0 \sim_{15}$
	RET	00100010	1 2	$(PC_{\mathfrak{s}} \sim_{1\mathfrak{s}}) \leftarrow ((SP))$ $(SP) \leftarrow (SP)-1$ $(PC_{\mathfrak{s}} \sim_{7}) \leftarrow ((SP))$ $(SP) \leftarrow (SP)-1$
	RETI	00110010	1 2	$(PC_{\mathfrak{s}} \sim_{15}) \leftarrow ((SP))$ (SP) + (SP)-1 (PC_{\mathfrak{o}} \sim_{\mathfrak{1}}) \leftarrow ((SP)) (SP) + (SP)-1
su	AJMP addr 11	$\begin{array}{c} A_{10}A_{9} A_{8} & 0 & 0 & 0 & 0 & 1 \\ A_{7} A_{6} A_{5} A_{4} A_{3} A_{2} A_{1} A_{0} \end{array}$	2 2	$(PC) \leftarrow (PC)+2 (PC_0 \sim_{10}) \leftarrow A_0 \sim_{10}$
Jump instructions	LJMP addr 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2	$(PC_0 \sim_{1S}) \leftarrow A_0 \sim_{1S}$
Jump	SJMP rel	1 0 0 0 0 0 0 0 R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₆	2 2	$(PC) \leftarrow (PC)+2$ $(PC) \leftarrow (PC)+relative offset$
	JMP @A+DPTR	0 1 1 1 0 0 1 1	1 2	(PC) ← (A)+(DPTR)
Istructions	CJNE A, direct, rel	1 0 1 1 0 1 0 1 a7 a6 a5 a4 a3 a2 a1 a0 R7 R6 R5 R4 R3 R2 R1 R0	3 2	$(PC) \leftarrow (PC)+3$ $IF \qquad (A) \neq (direct address)$ $THEN$ $(PC) \leftarrow (PC)+relative offset$ $IF \qquad (A) < (direct address)$ $THEN$ $(C) \leftarrow 1$ $ELSE$ $(C) \leftarrow 0$
Branch in	CJNE A, #data, rel	1 0 1 1 0 1 0 0 17 16 15 14 13 12 13 16 R7 R6 R5 R4 R3 R2 R1 R0	3 2	(PC) ← (PC)+3 IF (A) \ddagger #data THEN (PC) ← (PC)+relative offset IF (A) < #data THEN
				$(C) \leftarrow 1$ ELSE $(C) \leftarrow 0$

Type	Mnemonic	Instruction Code	0	Cycle	Description
F.	winemonic	$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$		Cycie	Compton
	CJNE Rr, #data, rel	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	2	$\begin{array}{ll} (PC) \leftarrow (PC) + 3 \\ IF & ((Rr)) \neq \# data \\ THEN \\ (PC) \leftarrow (PC) + relative offset \\ IF & ((Rr)) < \# data \\ THEN \\ & (C) \leftarrow 1 \\ \\ ELSE \\ & (C) \leftarrow 0 \end{array}$
	CJNE @Rr, #data, rel	1 0 1 1 0 1 1 r ₀ I ₇ I ₆ I ₅ I ₄ I ₃ I ₂ I ₁ I ₀ R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀		2	$\begin{array}{ll} (PC) \leftarrow (PC) + 3 \\ IF & ((Rr)) \ddagger \# data \\ THEN \\ (PC) \leftarrow (PC) + relative offset \\ IF & ((Rr)) < \# data \\ THEN \\ & (C) \leftarrow 1 \\ ELSE \\ & (C) \leftarrow 0 \end{array}$
uctions	DJNZ Rr, rei	1 1 0 1 1 r ₂ r ₁ r ₀ R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀		2	$\begin{array}{l} (PC) \leftarrow (PC) + 2 \\ (Rr) \leftarrow (Rr) - 1 \\ IF \qquad (Rr) \neq 0 \\ THEN \\ (PC) \leftarrow (PC) + relative offset \end{array}$
Branch instructions	DJNZ direct, rel	1 1 0 1 0 1 0 1 a ₇ a ₆ a ₅ a ₄ a ₃ a ₂ a ₁ a ₀ R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀		2	$(PC) \leftarrow (PC)+3$ $(direct address) \leftarrow (direct address)-1$ IF (direct address) $\neq 0$ THEN $(PC) \leftarrow (PC)+relative offset$
	JZ rel	0 1 1 0 0 0 0 0 R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀	2	2	$(PC) \leftarrow (PC)+2$ IF (A) = 0 THEN $(PC) \leftarrow (PC)+relative offset$
	JNZ rei	0 1 1 1 0 0 0 0 R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀	2	2	$(PC) \leftarrow (PC)+2$ IF (A) $\neq 0$ THEN $(PC) \leftarrow (PC)+relative offset$
	JC rel	0 1 0 0 0 0 0 0 R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀	2	2	$(PC) \leftarrow (PC)+2$ IF (C) = 1 THEN $(PC) \leftarrow (PC)+relative offset$
	JNC rel	0 1 0 1 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0	2	2	$(PC) \leftarrow (PC)+2$ IF (C) = 0 THEN $(PC) \leftarrow (PC)+relative offset$
	JB bit, rel	0 0 1 0 0 0 0 0 b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀	3	2	$(PC) \leftarrow (PC)+3$ IF (bit address) = 1 THEN $(PC) \leftarrow (PC)+relative offset$
	JNB bit, rel	0 0 1 1 0 0 0 0 b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀		2	(PC) ← (PC)+3 IF (bit address) = 0 THEN (PC) ← (PC)+relative offset

• MSM80C154/83C154 •

þe	Mnemonic	Ins	truct	ion	Cod	e		Bytes	Cycle	Description
Type	whemonic	D, D, C), D,	D3	D2	D,		57103	C y old	Description
Branch instructions	JBC bit, rel	000 b7 b6 b R7 R6 F						3	2	$(PC) \leftarrow (PC)+3$ IF (bit address) = 1 THEN (bit address) $\leftarrow 0$ (PC) $\leftarrow (PC)+relative offset$
s s	MOVX A, @Rr	1 1	10	0	0	1	ro	1	2	$(A) \leftarrow ((Rr)) EXTERNAL RAM$
al memo	MOVX A, @DPTR	1 1	1 0	0	0	0	0	1	2	(A) ← ((DPTR)) EXTERNAL RAM
External memory instructions	MOVX @Rr, A	1 1	1 1	0	0	1	r _o	1	2	(Rr) ← (A) EXTERNAL RAM
in	MOVX @DPTR, A	11	1 1	0	0	0	0	1	2	((DPTP)) ← (A) EXTERNAL RAM
Other nstructions	NOP	0 0	0 0	0	0	0	0	1	1	(PC) ← (PC)+1

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	Vcc	Ta = 25 °C	-0.5 ~ 7	V
Input voltage	Vi	Ta = 25 °C	-0.5 ~ Vcc + 0.5	V
Storage temperature	Tstg		-55 ~ + 150	°C

Operational Range

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	Vcc	*1 fosc = DC-16 MHz	2.5 ~ 6	v
Memory hold voltage	Vcc		2~6	V
Ambient temperature	Та		-40 ~ + 85	°C

*1: 2.5 V \leq Vcc < 4 V DC characteristics will be specified elsewhere.

16 MHz version of MSM83C154 (12 MHz < XTAL $1.2 \le 16$ MHz) is being developed.

DC Characteristics

 $(V_{CC} = 5V \pm 10\%, Ta = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min.	Тур.	Ma×.	Unit	Meas- uring circuit
Input Low Voltage	VIL		-0.5		0.2 V _{CC} -0.1	V	
Input High Voltage	∨ін	Except XTAL1 and RESET	0.2 V _{CC} +0.9		V _{CC} + 0.5	V	
Input High Voltage	∨іні	XTAL1 and RESET	0.7 V _{CC}		V _{CC} + 0.5	V]
Output Low Voltage (PORT 1, 2, 3)	VOL	1 _{OL} = 1.6 mA			0.45	V	}
Output Low Voltage (PORT 0, ALE, PSEN)	VOL1	I _{OL} = 3.2 mA			0.45	v	
Output High Voltage (PORT 1, 2, 3)	∨он	I _{OH} = -60 μA V _{CC} = 5 V ± 10%	2.4			V	1
		IOH = -30 µA	0.75 V _{CC}			V	1
	}	I _{OH} = -10 μA	0.9 V _{CC}			v	1
Output High Voltage (PORT 0, ALE, PSEN)	⊻оні	1 _{OH} =400 μA V _{CC} = 5 V ± 10%	2.4			V	
		I _{OH} = -150 μA	0.75 V _{CC}			v	1
	1	¹ OH = -40 μA	0.9 V _{CC}			V	1
Logical 0 Input Current (PORT 1, 2, 3)	μL	V _I = 0.45 V	-10		-200	μA	2
Logical 1 to 0 Transition Current (PORT 1, 2, 3)	ΙΤL	V _I = 2.0 V			-500	μA	2
Input Leakage Current (PORT 0 floating, EA)	111	$v_{SS} < v_1 < v_{CC}$			± 10	μA	3
RESET Pulldown Resistor	RRST	-	20	40	125	ΚΩ	2
Pin Capacitance	CIO	T _A = 25°C, f = 1 MHz 5 V (except XTAL1)			10	pF	
Power Down Current	IPD	V _{CC} = 2 ~ 6 V		1	50	μA	4

V _{CC}	4 V	5 V	6 V
Freq			
0.5 MHz	1.6	2.2	3
3.5 MHz	4.3	5.7	7.5
8 MHz	8.3	11	14
12 MHz	12	16	20

Maximum Power Supply Current Normal Operation I_{CC} (mA)

Maximum Power Supply Current Idle Mode I_{CC} (mA)

V _{CC}	4 V	5 V	6 V
Freq			
0.5 MHz	0.6	0.9	1.2
3.5 MHz	1.1	1.6	2.2
8 MHz	1.8	2.7	3.7
12 MHz	2.5	3.7	5

*1: 2.5 V \leq V_{CC} < 4 V DC characteristics will be specified elsewhere.

Maximum Power Supply Current Normal Operation I_{CC} (mA)

Maximum Power Supply Current Idle Mode I_{CC} (mA)

V _{CC}	4.5 V	5 V	5.5 V		
Freq.					
1.2 MHz	2.0	2.3	2.6		
8 MHz	10	11	12.5		
12 MHz	14	16	18		
16 MHz	18	20	23		

	-		
Vcc	4.5 V	5 V	5.5 V
Freq.			
1.2 MHz	1.4	1.5	1.6
8 MHz	2.3	2.7	3.2
12 MHz	3.0	3.7	5.0
16 MHz	4.0	5.0	6.0

Measuring Circuits

Note 1. Repeated for specified input pins. 2. Repeated for specified output pins.

3. Input logic for specified status.

External Program Memory Access AC Characteristics

 $(V_{CC} = 5 V \pm 20\%, V_{SS} = 0 V, XTAL1 \cdot 2 = 12 MHz, Ta = -40 ^{\circ}C to 85 ^{\circ}C V_{CC} = 5 V \pm 10\%, V_{SS} = 0 V, 12 MHz < XTAL1 \cdot 2 \le 16 MHz, Ta = -40 ^{\circ}C to 85 ^{\circ}C PORT 0, ALE, and PSEN connected with 100 pF load, other connected with 80 pF load)$

		*		Ratings		
Parameter	Symbol	16 MH	z clock		clock from 16 MHz	Unit
		Min.	Max.	Min.	Max.	
XTAL1 -2 Oscillator Period	tCLCL	62.5		62.5		ns
ALE Pulse Width	TLHLL	85		2tCLCL-40		ns
Address Valid to ALE Low	tAVLL	18.5		1tCLCL-44		ns
Address Hold After ALE Low	TLLAX	27.5		1tCLCL-35		ns
ALE Low to Valid Instr In	tLLIV		150		4tCLCL-100	ns
ALE Low to PSEN Low	tLLPL	32.5		1tCLCL-30		ns
PSEN Pulse Width	tPLPH	152.5		3tCLCL-35		ns
PSEN Low to Valid Instr In	tPLIV		82.5		3tCLCL-105	ns
Input Instr Hold After PSEN	TPXIX	0		0		ns
Input Instr Float After PSEN	tPXIZ		42.5		1tCLCL-20	ns
PSEN to Address Valid	tPXAV	42.5		1tCLCL-20		ns
Address to Valid Instr In	TAVIV		207.5		5tCLCL-105	ns
Address Float to PSEN Low	tAZPL	0		0		ns

• MSM80C154/83C154 •-

External Program Memory Access AC Characteristics

 $(V_{CC} = 5 V \pm 20\%, V_{SS} = 0 V, XTAL1 \cdot 2 = 12 MHz, Ta = -40 °C to 85 °C V_{CC} = 5 V \pm 10\%, V_{SS} = 0 V, 12 MHz < XTAL1 \cdot 2 \le 16 MHz, Ta = -40 °C to 85 °C V_{CC} = 5 V \pm 10\%$

PORT 0, ALE, and PSEN connected with 100 pF load, other connected with 80 pF load)

				Ratings		
Parameter	Symbol	16 MH	z clock		clock from 16 MHz	Unit
	3	Min.	Max.	Min.	Max.	1
XTAL1 · 2 Oscillator Period	tCLCL	62.5		62.5		ns
ALE Pulse Width	tLHLL	85		2tCLCL-40		ns
Address Valid to ALE Low	tAVLL	18.5		1tCLCL-44		ns
Address Hold After ALE Low	TLLAX	27.5		1tCLCL-35		ns
RD Pulse Width	TRLRH	275		6tCLCL-100	-	
WR Pulse Width	tWLWH	275		6tCLCL-100		ns
RD Low to Valid Data In	tRLDV		207.5		5tCLCL-105	ns
Data Hold After RD	tRHDX	0		0		ns
Data Float After RD	tRHDZ		55		2tCLCL-70	ns
ALE Low to Valid Data In	tLLDV		400		8tCLCL-100	ns
Address to Valid Data In	tAVDV		457.5		9tCLCL-105	ns
ALE Low to RD or WR Low	TLLWL	147.5	227.5	3tCLCL-40	3tCLCL+40	ns
Address to RD or WR Low	tAVWL	180		4tCLCL-70		ns
Data Valid to WR Transition	tQVWX	22.5		1tCLCL-40		ns
Data Valid to WR High	tQVWH	332.5		7tCLCL-105		ns
Data Hold After WR	tWHQX	75		2tCLCL-50		ns
Address Float to RD Low	tAZRL		0		0	ns
RD or WR High to ALE High	tWHLH	32.5	102.5	1tCLCL-30	1tCLCL+40	ns

1

• MSM80C154/83C154 • -

Serial Port (I/O Extension Mode) AC Characteristics

 $V_{CC} = 5 V \pm 20\%$, $V_{SS} = 0 V$, $XTAL1 \cdot 2 = 12 MHz$, Ta = -40 °C to 85 °C $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$, $12 MHz < XTAL1 \cdot 2 \le 16 MHz$, Ta = -40 °C to 85 °C

Parameter	Symbol	Min,	Max.	Unit
Serial Port Clock Cycle Time	tXLXL	12tCLCL		ns
Output Data Setup to Clock Rising Edge	tQVXH	10tCLCL-133		ns
Output Data Hold After Clock Rising Edge	t XHQX	2tCLCL-75		ns
Input Data Hold After Clock Rising Edge	tXHDX	0		ns
Clock Rising Edge to Input Data Valid	tXHDV		10tCLCL-133	ns

AC Characteristics Measuring Conditions

XTAL1 External Clock Input Waveform Conditions

Parameter	Symbol	Min.	Max.	Units
Oscillator Freq.	1/tCLCL	DC	16	MHz
High Time	tCHCX	20		ns
Low Time	tCLCX	20		ns
Rise Time	tCLCH		20	ns
Fall Time	tCHCL		20	ns

