OKI semiconductor MSM83C55-XXRS/GS/JS

2048 x 8 BIT MASK ROM WITH I/O PORTS

GENERAL DESCRIPTION

The MSM83C55 is a combination of MROM and I/O devices used in a microcomputer system. Owing to the adoption of the CMOS silicon gate technology, it operates on a power supply as small as $100 \,\mu$ A (max.) standby current in the chip non-select status. Since the ROM is composed of 2048 words × 8 bits and its access time (max.) is 400 ns, it can be applied without using the wait state in the 80C85A system, too. The I/O circuit is composed of 2 universal I/O ports. Each of these I/O ports has 8 port lines and each of these port lines can be programmed as input or output line independently.

FEATURES

- High speed and low power consumption owing to adoption of silicon gate CMOS
- Composed of 2048 words × 8 bits
- $3 \sim 6$ V single power supply
- Address latch circuit incorporated
- Provided with 2 universal 8-bit I/O ports
- TTL Compatible

CIRCUIT CONFIGURATION

- Indivisual I/O port line programmable as input or output
- Time division address/data bus
- 40-pin DIP (MSM83C55-xxRS)
- 44-pin flat package (MSM83C55-xxGS)
- 44-pin PLCC Package (MSM83C55-xxJS)
- Direct interface with MSM80C85A (3MHz)

PIN CONFIGURATION

Parameter	Symbol Co	Conditions	Limits			Unit
	•		MSM83C55RS	MSM83C55GS	MSM83C55JS	
Supply Voltage	Vcc		-0.5 to +7			v
Input Voltage	VIN	With respect to GND	-0.5 to V _{cc} + 0.5			
Output Voltage	VOUT	GND	-0.5 to V _{cc} + 0.5			v
Storage Temperature	T _{stg}		- 55 to + 150			°C
Power Dissipation	PD	Ta = 25°C	1.0	0.7	1.0	w

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGE

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc	3 to 6	v
Operating Temperature	TOP	-40 to +85	°C

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply Voltage	V _{CC}	4.5	5	5.5	v
Operating Temperature	Тор	-40	+25	+85	°C
"L" Input Voltage	VIL	-0.3	8	+0.8	v
"H" Input Voltage	VIH	2.2		V _{CC} +0.3	v

DC CHARACTERISTICS

Parameter	arameter Symbol Conditions		litions	Min.	Тур.	Max.	Unit
"L" Output Voltage	VOL	IOL=2mA				0.45	V
/////	∨он	I _{OH} =-400µА		2.4			v
"H" Output Voltage		10H=-40µA		4.2			V
Input Leak Current	I'LI	0 S VIN S VCC	V _{CC} =4.5V to 5.5V	-10		10	μA
Output Leak Current	1LO	0 ≤ VOUT ≤ VCC	Ta=-40°C to +85°C	-10		10	μA
Supply Current (standby)	'ccs	$\begin{array}{l} \hline \textbf{CE1} \geqq \textbf{V}_{CC}\textbf{-0.2V} \\ \textbf{CE2} \leqq \textbf{0.2V} \\ \textbf{V}_{\text{IH}} \geqq \textbf{V}_{CC}\textbf{-0.2V} \\ \textbf{V}_{\text{IL}} \leqq \textbf{0.2V} \end{array}$			0.1	100	μΑ
Average Supply Current (active)	loc	IO write cycle time: 1 μs				5	mA

AC CHARACTERISTICS

(V_{CC}=4.5V to 5.5V, Ta=-40°C to +85°C)

Parameter	Symbol	Min.	Max.	Uni
Clock Cycle Time	tCYC	320		ns
Clock Pulse Width	τ ₁	80		ns
Clock Pulse Width	Τ2	120		ns
Clock Rise and Fall Time	tf, tr		30	ns
Address to Latch Setup Time	tAL.	50		ns
Address Hold Time after Latch	tLA	30		ns
Latch to READ/WRITE Control	^t LC	100		ns
Valid Data Out Delay from READ Control	tRD		170	ns
Address Stable to Data Out Valid	tAD.		400	ns
Latch Enable Width	tLL	100		ns
Data Bus Float after READ	tRDF	0	100	ns
READ/WRITE Control to Latch Enable	tCL	20		ns
READ/WRITE Control Width	tcc	250		ns
Data In to WRITE Setup Time	tDW	150		ns
Data In Hold Time after WRITE	twD	10		ns
WRITE to Port Output	twp		400	ns
Port Input Setup Time	tPR	50		ns
Port Input Hold Time	tRP	50		ns
READY Hold Time	^t PYH	0	160	ns
Address to READY	tARY		160	ns
Recovery Time between Controls	tRV	300		ns
Data Out Delay from READ Control	tRDE	10		ns
ALE to Data Out Valid	tLD		350	ns

Note: Timing is measured at V $_{\rm L}$ = 0.8 V and V $_{\rm H}$ = 2.2 V for both input and output Load condition: C $_{\rm L}$ = 150 pF

Fig. 1 Clock Signal for MSM83C55

I/O·MSM83C55-XXRS/GS/JS

Fig. 2 Timing for ROM Reading and for I/O Reading and Writing

Fig. 3 I/O Port Timing

Fig. 4 Wait State Timing (READY = 0)

PIN DESCRIPTION

Pin symbol	Function					
RESET	When this signal becomes high level, ports A and B become the input mode.					
ALE	This pin is used to fetch the AD 0~7, A 8~10, IO/M, CE1, and CE2 signals to their respective latch circuits at the fall of the ALE (Address Latch Enable) signal.					
ĈEI, CE2	When CE1 fetched to the latch circuit is high level or CE2 is low level, no read or write operation is performed. The AD 0~7 and READY output signals are made into the floating status.					
AD0~7	Three-stake bidirectional address/data bus. This bus fetches 8-bit address inform tion to the latch circuit upon the fall of the ALE signal. When CE1 in holding is la level and CE2 is high level, data is output from chip to but if RD or IOR is low le and it is fetched from bus to chip if IOW is low level.					
A8~10	These are high order bits of ROM address and have no relation to I/O operation.					
10/M	When $\overline{\text{RD}}$ is low level, this pin selects the I/O port if the IO/ $\overline{\text{M}}$ in hold is high level or ROM if it is low level.					
RD	If \overline{RD} is low level, the memory data is output to AD 0~7 when the ROM cycle is selected, but the selected port data is output to the same port when the I/O cycle is selected.					
ÎOR	The port data selected at low level is output to AD 0~7. When turned to the low level, the IOR becomes the same function as that when IO/\overline{M} is turned to the high level and \overline{RD} to the low level. When both \overline{RD} and \overline{IOR} become high level, the output of AD 0~7 is made into the floating state.					
IOW	At the low level, the AD 0~7 data is written to the selected port.					
CLK	This signal is used to generate the READY signal for the generation of 1 wait cycle built into the 83C55.					
READY	This signal becomes low level when the ALE is high level and the $\overline{CE1}$ and CE2 are active. It becomes high level at the rise of CLK after the fall of the ALE.					
PA0~7	These are universal I/O pins and the input/output is determined by the content of the direction register. When writing data to port A, make the chip enable active and turn IOW to low level after selecting AD 0, 1 to 0, 0. When reading it, turn the IOR to low level instead of IOW and IO/M to high level.					
PB0~7	Same as the operation of PA0~7, excepting that AD0 is selected to 1 and AD1 to 0.					
V _{CC}	+5 V power supply					
GND	ov					

•

OPERATIONAL DESCRIPTION

ROM Block

The ROM block in the chip is specified in address by the chip enable and 11-bit address. Upon the fall of the ALE signal, the address and chip enable are fetched in the address latch circuit. When the chip enable is active and IO/\overline{M} is low level, 8-bit content of ROM at the address held in the address latch circuit is transmitted to the bus through the output buffer of AD 0~7 upon the fall of the RD.

I/O Block

The I/O block in the chip is specified in the address by the value of 2 bits of AD $0 \sim 1$ and chip enable. Two 8-bit data direction registers (DDR) built in the MSM83C55 are used to turn corresponding individual port pins to the input mode or output mode. It becomes the input mode when set to 0 and the output mode when set to 1. It is impossible to read the DDR from outside, however.

AD1	AD0	Selection
0	0	Port A
0	1	Port B
1	0	Port A data direction register (DDRA)
1	1	Port B data direction register (DDRB)

Upon the fall of $\overline{10W}$ when the chip enable is active, the AD 0~7 data is written to the I/O port to be determined by the value of AD 0~1 in hold. During this operation, the selected side I/O bits are all subject to its influence irrespective of the I/O status and IO/M status. The output level remains unchanged until the $\overline{10W}$ returns to high level. The data can be read from the ports when the chip enable in holding is active and IO/M is high level and yet the RD or IOR signal falls. In both input and output, the data on the selected side exists on the line of AD 0~7. The function of I/O ports and DDR (data direction register) is shown in the block diagram below:

Writing "0" to the DDR is equivalent to the RESET operation when the port output is put into High impedance status and the input mode is specified. Note that the data can be written to the ports

even if the output pin was already in the high impedance status (input mode) by the DDR. Likewise, it is also possible to read the data once set to those ports.