CVAXINV
 High Speed 12－Bit Monolithic D／A Converters

High Speed 12-Bit

Monolithic D/A Converters
absolute maximum ratings
$V_{C C}$ to Power Ground (M×565A only)

.0 V to +18 V
.0 V to -18 V .0 V to -18 V

-3 V to +12 V | $-3 V$ to +7 V |
| :---: |

$-1 V$ to $+7 V$
$\cdots+12 V$
$+12 V$
$\cdots . . \pm 12 \mathrm{~V}$

20V Span R to Reference Ground 20 V Span R to Reference
REF OUT (MX565A only)
Short Circuit to Power Ground

Storage Temperature
Package Dissipation

Stresses above those inster under "Absolute Maximum Ratings" may cause permanent damate to the device. These are stress ratings onfy and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not tmplied. Exposure to
absolute maximum rating
ELECTRICAL CHARACTERISTICS

High Speed 12-Bit
Monolithic D/A Converters

High Speed 12－Bit

Monolithic D／A Converters

Figure 1．Functional Block Diagram

The MX565A and MX566A are 12－bit precision DAC that consist of three binary weighted quad curren sources with 1 ． 8－4－2－1 current weighting ratios．The current switche are optimized for fast switching and low transient glitches at the output of the DAC during input code changes．
Full scale accuracy of the DACs are maintained over emperature and time by the DAC control amplifie hat includes a current switch reference mplements first order correction for BE component mismatch．
The MX565A has a buried zener diode that is used for he on chip 10 V voltage reference．In the feedback of the reference amplifier is a temperature compensa－ on circuit that allows reference temperature coeffi cients as low as $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to be achieved．The 10 V output of the voltage reference is laser trimmed to within $\pm 10 \mathrm{mV}$ ．
＿－＿Application Hints
To realize the true performance of the MX565A and位相 cation of the device．

The settling time of the DAC is specified in the current output mode．However，most DAC application require a current to voltage conversion．The simplest and fastest voltage conversion technique is achieved by connecting a low value resistor directly between the output and ground（see figure 2）．The settling time is a function of the cell switching and the RC capacitance（typically 25 pF ）plus any stray capaci－ tance，and the value of the output resistor．Settling to 0.01%（ $/ 2 \mathrm{LSB}$ ）of full scale for a full scale chang equires 9.1 time constants．The effect of the external esistor becomes important when the equivalent resis tance at the output of the DAC is over $1 \mathrm{k}!$ ！

The wide compliance voltages of the MX565A and MX566A allow direct current to voltage conversion with just an output resistor．Connecting the interna gain（span）resistors（pins 10 and 11）to ground and the bipolar offset resistor to the internal 10 V referenc on the MX565A and an external 10 V reference for th MX566A，a bipolar output voltage swing of $\pm 1.60 \mathrm{~V}$

ノVIハXIノ

High Speed 12－Bit Monolithic D／A Converters

Figure 2．Unbuffered Bipolar Voltage Output
can be generated．Other combinations of external and the internal resistors can scale the full scale out－ put current of 0 to $-2 m A$ to any voltage as long as this $M \times 565 \mathrm{~A}$ and $\mathrm{M} \times 566 \mathrm{~A}$ ，which is typically -2 V to +10 V For example，setting the $R x=2.67 \mathrm{k} \Omega$ produces an equivalent impedance of $1 \mathrm{k} \Omega$ giving a $\pm 1 \mathrm{~V}$ output voltage swing．
The output voltage compliance of typically -2 V to +10 V allows the performance of the DAC to be un－ There is however an the output terminal voltage． Bk！in parallel with 25 pF which produces an equiva－ lent current error when the output voltage deviates from ground．This effect is linear and is independen of the digital input code．Output swings outside the compliance range can cause either output stage sat－ performance．The compliance limits are affected only by the output current and the negative supply voltage． The positive supply voltage has no effect．Figure 3 shows the typical negative compliance versus the negative supply voltage．
The current output of the DAC can directly drive 50 s and 75Ω coaxial cable．Terminating the cable in it＇s full scale swing for the 50Ω and $\pm 75 \mathrm{mV}$ for the 75 ！ cable．The settling times are dominated by the internal settling of the MX565A and MX566A．
The high speed current steering switching cell and internally compensated reference amplifier of the M $\times 565 A$ and MX566A have been specifically designed
for fast setting．The typical settling time to $\pm 0.01 \%$ for fast settling．The typical settling time to \pm（ α ）for the major carry or full scale change （worst case transition）is about 200 ns ；the lowe order bits all settle in less than 200ns．The maximum quaranteed settling time to 0.01%（ $\pm 1 / 2 \mathrm{LSB}$ ）for the $M \times 565 \mathrm{~A}$ is 250 ns and 350 ns for the $M \times 566 \mathrm{~A}$

Figure 3．Typical Negative Compliance Range vs．Negative Supply
Buffered Voltage Output
If an external op－amp is used to provide low imped ance output drive and high voltage swing，some loss ance output drive and high voltage swing，some loss settling characteristics．In these applications the DAC＇s output capacitance should be compensated by a feed back capacitor connected across the amplifier＇s outpu and inverting input as shown in figures 4 and 5 ．

If a low offset amplifier such as the MAX400M（ $10 \mu \mathrm{~V}$ max．）or MAX 400 C （ $15 \mu \mathrm{~V}$ max．）is used，excellen performance can be obtained without any trimming X565A for 4 （b），and 4 （c）show how to connect the The connections for the MX566A are shown in figure 5（a），5（b），and 5（c）．The preferred trimming tech niques are shown for both offset and gain adjustments if required．Substituting a fixed 50Ω resistor in place of the 100Ω potentiometers，the unipolar zero offs full scale accuracy will be within 0.1%（ 0.25% max．） Similarly，the bipolar zero offset error will be typically within ± 2 LSB（ 0.05% ）．

Unipolar configuration zero
and gain adjustment
Figures 4（a）and 5（a）show the configurations for a unipolar 0 to +10 V output．The bipolar offset resisto is tied to ground if zero offset adjustment is no required．
Turn all bits OFF and adjust potentiometer R1 unti DAC output reads 0.000 V （ $1 \mathrm{LSB}=2.44 \mathrm{mV}$ ）．If offse adjust is not required tie pin 8 to ground．

Next，turn all bits ON and adjust gain potentiometer R2 until DAC output reads 9.9976 V （full scale－ LSB）If full scale of 10.2400 V is required（ 2.5 mV ／bit and pin 10 （ 10 V span resistor）

High Speed 12-Bit Monolithic D/A Converters

Figure 4(c). $M \times 565 \mathrm{~A} \pm 10 \mathrm{~V}$ Bipolar Voltage Output

Bipolar configuration offset

 and gain adjustmentFigures 4(b) and 5(b) show how to configure the DAC to produce an output from -5.000 V (all 0 's) to +4.9976 V (all 1's).
First turn OFF all bits, adjust potentiometer R1 to give -5.000 V output.

Then turn all bits ON. Adjust potentiometer R2 to give a DAC output of +4.9976 V

Other voltage ranges
The MX565A and MX566A can easily be configured or unipolar 0 to +5 V range or $\pm 2.5 \mathrm{~V}$ and +10 V bipola ranges by using the 20 V span resistor (pin 11). Conranges by using the 20 V span resistor (pin 11). Con-
necting pin 9 and 11 together a 5 V span can be
developed by connecting pin 10 to the output of the op-amp and the bipolar offset resistor to either ground for the unipolar 0 to +5 V range or to REF OUT for the bipolar $\pm 2.5 \mathrm{~V}$ range. For the $\pm 10 \mathrm{~V}$ (20 V span) connec pin 11 to the op-amp output and the bipolar offse resistor to potentiometer R1 as shown in figures 4(c) and 5 (c).

High Speed 12－Bit Monolithic D／A Converters

Figure 5（a）．MX566A 0 to +10 V Unipolar Voltage Output

Figure 5 （c）．M $\times 566 \mathrm{~A}+10 \mathrm{~V}$ Bipolar Voltage Output

Grounding

The MX565A and MX566A have two ground pins，
The MX565A and MX566A have two ground pins，
Reference GND and Power GND．The current in the Reference GND and Power GND．The current in the
power ground varies with the digital input code and should be connected to the local ground，digital ground or power ground．The reference ground is the ground point for the internal reference amplifier and should be connected to the system＇s＂high quality＂ ground，usually called signal or analog ground．

Internal／External Reference Use
The MX565A has an internal reference whereas the MX566A requires an external reference．The MX565A can be used with either the internal reference or an external reference．With an external 10 V reference there may not be enough adjustment range to accom－ modate a reference that does not match the internal reference voltage．The tix 6 A is recommended for applications that
reference．

The internal reference of the MX565A is a low noise buried zener diode that is buffered by an internal amplifier whose gain is trimmed for absolute accuracy and temperature stability．The performance of the MX565A DAC is tested and specified using the internal reference

High Speed 12－Bit
 Monolithic D／A Converters

In addition，the internal reference of the MX565A has sufficient buffering to drive the internal DAC（typically 0.5 mA to REF IN and 1.0 mA to Bipolar Offset，if used）plus an additional 1.5 mA for driving external circuits．The temperature coefficient of the reference TC for the particular grade of MX565A．

For the MX566A an external reference is required that should have a low temperature coefficient，such as the $M \times 581$ ，$M \times 584$ ，or precision references such as the $M \times 2700$ and $M \times 2710$ ．For the ultimate in perform－ ance use the MAX670 and MAX671，which have kelvin sense connections for both the +10 V reference output and ground return．
＿Ordering Information（continued）

PART	TEMP．RANGE	PaCKAGE＊	ERROR
MX566AJN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm \%$ LSB
MX566AJD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic	\pm \％ 2 LSB
MX566AJQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP＊＊	\pm LSB
MX566AJCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outine	$\pm \%$ LSB
MX566AKN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$\pm \% L S B$
MX566AKD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Ceramic	$\pm \%$ LSB
Mx566AkQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	CERDIP＊＊	\pm LSB
MX566AKCWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$\pm \%$ LSB
MX566ASD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	\pm \％ 2 SB
MX566ASQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP＊＊	$\pm \%$ LSB
MX566ATD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	\pm LSB
MX566ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP＊	$\pm \%$ LSB

CERDIP packages．

MX566A

