OKI semiconductor

MSM80C35/48 MSM80C39/49 MSM80C40/50

CMOS 8-BIT SINGLE CHIP MICROCONTROLLER

GENERAL DESCRIPTION

The OKI MSM80C48/MSM80C49/MSM80C50 microcontroller is a low-power, high-performance 8-bit single chip devicer implemented in silicon gate complementary metal oxide semiconductor technology. Integrated within these chips are 8K/16K/32K bits of mask program ROM, 512/1024/2048 bits of data RAM, 27 I/O lines, built-in 8 bit timer/counter, and oscillator. Program memory and data paths are byte wide. Eleven new instructions have been added to the NMOS version's instruction set, thereby optimizing power down, port data transfer, decrement and port float functions.

Available in 40-pin plastic DIP (RS) or 44-pin plastic flat packages (GSK).

FEATURES

- Lower power consumption enabled by CMOS silicon gate process
- Completely static operation
- Improved power-down feature
- Minimum instruction cycle $1.36 \ \mu s (11 \text{ MHz})$ @ V_{CC} = +5V ±10% 11 MHz version of MSM80C50 (6 MHz < XTAL1.2 < 11 MHz) is under development.
- Every signal input terminal is provided with a Schmitt circuit, except XTAL1 Pin.
- Every signal output terminal is capable of driving a standard TTL, except XTAL2 Pin.
- 111 instructions
- All instructions are usable even during execution of external ROM instructions.
- Operation facility Addition, logical operations, and decimal adjust
- Program memory (ROM) : 1K × 8 bits
 - (MSM80C48) : 2K × 8 bits (MSM80C49) : 4K × 8 bits (MSM80C50) Data memory (RAM) : 64 × 8 bits (MSM80C48) : 128 × 8 bits (MSM80C49) : 256 × 8 bits (MSM80C50)

- Two sets of working registers
- External and timer interrupts
- Two test inputs
- Built-in 8-bit timer counter
- Extendable external memory and I/O ports
- Input/output ports : Input/output ports
 - -8 bits imes 2
 - : Data bus input/output 8 bits $\times 1$
- Single-step execution function
- Every signal input terminal is provided with a Schmitt circuit, except XTAL 2 Pin
- Every signal output terminal is capable of driving a standard TTL, except X'tal 2 Pin.
- Wide range of operating voltage, from +2.5V to +6V of V_{CC}.
- High noise margin action
- Two kinds of package; 40-pin plastic DIP and 44-pin plastic flat package
- Compatible with Intel's 8048, 8049 and 8050

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

XTALI 2	39) T1	Pin Name
XTAL2 3	38 P27	
RESET 4	37] P26	P10 ~ P17 : Input/output port (POR
SS 5	36 P24	P20 ~ P27 : Input/output port (POR
INT E	35 P24	$DB_0 \sim DB_7$: Data bus port (BUS POI
EA 7	34) P17	TO, T1 : Test
RD 8	33 P16	INT : Interrupt
PSEN 9	32) P15	RD : Read
WR [10	31) P14	WR : Write
ALE TT	30 P13	ALE : Address Latch Enable
DB0 12	29 P12	PSEN : Program Store Enable
DB1 13	28 P11	RESET : Reset
DB2 14	27] P10	SS : Single Step
DB3 15	26) VDD	EA : ROM Mode
DB₄ 116	25] PROG	XTAL 1, 2 : Crystal Controlled Oscil
DB ₅ [17]	24) P23	
DB6 18	23 P22	
DB7 19	22) P21	
Vss (20)	21 P20	

--- MSM80C35/48, 80C39/49, 80C40/50 •

PIN DESCRIPTION

Designation	Input/Output	Function
P10~P17 (PORT 1)	Input/Output	8-bit quasi-bidirectional port
P2₀~P2ァ (PORT 2)	Input/Output	8-bit quasi-bidirectional port The high-order four bits of external program memory addresses can be output from P20-P23, to which the I/O expander MSM82C43RS may also be connected.
DBo~DB7 (BUS)	Input/Output	Bidirectional port The low-order eight bits of external program memory address can be output from this port, and the addressed instruction is fetched under the control of PSEN signal. Also, the external data memory address is output, an data is read and written synchronously using RD and WR signals. The port can also serve as either a statically latched output port or a non-latching input port.
T0 (Test 0)	Input/Output	The input can be tested with the conditional jump instructions JTO and JNTO. The execution of the ENTO CLK instruction causes a clock output to be generated.
T1	Input	The input can be tested with the conditional jump instructions JT1 and JNT1. The execution of a STRT CNT instruction causes an internal counter input to be activated.
INT (Interrupt)	Input	Interrupt input. If interrupt is enabled, INT input initiates an interrupt. Interrupt is disabled after a reset. Also testable with a JNI instruction. Can be used to terminate the power-down mode. (Active "0" level)
RD (Read)	Output	A signal to read data from external data memory. (Active "O" level)
WR (Write)		A signal to write data to external data memory. (Active "O" level)
ALE Address & Data Latch Clock		This signal is generated in each cycle. It may be used as a clock output. External data memory or external program memory is addressed upon the falling edge. For the external ROM, this signal is used to latch the bus port data upon the ALE signal rise-up after the execution of the OUTL BUS, A instruction.
PSEN Program Store Enable	Output	A signal to fetch an instruction from external program memory (Active "O" level)
RESET	Output	(RESET) input initialize the processor. (Active "0" level) Used to terminate the power-down mode.
SS (Single Step)	Output	A program is executed step by step. This pin can also be used to control internal oscillation when the power-down mode is reset. (Active "0" level)
EA (External Access)	Input	When held at high level, all instructions are fetched from external memory. (Active "1" level)
PROG (Expander Strobe)	Output	This output strobes the MSM82C43RS I/O expander.

• MSM80C35/48, 80C39/49, 80C40/50 •-

PIN DESCRIPTION (CONT.)

Designation	Input/Output	Function .
XTAL 1 (Crystal 1)	Input	One side of the crystal input for the internal oscillator. An external source can also be input.
XTAL 2 (Crystal 2)	Output	Other side of Crystal input for internal oscillator.
Vcc	-	Power supply terminal
V _{DD}	-	Standby control input. Normally, "1" level. When set to "0" level, oscillation is stopped and processor goes into standby mode.
V _{SS}		GND

Note: The required RESET pulse duration is at least two machine cycles under the condition that the power supply and the oscillator have been stabilized.

ADDED FUNCTIONS OF MSM80C48, MSM80C49 AND MSM80C50

The MSM80C48, MSM80C49 and MSM80C50 basically incorporate the capabilities of Intel's 8048, 8049, and 8050 plus the following new functions:

Power-Down Mode Enhancements 1

1.1 Power-down by software

- (1) Clock (See item 4, "Power-down mode", for details.)
 - a. Crystal-controlled oscillator halt (HLTS instruction)
 - Power requirements can be minimized b. Clock supply halt (HALT instruction)
 - Restart is accomplished without oscillator wait.
- (2) I/O ports (See Table 4-1 and 4-2 for details.)

I/O port floating instructions

Power consumption resulting from inputs/ outputs can be minimized with FLT and FLTT instructions. Port floating is cancelled by executing

FRES instruction, "0" level at INT pin or "0" level at RESET pin.

(3) Six types of power-down can be done by a combination of HLTS/HALT and FLT/FLTT instructions.

1.2 Power-down by hardware (See 4.3. Power-down mode by VDD pin utilization for details.)

Crystal-controlled oscillators can be halted by controlling the Vnn terminal, thereby floating all I/O ports for minimum power consumption.

2. Additional Instructions (11)

HLTS	MOV A, P2
HALT	MOV P1, @ R3
FLT	MOVP1 P. @ R3
FLTT	DEC @ Rr
FRES	DJNZ @ R, addr
MOV A. P1	

3. Improved Uses of BUS $P_0 \sim 7$, $P1_0 \sim 7$, $P2_0 \sim 7$, and SS terminals

3.1 BUS Po ~ 7

The MSM80C48, MSM80C49, and MSM80C50 remove the limitation on the use of OUTL BUS, A instructions during the external ROM access mode by having an independent data latch and external ROM mode address latch in BUS Po ~ 7.

Consequently, there is no need to relocate bus port instructions when in the external ROM access mode.

3.2 P1°~7**and P2**°~7 The MSM80C48, MSM80C49 and MSM80C50 are designed to minimize power consumption when P1 $_{0}$ ~ 7 and P2 $_{0}$ ~ 7 are used as input/output ports, to maximize the performance of CMOS.

When these ports are used as output ports, the acceleration circuit is actuated only when output data changes from "0" to "1", thus speeding up the rise time of the output signals.

When these ports are used as input ports. the internal pullup resistance becomes approximately 9 k Ω when input data is "1"

The internal pullup resistance rises to approximately 100 k Ω when input data is "0". Thus, a high noise margin can be obtained by selecting the impedance and thus the outflow of current is minimized whenever these ports are used as output or input ports.

3.3 Clock generation control via the SS terminal

When the crystal-controlled oscillator is halted in the HLTS or hardware power-down mode, the SS terminal is pulled down by a resistor of 20 - 50 k Ω , while its internal pullup resistor of 200 – 500 k Ω is isolated from V_{CC}. When the power-down mode is cancelled, the internal resistor of the SS terminal is changed from pulldown to pullup. Consequently, the CPU can be halted for any period of time until the crystalcontrolled oscillator resumes normal oscillation when a capacitor is connected to the SS terminal.

4 Power-Down Mode

The MSM80C48, MSM80C49, and MSM80C50 power-down mode can be enabled in 2 different ways-through software by a combination of clock control and port floating instructions, and through hardware by control of the Vnn pin.

4.1 Software power-down mode

Power-down mode can be done by a combination of the following instructions.

(1) HALT (clock supply halt to control circuit)

Description: Although crystal-controlled oscillator operation is continued, the clock supply to the CPU control circuit is halted and CPU operations suspended. When cancelling this software mode, restart is accomplished without oscillator wait. Timing charts are outlined in Figs. 4-1 and 4-2.

(2) HLTS (oscillation stop)

1

Instruction code:

code:

0 0 0 0 0 1 0

Description: The oscillator operation is halted and CPU operations suspended. In cancelling this power down mode, connecting a capacitor to the SS pin enables a reasonable wait period to be accomplished before normal operation is resumed. [Except in the case of using the RESET pin]

Timing charts are outlined in Figs. 4-3 and 4-4.

(3) FLT (floating P1 $\circ \sim 7$, P2 $\circ \sim 7$, and BP $\circ \sim 7$)

Instruction	1	0	1	0	0	0	1	0
code:	-							

Description:

	Internal ROM mode	External ROM mode
P1	Floating	Floating
P2	Floating	P20 \sim 3 operation P24 \sim 7 floating
BP	Floating	Operation

Details of IC pin status as a result of executing the FLT instruction are shown in Table 4-1

(4) FLTT (floating of all output pins)

Instruction	1	1	0	0	0	0	1	0	
code:		_	_						

Description:

	Internal ROM mode	External ROM mode
ALE	Floating	Operation
PSEN	Floating	Operation
PROG	Floating	Floating
WR	Floating	Floating
RD	Floating	Floating
TOOUT	Floating	Floating
P1	Floating	Floating
P2	Floating	P20 \sim 3 operation P24 \sim 7 floating
BP	Floating	Operation
XTAL	Operation	Operation

Details of IC pin status as a result of executing the FLTT instruction are shown in Table 4-2.

- Example 1: Power-down mode accomplished by stopping oscillation. O Setting by execution of HLTS [82H] instruction.
- Example 2: Power-down mode accomplished by stopping the clock supply to the CPU control circuit.

• Setting by execution of HALT [01H] instruction.

Example 3: Power-down mode by floating of P1₀ ~ 7, P2₀ ~ 7 and BP₀ ~ 7, and subsequent stopping of CPU oscillation.

- Setting by first executing the FLT[A2H] instruction and then the HLTS[82H] instruction.
- Example 4: Power-down mode by floating P1o ~ 7, P2o ~ 7 and BPo ~ 7, and then stopping the clock supply to the CPU control circuit.
 - Setting by first executing the FLT[A2H] instruction, and then the HALT[01H] instruction.
- Example 5: Power-down mode by floating all output pins, followed by stopping oscillation.
 - Setting by first executing the FLTT[C2H] instruction followed by execution of the HLTS[82H] instruction.
- Example 6: Power-down mode by floating all output pins, followed by stopping of the clock supply to the CPU control circuit.
 - Setting by first executing the FLTT[C2H] instruction, followed by execution of the HALT[01H] instruction.

4.2 Cancellation of software power-down mode

The power-down mode status outlined above in examples 1 to 6 can be cancelled by using either the interrupt pin or the RESET pin.

- Use of the INT pin during external interrupt enabled mode (i.e. following execution of EN I instruction).
 - O The clock generator is activated and the CPU started up when a "0" level is applied to the INT pin. If this "0" level is maintained until at least 2 ALE output signals occur, an external interrupt is generated, and execution proceeds from address 3. If, however, the power-down mode has been done during the interrupt processing routine, execution is resumed just after the power-down instruction.
- (2) Use of the INT pin during external interrupt disabled mode (i.e. following execution of DIS I instruction or hardware reset)
 - The clock generator is activated and the CPU started up when a "0" level is applied to the INT pin. If this "0" level is maintained until at least 2 ALE output signals occur, execution is resumed just after the power-down instruction.
- (3) Use of the RESET pin
 - The clock generator is activated and the CPU started up when a "0" level is applied to the RESET pin. If this "0" level is maintained until at least 2 ALE output signals occur, the CPU is reset and execution proceeds from address 0. In case cancellation is done in oscillation stop mode, the "0" level must be input to the RESET PIN until oscillation is stabilized.

Pin No.	Pin Name	Internal ROM	External ROM	
1P	то	Active	Active	
2P	XTAL1	Active	Active	
ЗP	XTAL2	Active	Active	
4P	RESET	Active	Active	
5P	SS	200 ~ 500 kΩ pullup	200 ~ 500 kΩ pullup	
6P	INT	Active	Active	
7P	EA	Active	Active	
8P	RD	Active	Active	
9P	PSEN	Active	Active	
10P	WR	Active	Active	
11P	ALE	Active	Active	
12P	DB0	Floating	Active	
13P	DB1	Floating	Active	
14P	DB2	Floating	Active	
15P	DB3	Floating	Active	
16P	DB4	Floating	Active	
17P	DB5	Floating	Active	
18P	DB6	Floating	Active	
19P	DB7	Floating	Active	
20P	V _{SS}	0 [V]	0 [V]	
21P	P20	Floating	Active	
22P	P21	Floating	Active	
23P	P22	Floating	Active	
24P	P23	Floating	Active	
25P	PROG	Active	Active	
26P	V _{DD}	"1" level	"1" level	
27P	P10	Floating	Floating	
28P	P11	Floating	Floating	
29P	P12	Floating	Floating	
30P	P13	Floating	Floating	
31P	P14	Floating	Floating	
32P	P15	Floating	Floating	
33P	P16	Floating	Floating	
34P	P17	Floating	Floating	
35P	P24	Floating	Floating	
36P	P25	Floating	Floating	
37P	P26	Floating	Floating	
38P	P27	Floating	Floating	
39P	T1	Active	Active	
40P	Vcc	+2 to +6 [V]	+2 to +6 [V]	

Table 4-1 Details of Pin Status Following Execution of FLT Instruction

Note: The FLT mode itself is reset by executing the FRES instruction, or supplying "0" level to INT or RESET pin.

Pin No.	Pin Name	Internal ROM	External ROM
1P	то	Floating if output enabled	Floating if output enabled
2P	XTAL1	Active	Active
3P	XTAL2	Active	Active
4P	RESET	Active	Active
5P	SS	200 to 500 k Ω pullup	200 to 500 kΩ pullup
6P	INT	Active	Active
7P	EA	Active	Active
8P	RD	Floating	Floating
9P	PSEN	Floating	Active
10P	WR	Floating	Floating
11P	ALE	Floating	Active
12P	DBO	Floating	Active
13P	DB1	Floating	Active
14P	DB2	Floating	Active
15P	DB3	Floating	Active
16P	DB4	Floating	Active
17P	DB5	Floating	Active
18P	DB6	Floating	Active
19P	DB7	Floating	Active
20P	V _{SS}	0[V]	0 [V]
21P	P20	Floating	Active
22P	P21	Floating	Active
23P	P22	Floating	Active
24P	P23	Floating	Active
25P	PROG	Floating	Floating
26P	V _{DD}	"1" level	"1" level
27P	P10	Floating	Floating
28P	P11	Floating	Floating
29P	P12	Floating	Floating
30P	P13	Floating	Floating
31P	P14	Floating	Floating
32P	P15	Floating	Floating
33P	P16	Floating	Floating
34P	P17	Floating	Floating
35P	P24	Floating	Floating
36P	P25	Floating	Floating
37P	P26	Floating	Floating
38P	P27	Floating	Floating
39P	• T1	Active	Active
40P	V _{CC}	+2.5 to +6 [V]	+2.5 to +6 [V]

Table 4-2 Details of Pin Status Following Execution of FLTT Instruction

Note: The FLTT mode itself is reset by executing the FRES instruction, or supplying "0" level to INT or RESET pin.

Fig. 4-2 HALT [01H] Instruction Execution Timing Chart

• MSM80C35/48, 80C39/49, 80C40/50 •-

Fig. 4-4 HLTS [82H] Instruction Execution Timing Chart

4.3 Hardware power-down mode

In the MSM80C48, MSM80C49 and MSM80C50, forcing the level at the V_{DD} pin [pin 26] to a "0" during either external ROM or internal ROM mode results in suspension of the oscillator function and subsequent floating (high impedance) of all the I/O pins except the RESET, SS and XTAL 1/2 pins. The CPU is thereby stopped while maintaining internal status. Details of the IC pin status at this time are outlined in Table 4-3.

4.4 Cancellation of hardware power-down mode

(1) Use of RESET pin

- The clock generator is activated and the CPU started up when a "1" level is applied to the VDD pin while a "0" level is input to the RESET pin. If this "0" level is kept applied to the RESET pin until oscillation become stable, the CPU will be reset and will start executing from address 0. The timing chart is outlined in Fig. 4-5.
- (2) Use of the INT pin during external interrupt enabled status (i.e. following execution of EN I instruction)
 - The clock generator is activated and the CPU started up when a "1" level is applied to the VDD pin while a "0" level is applied to the INT pin.

If this "0" level is maintained until at least 2 ALE output signals occur, an external interrupt is generated, and execution starts from address 3.

However, if the power-down mode is started during an interrupt processing routine, execution will be continued on the next instruction after the present instruction. The timing chart is outlined in Fig. 4-6.

- (3) Use of the INT pin during external interrupt disabled mode (i.e. following execution of DIS I instruction or hardware reset)
 - O The clock generator is activated and the CPU started up when a "1" level is applied to the VDD pin while a "0" level is applied to the INT pin. If this "0" level is maintained until at least 2 ALE output signals occur, execution is continued on the next instruction after the present instruction. The timing chart is outlined in Fig. 4-6.
- (4) Use of VDD pin only
- The clock generator is activated and the CPU started up when a "1" level is applied to the VDD pin while a "1" level is also applied to both the RESET and INT pins. In this case, execution is resumed from the stopped position. The timing chart is outlined in Fig. 4-7.

Pin No.	Pin Name	Normal Operation (V _{DD} = "1" level)	Power Down Mode (V _{DD} = "0" level)	
1P	TO	Active	Floating if output enabled	
2P	XTAL1	Active	Active	
3P	XTAL2	Active	Active	
4P	RESET	Active	Active	
5P	SS	200 to 500 k Ω pullup	20 to 50 kΩ pulldown	
6P	INT	Active	Active	
7P	EA	Active	Active	
8P	RD	Active	Floating	
9P	PSEN	Active	Floating	
10P	WR	Active	Floating	
11P	ALE	Active	Floating	
12P	DBO	Active	Floating	
13P	DB1	Active	Floating	
14P	DB2	Active	Floating	
15P	DB3	Active	Floating	
16P	DB4	Active	Floating	
17P	DB5	Active	Floating	
18P	DB6	Active	Floating	
19P	DB7	Active	Floating	
20P	VSS	0 [V]	0 [V]	
21P	P20	Active	Floating	
22P	P21	Active	Floating	
23P	P22	Active	Floating	
24P	P23	Active	Floating	
25P	PROG	Active	Floating	
26P	V _{DD}	"1" level	"0" level	
27P	P10	Active	Floating	
28P	P11	Active	Floating	
29P	P12	Active	Floating	
30P	P13	Active	Floating	
31P	P14	Active	Floating	
32P	P15	Active	Floating	
33P	P16	Active	Floating	
34P	P17	Active	Floating	
35P	P24	Active	Floating	
36P	P25	Active	Floating	
37P	P26	Active	Floating	
38P	P27	Active	Floating	
39P	T1	Active	Active	
40P	V _{CC}	+2 to +6 [V]	+2 to +6 [V]	

Table 4-3 Details of Pin Status during Hardware Power-Down Mode

• MSM80C35/48, 80C39/49, 80C40/50 •

Fig. 4-5 Hardware Power-Down Mode Timing Chart

Fig. 4-6 Hardware Power-Down Mode Timing Chart

Fig. 4-7 Hardware Power-Down Mode Timing Chart

.

Ч
8
7
Z
ō
Ē
ö
5
H H
5
Ž
5
й
Ú
õ
ŝ
5
Š
2
5
Ŭ
8
š
5
ŝ.
2
4
Q
õ
BN
ົ
ž
_

9 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 IMA,P1 IMA,P2 MOVDA, Pp Pp Pp Pp Pp OUTLP1 OUTLP2 MOVDPp. MOVDPp. MOVDPp. Pp Pp Pp Pp A A A A A A A Pp Pp<
1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 0 1 0 1 0 1 1 1 1 1 0 1
1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 NA, P2 NOUA P NOUA P NOUA P NOUA P NOUA P P NOUA P P NOUA P P NOUA P P NOUA P P P P P P P P P P P P P
1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 NA, P2 NOUA P NOUA P NOUA P NOUA P NOUA P P NOUA P P NOUA P P NOUA P P NOUA P P P P P P P P P P P P P
1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 NA, P2 NA, P2 NA, P2 NA, P2 NOUD Pi. NOUD Pi. NOUD Pi. A A A A A A A A A A A A A
1 1 0 1 1 0 0 1 INA, P2 MOVDA, Pp MOVDA, Pp MOVDA, Pp MOVDA, Pp MOVDA, Pp Inational intervention Inational intervention MOVDPp, MOVDPp, Addab MOVDPp, Addap Adda Addab Addap Adda Addap Addap
1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 P2 1 0 0 1 P2 1 0 1 P2 1 0 1 P2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 P2 1 0 0 1 P2 1 0 1 P2 1 0 1 P2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 P2 1 0 0 1 P2 1 0 1 P2 1 0 1 P2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 0 1 0 1 1 1 0 1 0 1 NA. P2 1, OUT. P2. 4 data 4 data 4 data 4 data 4 data
Image: Second state
1 0 0 0 INS A, BUS NNC AR XCH A, Rr ADD AD A, RA ADD AD A, RR ADD AD A, RR ADD AD A, RA ADD AD AD A, RA ADD AD A, RA ADD AD
1 0 0 0 NSA, BUS NSA, BUS NCA, R NCA, R ADDA, R ADDA, R ADDCA, R
0 1 1 1 DECA INO
0 1 0 JTF addr JTF addr 0 JTT addr JT1 addr JT1 addr JN1 addr JN1 addr JN1 addr JN2 addr JN2 addr JC addr
0 1 0 1 0 EN1 In 1 0 1 0 DIS1 JTF addr DIS1 JTF addr STRT JT0 addr STRT STRT JT1 JT1 addr STRT JT1 JT1 addr STRT JT1 addr JT2 STRT JT1 addr JT2 STRT JT1 addr JT2 STCNT JT1 addr JT2 STCNT JT1 addr JT2 SEL MB1 JC JC Z SEL MB1 JC JC Addr
0 1 0 1 EVI EVI CNTI BISI DISI DISI CNTI STRT CNT STRT CN
Call JMP Call Call JMP Call Call JMP Call Call Call Call Call Call Call Cal
T Y A A A A A A A A A A A A A A A A A A
0 0 1 1 # data #
2 0 0 1 0 OUTL BUS, JB0 addr JB1 addr MOV A, T MOV A, T MOV A, T MOV A, T MOV A, T JB2 addr JB2 addr JB5 addr J
0 0 1 HALT Added INC @.R1 Added NIC @.R1 XCHD XCHA XCHD XR1 XCHD XR1 ABR1 ABR1 ABR1 ABR1 ABR1 ABDA, BR1 ADDCA, BR1 ADA BR1 ADA BR1 ADA BR1
0 0 0 0 HALT HALT Addee BRI A. 6R1 XCHA 6 BRI A. 6R1 ADD A 8 R1 HOV 6 R1. XRL A 8 R1 HOV 6 R1. XRL 6 8 R1 Addec 8 R1 ADDC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u>I</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EXPLANATION OF INSTRUCTION SYMBOLS

Symbols are listed below.

A	:	Accumulator			
AC	:	Auxiliary carry	PC	:	Program counter
addr	:	12-bit program memory address or	Рр	:	Port indicator ($p = 4 \sim 7$)
		its part	PSW	:	Program status word
Bb	:	Bit indicator (b = $0 \sim 7$)	Rr	:	Resister indicator (r = $0 \sim 7$)
BS	:	Bank switch	SP	:	Stack pointer
BUS	:	BUS PORT	т	:	Timer
C	:	Carry	TF	:	Timer flag
CLK	:	Clock	T0, T1	:	Test pins TO and T1
CNT	:	Counter	X	:	External RAM
D	:	4-bit data	#	:	Symbol denoting immediate data
data	:	8-bit numerical value	@	:	Symbol denoting indirect address
DBF	:	Memory data bank flip-flop	(X)	:	Denotes contents of X
F0, F1	:	FO flag and F1 flag	((X))	:	Denotes contents addressed by X
1		Interrupt			Transference
		-			

Accumulator operation instructions		×		Inst	ructi	on C	ode			Hexa-	_		
fication	Mnemonic	D7	D٥	D٥	D₄	D٥	D2	D١	D٥	decimal	Byte	Cycle	Description
	ADD A, Rr	0	1	1	0	1	r 2	r,	ro	68 ~ 6F	1	1	(AC), (C), (A) ← (A) + (Rr)
	ADD A, @Rr	0	1	1	0	0	0	0	ro	60~61	1	1	(AC), (C), (A) ← (A) + ((Rr))
	ADD A, #data	0 d7	0 de	0 ds	0 d₄	0 d3	0 d2	1 d1	1 do	03 Byte 2	2	2	(AC), (C), (A) ← (A) + data
	ADDC A, Rr	0	1	1	1	1	r 2	r 1	ro	78~7F	1	1	$(AC), (C), (A) \leftarrow (A) + (Rr) + (C)$
	ADDC A, @Rr	0	1	1	1	0	0	0	ro	70~71	1	1	$(AC), (C), (A) \leftarrow (A) + ((Rr)) + (C)$
	ADDC A, #data	0 d7	0 d₅	0 ds	1 d₄	0 d3	0 d2	1 d1	1 do	13 Byte 2	2	2	(AC), (C), (A) ← (A) + data + (C)
	ANL A, Rr	0	1	0	1	1	r 2	r 1	ro	58~5F	1	1	(A) ← (A) AND (Rr)
ŝ	ANL A, @Rr	0	1	0	1	0	0	0	ro	50~51	1	1	(A) ← (A) AND ((Rr))
ruction	ANL A, #data	0 d7	1 d₀	0 ds	1 d₄	0 d3	0 d2	1 d1	1 d₀	53 Byte 2	2	2	(A) ← (A) AND data
ins!	ORL A, Rr	0	1	0	0	1	ſ2	r 1	ro	48~4F	1	1	(A) ← (A) OR (Rr)
atior	ORL A, @Rr	0	1	0	0	0	0	0	ro	40~41	1	1	(A) ← (A) OR ((Rr))
or oper	ORL A, #data	0 d7	1 de	0 ds	0 d₄	0 ds	0 d2	1 d1	1 do	43 Byte 2	2	2	(A) ← (A) OR data
ulat	XRLA, Rr	1	1	0	1	1	ľ2	r1	ro	D8~DF	1	1	(A) ← (A) XOR (Rr)
Cum	XRLA, @Rr	1	1	0	1	0	0	0	ro	D0~D1	1	1	(A) (A) XOR ((Rr))
Ac	XRL A, #data	1 d7	1 de	0 ds	1 d₄	0 d3	0 d2	1 d1	1 do	D3 Byte 2	2	2	(A) — (A) XOR data
	INC A	0	0	0	1	0	1	1	1	17	1	1	(A) ← (A) + 1
	DEC A	0	0	0	0	0	1	1	1	07	1	1	(A) ← (A) - 1
	CLRA	0	0	1	0	0	1	1	1	27	1	1	(A) ← 0
	CPL A	0	0	1	1	0	1	1	1	37	1	٤ 1	(A) ← (Ā)
	DA A	0	1	0	1	0	1	1	1	57	1	1	Add 6 to bits 0 \sim 3 when contents of accumulator bits 0 \sim 3 exceed 9 or when auxiliary carry (AC) is 1. Then add 6 to bits 4 \sim 7 when the result of adding the carry from the lower 0 \sim 3 exceeds 9, or when carry (C) is 1. Set 1 in the carry flag if an overflow is generated in the end result, or when the carry prior to adjustment is 1.

LIST OF INSTRUCTIONS

LIST OF INSTRUCTIONS (CONT.)

Classi-				Inst	ructi	on C	ode			Hexa-			
fication	Mnemonic	D7	De	D٥	D₄	D3	D₂	D١	D٥	decimal	Byte	Cycle	Description
	SWAP A	0	1	0	0	0	1	1	1	47	1	1	(A4~7) ≒(A0~3)
structions	RLA	1	1	1	0	0	1	1	1	E7	1	1	A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ Rotate accumulator contents to the left by 1 bit.
Accumulator operation instructions	RLCA	1	1	1	1	0	1	1	1	F7	1	1	$-C - A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0 - Rotate accumulator contents with carry to the left by 1 bit.$
comulator	RR A	0	1	1	1	0	1	1	1	77	1	1	$\begin{bmatrix} A_7 & A_6 & A_5 & A_4 & A_3 & A_2 & A_1 & A_0 \end{bmatrix}$ Rotate accumulator contents to the right by 1 bit.
¥	RRC A	0	1	1	0	0	1	1	1	67	1	1	$ \begin{array}{c} \hline \hline$
	IN A, P1	0	0	0	0	1	0	0	1	09	1	2	(A) ←(P1)
	IN A, P2	0	0	0	0	1	0	1	0	OA	1	2	(A) ← (P2)
	OUTL P1, A	0	0	1	1	1	0	0	1	39	1	2	(P1) ← (A)
	OUTL P2, A	0	0	1	1	1	0	1	0	3A	1	2	(P2) ← (A)
	ANL P1, #data	1 d7	0 de	0 ds	1 d₄	1 d3	0 d₂	0 dı	1 do	99 Byte 2	2	2	(P1) ← (P1) AND data
5	ANL P2, #data	1 d7	0 de	0 ds	1 d₄	1 d3	0 d2	1 d1	0 d₀	9A Byte 2	2	2	(P2) ← (P2) AND data
suo	ORL P1, #data	1 d7	0 de	0 d₅	0 d4	1 d3	0 d2	0 dı	1 do	89 Byte 2	2	2	(P1) ← (P1) OR data
Input/output instructions	ORL P2, #data	1 d7	0 đ₀	0 ds	0 d₄	1 d₃	0 d₂	1 d1	0 d₀	8A Byte 2	2	2	(P2) ← (P2) OR data
rt in	INS A, BUS	0	0	0	0	1	0	0	0	08	1	2	(A) ←(BUS)
outp	OUTL BUS, A	0	0	0	0	0	0	1	0	02	1	2	(BUS) ←(A)
Input/	ANL BUS, #data	1 d7	0 de	0 ds	1 d₄	1 d3	0 d2	0 d 1	0 d₀	98 Byte 2	2	2	(BUS) ← (BUS) AND data
	ORL BUS, #data	1 d7	0 ds	0 ds	0 d₄	1 d3	0 d2	0 d,	0 d₀	88 Byte 2	2	2	(BUS) ← (BUS) OR data
	MOVD A, Pp	0	0	0	0	1	1	P۱	Po	0C~0F	1	2	$(A_0 \sim 3) \leftarrow (Pp) p=4 \sim 7$ $(A_4 \sim 7) \leftarrow 0$
	MOVD Pp, A	0	0	1	1	1	1	P۱	Po	3C~3F	1	2	(Pp) ←(A ₀ ~₃) p=4~7
	ANLD Pp, A	1	0	0	1	1	1	P۱	P٥	9C~9F	1	2	(Pp) ←(Pp) AND (A₀~₃) p=4~7
	ORLD Pp, A	1	0	0	0	1	1	P۱	Po	8C~8F	1	2	(Pp) ←(Pp) OR (A₀~₃) p=4~7
5	INC Rr	0	0	0	1	1	Ľ5	٢ı	ro	18~1F	1	1	(Rr) ← (Rr) + 1
lster atior ctior	INC @Rr	0	0	0	1	0	0	0	ro	10~11	1	1	((Rr)) ← ((Rr)) + 1
Register operation instructions	DEC Rr	1	1	0	0	1	٢2	r1	ro	C8~CF	1	1	(Rr) ← (Rr) - 1
	DEC @Rr	1	1	0	0	0	0	0	ro	C0~C1	1	1	((Rr)) ← ((Rr)) – 1
Branching	JMP addr	a 10 87	a, a,		0 a₄	0 813	1 812	0 a1	0 80	φ4 ~ E4 Byte 2	2	2	(PC₀~10) ←addr 8~10 (PC₀~7) ←addr 0~7 (PC11) ← DBF
nat Inst	JMPP @A	1	0	1	1	0	0	1	1	B3	1	2	(PCo~7) ←((A))

-

Instruction Code Clessi Hexa-Mnemonic Bvte Cycle Description fication decimal D7 De D5 D4 D3 D2 D1 D0 (D_{r}) $-(D_{r}) - 1$ E8~EF 4 1 n 1 OJNZ Br. addr **r** 2 ٢. ٢o (PC₀~7) -addr if (Br) = 02 2 aż ae as a. 83 82 a 80 Byte 2 \leftarrow (PC) + 2 if (Rr) = 0 ((Rr)) ←((Rr)) - 1 ٥ ٥ ٥ ٥ E0~E1 -addr if ((Rr)) = 0 1 1 F.o. DJNZ @Rr.addr 2 2 (PCo~7) 87 8. 84 84 81 **a** 2 а. a Bvte 2 (PC) (PC) + 2 if ((Rr)) = 01 1 1 n 1 1 0 F6 (PCoaddr if C = 11 -7) IC addr 2 2 a.s a. Byte 2 (PC) -(PC) + 2 if C = 0 Я7 a۸ 83 82 a١ 80 if C = 04 4 4 ^ ^ 1 . ^ Ee (PC0~7) JNC addr 2 2 Byte 2 (PC) \leftarrow (PC) + 2 if C = 1 87 94 ۹. ۹. 9. 8. ۹. ao 1 1 n 0 n 1 1 n C6 (PCo~7) (PC) ⊷addr if $\mathbf{A} = \mathbf{0}$ 17 eddr 2 0 Byte 2 ←(PC) + 2 if A = 0 87 ae as a٩ aэ a2 a١ ao (PCo---7) (PC) ^ ^ 1 ^ 1 1 o if A +0 1 96 -oddr JNZ addr 2 2 Byte 2 **Branching instructions** -(PC) + 2 if A = 0 87 8a as 84 81 82 а. ao 0 ٥ 1 1 ٥ 1 1 ٥ 36 (PCo--addr if TO = 1-7) ITO addr 2 2 Byte 2 (PC) \leftarrow (PC) + 2 if TO = 0 . я, a. as a. ao a. 81 **a**2 o if TO = 0n n 1 n Δ 1 1 26 (PCo~7) maddr JNTO addr 2 2 (PC) ۵. . . <u>.</u>. a., . ۰. a۰ Byte 2 -(PC) + 2 if TO = 1 n 1 n 1 n Δ 56 (PCo-⊷addr if T1 = 11 1 -7) IT1 addr 2 2 Byte 2 (PC) ←(PC) + 2 if T1 = 0 a, ae 85 a₄ as 82 a۱ ao (PC0-7) n 1 ٥ n ٨ 1 1 ۸ 46 -addr ifT1 = 0JNT1 addr 2 2 (PC) ←(PC) + 2 if T1 = 1 Byte 2 87 . . ۹. 8. 9.2 а. 80 1 n 1 1 n 1 1 n **B**6 (PC0-7) -addr if $\mathbf{FO} = 1$ 2 IEO addr 2 86 a. a Byte 2 (PC) ←(PC) + 2 if F0 = 0 **a**7 8e aa a۶ a. n 1 1 1 n 1 1 n 76 (PCo~7) -addr if $\mathbf{F1} = 1$ JF1 addr 2 2 ---(PC) + 2 if F1 = 0 Byte 2 (PC) a7 84 as a₄ 8. 82 a١ an ←addr ←0 if TF =1 (PCo-7) 0 ٥ ٥ 1 ٥ 1 1 ٥ 16 JTF addr 2 2 Byte 2 a۶ ae a. a 81 8.2 8. ao -(PC) + 2 if TF = 0 (PC) $\begin{array}{l} \leftarrow \text{addr} \quad \text{if } \overline{\text{INT}} = 0 \\ \leftarrow (\text{PC}) + 2 \text{ if } \text{INT} = 1 \end{array}$ (PC0-7) 1 Δ n n 0 1 1 Δ 86 JNI addr 2 2 (PC) Byte 2 A7 a. as 84 as a, a١ âo 12~F2 (PC0~7) ο ο 0 -addr if Bb = 1 b۶ b١ bo 1 1 JBb addr 2 2 Byte 2 (PC) --(PC)+2 if 8b =0 a۱ 87 a۸ as a₄ 83 a 2 a ((SP)) -(PC) +2, (PSW 4~7) (PC = ~ 10) (PC = ~ 7) (PC 11) --addr 8~10 -addr 0~7 0 1 0 0 a۹ Яе 1 14~F4 a 10 2 2 CALL addr Byte 2 8 A 86 Sub-routine instructions 87 а₄ aз a a۱ 8n DBF (SP) -(SP) + 1 -(SP) - 1 (SP) (PC) RET ٥ 0 ٥ 0 0 83 2 1 1 1 1 ---((SP)) ←(SP) - 1 (SP) RETR 2 PC) ←((SP)) ←((SP)) INT END 1 0 ٥ 1 0 0 1 1 93 1 (PSW 4-7) CLRC 1 0 ٥ 1 ٥ 1 1 1 97 1 1 (C)-----CPL C 1 ο 0 0 A7 1 (C) ←(C) 1 1 1 1 1 Flag operation instructions CLRFO 1 0 0 85 1 (F0) ⊷0 0 ٥ 1 ٥ 1 1 (FO) ←(F0) CPL FO 1 1 n 0 1 n 1 n 1 95 1 (F1) CLR F1 1 0 1 0 0 1 0 1 Α5 1 1 ⊷0 -(F1) CPL F1 1 0 1 1 0 1 n 1 B5 1 1 (F1) Data transfer instructions MOV A, Rr 1 F8~FF (A) ←(Rr) 1 1 1 1 ľ2 f١ ٢o 1 1 MOV A. @Rr 1 1 1 1 0 0 0 F0~F1 1 1 (A) ----((Rr)) ٢o 0 n 0 o o 23 MOV A, #data 2 2 (A) eteh~→ đ۲ d6 đ۶ d₄ đ۵ d2 d١ do Byte 2

LIST OF INSTRUCTIONS (CONT.)

• MSM80C35/48, 80C39/49, 80C40/50 ----

LIST OF INSTRUCTIONS (CONT.)

lassi-	Mnemonic			Inst	ructi	ion C	ode			Hexa-	Byte	Cycle	Description
cation		D7	D6	D٥	D₄	D٥	D2	D١	Do	decimal	Dyte	Cycle	Description
	MOV Rr, A	1	0	1	0	1	F 2	F 1	ro	A8~AF	1	1	(Rr) ←(A)
	MOV @Rr, A	1	0	1	0	0	0	0	ro	A0~A1	1	1	((Rr)) ←(A)
	MOV Rr, #data	1 d7	O d₀	1 ds	1 d₄	1 d₃	r₂ d₂	d i	r₀ d₀	B8~BF Byte 2	2	2	(Rr) ⊷data
	MOV @Rr, #data	1 d7	0 de	1 ds	1 d₄	0 d₃	0 d2	0 d1	ro do	B0~B1 Byte 2	2	2	((Rr)) ←data
	MOV A, PSW	1	1	0	0	0	1	1	1	C7	1	1	(A) ←(PSW)
Suo	MOV PSW, A	1	1	0	1	0	1	1	1	D7	1	1	(PSW) ←(A)
Data transfer instructions	XCH A, Rr	0	0	1	0	1	٢2	r1	ro	28~2F	1	1	(A) ≒(Rr)
inst	XCH A, @Rr	0	0	1	0	0	0	0	ro	20~21	1	1	(A) ==((Rr))
sfer	XCHD A, @Rr	0	0	1	1	0	0	0	ro	30~31	1	1	(Ao~3)≒((Rro~3))
atrar	MOVX A, @Rr	1	0	0	0	0	0	0	ro	80~81	1	2	(A) ←((Rr)) External RAM
Date	MOVX @Rr, A	1	0	0	1	0	0	0	ro	90~91	1	2	((Rr)) ←(A) External RAM
	MOVP A, @A	1	0	1	0	0	0	1	1	A3	1	2	(A) ←((PC ₈ ~ ₁₀ , A))
	MOVP3 A, @A	1	1	1	0	0	0	1	1	E3	1	2	(A) ←((PC₀11, A))
	MOVP1 P, @R3	1	1	0	0	0	0	1	1	C3	1	2	(P1) ←(((PC₀~-ァ)←((R3))))
	MOV P1, @R3	1	1	1	1	0	0	1	1	F3	1	2	(P1) ←((R3))
	MOV A, P1	0	1	1	0	0	0	1	1	63	1	1	(A) ←(P1) Latch data
	MOV A, P2	0	1	1	1	0	0	1	1	73	1	1	(A) ←(P2) Latch data
	EN TCNTI	0	0	1	0	0	1	0	1	25	1	1	TINT Enable F/F ←1
	DISTCNTI	0	0	1	1	0	1	0	1	35	1	1	TINT Enable F/F ←0
	ENI	0	0	0	0	0	1	0	1	05	1	1	EXINT Enable F/F -1
	DISI	0	0	0	1	0	1	0	1	15	1	1	EXINT Enable F/F -0
	SEL RBO	1	1	0	0	0	1	0	1	C5	1	1	(BS) ←0
ions	SEL RB1	1	1	0	1	0	1	0	1	D5	1	1	(BS) ←1
truct	SEL MBO	1	1	1	0	0	1	0	1	E5	1	1	(DBF) ⊷0
lins	SEL MB1	1	1	1	1	0	1	0	1	F5	1	1	(DBF) -1
Control instructions	ENTOCLK	0	1	1	1	0	1	0	1	75	1	1	T0 ←1/3 XTAL 1
õ	FLT	1	0	1	0	0	0	1	0	A2	1	1	P1, P2, BUS Floating
	FLTT	1	1	0	0	0	0	1	0	C2	1,	1	CPU Output Signal Floating
	FRES	1	1	1	0	0	0	1	0	E2	1	1	FLT, FLTT RESET
	HLT	0	0	0	0	0	0	0	1	01	1	1	CPU Control Clock Stop
	HALTS	1	0	0	0	0	0	1	0	82	1	1	XTAL 1.2 Stop
	MOV A, T	0	1	0	0	0	0	1	0	42	1	1	(A) ←(T)
ons	MOV T, A	0	1	1	0	0	0	1	0	62	1	1	(T) →(A)
Timer/counter instructions	STRT T	0	1	0	1	0	1	0	1	55	1	1	(T) -+32-+15- XTAL
Inst	STRT CNT	0	1	0	0	0	1	0	1	45	1	1	(T) -T1 Clock
-	STOP TONT	0	1	1	0	0	1	0	1	65	1	1	(T) Count Stop
Other nstruc- tion	NOP	0	0	0	0	0	0	0	0	00	1	1	(PC) ←(PC) + 1

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	Vcc	Ta = 25°C	-0.3 to 7	· v
Input Voltage	VI	Ta = 25°C	-0.3 to V _{CC}	v
Storage Temperature	T _{stg}		-55 to +150	°C

OPERATING RANGE

Parameter	Symbol	Conditions	Limits	Unit
Supply Voltage	Vcc	fosc = DC~11 MHz*	+2.5 to +6	v
RAM Retention Voltage	V _{CC}		+2 to +6	v
Ambient Temperature	TA		-40 to +85	°C
Fan Out	N	MOS load	10	
Fail Out		TTL load	1	

* 11 MHz version of MSM80C50 (6 MHz < XTAL1.2 <11 MHz) is under development.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, Ta = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Measuring Circuit
"L" Input Voltage	VIL		-0.3		0.8	v	1
"H" Input Voltage (1)	VIH		2.2		Vcc	٧	7
"H" Input Voltage (2)	VIH		3.8		Vcc	V	7
"L" Output Voltage (3)	VOL	i _{OL} = 2 mA			0.45	V	7
"L" Output Voltage (4)	VOL	I _{OL} = 1.6 mA			0.45	v	1
"H" Output Voltage (3)	VOH	I _{OH} = 400 μA	2.4			٧	7
"H" Output Voltage (4)	VOH	$I_{OH} = 50 \mu A$	2.4			V	-
"H" Output Voltage (3)	VOH	$I_{OH} = 20 \mu A$	4.2			٧	1
"H" Output Voltage (4)	VOH	$I_{OH} = 10 \mu A$	4.2			٧	
Input Leak Current	IIL.	VSS≦VIN≦VCC			±10	μA	2
Output Leak Current (5)	IOL	V _{SS} ≦V _O ≦V _{CC}			±10	μA	3
RESET Pull up Resistance	RR	V _{IN} ≥VIH≦/ V _{IN} ≦VIL	20/500		50/750	kΩ	2
SS Pull up Resistance (6)	R _{SS}	Oscillation stop/oscillation	20/200		50/500	kΩ	
P1, P2 Pull up Resistance	R _{P1} , P2	V _{IN} ≧VIH∕ V _{IN} ≦VIL	5/75	<u> </u>	15/150	kΩ	3
1		At hardware power down $V_{CC}=2V$ (TA = +25°C) (7)		1	10	μA	-1
		At HLTS execu- tion $V_{CC}=2V$ (TA = +25°C) (7)		1	10	μA	
Power Supply Current	'cc	At HALT (6 MHz)		1.5	3	mA	4
		At HALT (11 MHz)		2.5	5	mA	
		Atexecution (6 MHz)		5	10	mA	
		At execution (11 MHz)		10	20	mA	

Notes: (1) This does not apply to RESET, XTAL1, XTAL2, and VDD.

(2) RESET, XTAL 1, XTAL 2, VDD

(3) BUS, RD, WR, PSEN, ALE

(4) Other outputs

(5) High-impedance state

(6) This operates as a pull-down resistor when the osciliation is stopped in the HLTS or hardware power-down mode and as a pull-up resistor in other states.

(7) This does not contain flow out current from I/O Ports and Signal pins.

AC CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, TA = -40^{\circ}C \text{ to } +85^{\circ}C)$

		Limits							
Parameter	Symbol	bol 11 MHz C		Variable Clock	(0 – 11 MHz)	Unit			
		Min.	Max.	Min.	Max.	1			
CycleTime	tCY	1.36	1	1.36		μS			
ALE Pulse Width	tLL	150		7/30t _{CY} -165		ns			
Address Set up ALE	tAL	70		2/15tCY-110		ns			
Address Hold from ALE	tLA	50		1/15tCY-40		ns			
Bus Port Latch Data Setup to ALE	^t BL	110		5/30t _{CY} -115		ns			
Bus Port Latch Data Hold from ALE	tLB	90		3/30t _{CY} -45		ns			
Control Pulse Width (PSEN, RD, and WR)	tcc	300		6/15tCY-245		ns			
Data Setup before WR	tDW	250		6/15t _{CY} -295		ns			
Data Hold after WR	twD	40		2/15tCY-140		ns			
Data Hold after RD	tDR	0	100	0	100	ns			
PSEN, RD to Data-in	tRD		200		5/15tCY-250	ns			
Address Setup to WR	tAW	200		6/15tCY-345		ns			
Address Setup to Data-in	tAD		400		8/15tCY-325	ns			
Address Float to RD, PSEN	^t AFC	0		0		ns			
Port Control Setup to PROG	tCP	100		2/15tCY-80		ns			
Port Control Hold from PROG	tPC	60		4/15tCY-300		ns			
PROG to P2 Input Valid	tPR	· _	650		9/15tCY-165	ns			
Output Data Setup	tDP	200		6/15tCY-345		ns			
Output Data Hold	tPD	20		3/15t _{CY} -250		ns			
Input Data Hold from PROG	tPF	0	150	0	150	ns			
PROG Pulse Width	tpp	700		10/15tCY-205		ns			
Port 2 I/O Setup to ALE	tPL	150		9/30t _{CY} -255		ns			
Port 2 I/O Hold from ALE	tLP	20		3/30tCY-115		ns			

Note: Control output: Bus output: $C_L = 80 \text{ pF}$ $C_L = 150 \text{ pF} \text{ [for 20 pF (t_{WD})]}$

• MSM80C35/48, 80C39/49, 80C40/50 •-

MSM80C49 OPERATION GUARANTEE RANGE

* 11 MHz version of MSM80C40/50 is under development

TIMING CHART

Instruction Fetch (from external program memory)

Read (from external data memory)

• MSM80C35/48, 80C39/49, 80C40/50 •

Write (to external memory)

4 low-order bits input/output of port 2 when expanded I/O is used (in external program memory access mode)

MEASUREMENT CIRCUIT

- Notes: (1) This is repeated for each specified input pin.
 - (2) This is repeated for each specified output pin.
 - (3) Input logic for setting the specified state.