
\qquad

CMOS 10 and 12 Bit

Multiplying D/A Converters

ABSOLUTE MAXIMUM RATINGS

V_{DD} to GND	-0.3v, +17V	Operating Temperature	
$V_{\text {REF }}$ to GND	$\pm 25 \mathrm{~V}$	Commercial (JN/KN/LN/JC/KC/LC)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
R ${ }_{\text {feg }}$ to GND	$\pm 25 \mathrm{~V}$	Industrial (JD/KD/LD/JQ/KQ/LQ)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Digital Input	${ }^{-0.3 V}, V_{\text {DD }}$	Military (S/T/U)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Output Voltage	$-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipa	450 mW	Lead Temperature (Soldering 10 secs)	${ }^{300^{\circ} \mathrm{C}}$

Stressos above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional
operation of the devicicat these or any other conditions above those indicated in the operational sections of the specitications is not implied. Exposure to ELECTRICAL CHARACTERISTICS

PARAMETER	sYMBOL	CONDITIONS	MIN	TYP.	MAX.	UNITS
DC ACCURACY (Note 2)						
Resolution		$\begin{array}{\|l\|} \hline M \times 7520 \\ M \times 7521 \end{array}$	$\begin{aligned} & \hline 10 \\ & 12 \end{aligned}$			Bits
Relative Accuracy (Note 3)		$-10 V \leq V_{\text {REE }} \leq+10 V$, 0.2% FSR $=8$ Bits J / S $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ $0.1 \% \mathrm{FSR}=9$ Bits 0.05% FSR $=10$ Bits K / U			$\begin{gathered} \pm 0.2 \\ \pm 0.1 \\ \pm 0.05 \end{gathered}$	\% FSR
Nonlinearity Tempco		$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$ (Note 4)			2	ppm/ ${ }^{\circ} \mathrm{C}$
Gain Error		$-10 \mathrm{~V} \leq \mathrm{V}_{\text {Ref }} \leq+10 \mathrm{~V}$ (Note 5)		0.3		\% FSR
Gain Error Tempco		$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 510 \mathrm{~V}$ (Note 4,5)			10	ppm/ ${ }^{\circ} \mathrm{C}$
Output Leakage Current		OUT1 or OUT2. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		200		nA
Power Supply Rejection	PSRR	(Note 3)		50		$\begin{aligned} & \mathrm{ppm} / \\ & \% \mathrm{~V}_{\mathrm{DD}} \end{aligned}$
$\mathrm{V}_{\text {REF }}$ Input Resistance	$\mathrm{R}_{\text {REF }}$	$\mathrm{R}_{\text {Ref }}$ tempco $=-150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ.	5	10	20	k Ω
AC ACCURACY						
Output Current Setting Time (Note 3)		To 0.05% of FSR, all digital inputs high to low and low to high.		500		ns
Feedthrough Error (Note 3,4,6)		All digital inputs low. $V_{\text {REF }}=20 \mathrm{~V}_{\text {P-P }}$, 100 kHz sinewave.		10		$m V_{\text {p-p }}$
ANALOG OUTPUTS						
Output Capacitance (Note 3)	Cout	All digital inputs high, OUT1 All digital inputs low, OUT2 OUT1 OUT2		$\begin{gathered} 120 \\ 37 \\ 37 \\ 120 \end{gathered}$		pF
Output Noise (Note 3)	${ }^{\text {N }}$	Both outputs, equivalent Johnson noise resistance			10	kn
DIGITAL INPUTS ($\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$)						
Low State Threshold	$\mathrm{V}_{\text {INL }}$				0.8	v
High State Threshold	$\mathrm{V}_{\text {INH }}$		2.4			V
Input Current		Low to high state		± 1		$\mu \mathrm{A}$
Input Coding		Unipolar (Table 1), Bipolar (Table 2)	Binary	set Binary		
POWER REQUIREMENTS						
Power Supply Range	$V_{\text {DD }}$		+5		+15	V
Power Supply Current	IDO	Digital inputs at GND Digital inputs high or low		5	2	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{~mA} \end{aligned}$
Total Power Dissipation		Including $\mathrm{V}_{\text {ref }}$		20		mW

Note 1: Vout 1.2 may exceed the Absolute Maximum voltage if the current is limited to 30 mA or less.
Note 2: Full Scale Range is 10 V for unipolar mode and $\pm 10 \mathrm{~V}$ tor bipolar mode.
Note 3: See Test Circuits.
Not 4. Guaranteed b: design but not 100% tested.
Note 5: Using internal feedback resistor, Res.
Note 6 : To minimize feedthrough with the ceramic package, the metal lid must be grounded. If the lid is not grounded, then the feedthrough is 10 mV typical and 30 mV maximum.

CMOS 10 and 12 BIt
Multiplying D/A Converters
Typical Opernting Charneterlstice

Detailed Description
The basic MX7520/21 DAC circuit consists of a lasertrimmed, thin-film R-2R resistor array with CMOS current switches as shown in Figure 1. Binarily weighted currents are switched to either OUT1 or The $V_{\text {REF }}$ input accepts a wide range of reference signals including fixed and time-varying voltage or current inputs.

Digital Inputs (DTL/TTLCMOS Compatible)
MX7520: $N=10$
$M \times 7521: N=12$
MX7521: $N=12$
(Switches shown for inputs HIGH)
Figure 1. M×7520/M×7521 Functional Diagram
Application Information Unipolar Operation
The most common configuration for the MX7520/2 is shown in Figure 2. The circuit is used for unipola inary operation and/or 2-quadrant multiplication. R1 s used for gain adjustment. If no adjustment is desired, R1 and R2 can be omitted. The code table or unipolar operity is the inverse of the Note that input.

A compensation capacitor, C1, may be needed when the DAC is used with a high speed amplifier. The purpose of the capacitor is to cancel the pole formed by the DAC's output capacitance and internal feed back resistance. The correct compensation value depends on the type of op-amp used but typically ranges from 10 to 50 pF

Figure 2. Unipolar Binary Operation (2-Quadrant Multiplication)

Table 1: Code Table (MX7520) -
Unipolar Binary Operation

| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $-V_{\text {REF }}\left(1-2^{-10}\right)$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | $-V_{\text {REF }}\left(1 / 2+2^{-10}\right)$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-V_{\text {REF }} / 2$ |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $-V_{\text {REF }}\left(1 / 2-2^{-10}\right)$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | $-V_{\text {REF }}\left(2^{-10}\right)$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Note: 1 LSB $=2^{-10} V_{\text {REF }}$ (MX7520)

CMOS 10 and 12 Bit

Multiplying D/A Converters

The output op-amp's offset voltage can degrade DAC linearity by causing OUT1 to be terminated at a non zero voltage. The resulting linearity error is typically $2 / 3$ OS. For best performance, a low-offset amplifier
such as the MAX 400 should be used, or the amplifier offset must be trimmed to typically no more than $1 / 10$ of an LSB's value. The op-amp's input bias current (I_{B}) can also limit performance since $I_{B} \times R_{F B}$ gene rates an offset error as well. Is should therefore be much less than the DAC's output current for 1 LSB which is typically $1 \mu \mathrm{~A}$ for the MX7520 and 250 nA for
the MX7521. the MX7521

Figure 3. Bipolar Operation (4-Quadrant Multiplication)
Table 2: Code Table (MX7520) -

digital input											ANALOG OUTPUT
	1	1				1	1				$-V_{\text {REF }}\left(1-2^{-9}\right)$
	0	0	0			0	0				$-V_{\text {REF }}\left(2^{-9}\right)$
1	0	0	0			0	0				0
0	1	1	1			1					$V_{\text {REF }}\left(2^{-9}\right)$
0	0	0				0					$V_{\text {REE }}(1-2-9)$
0	0	0	0								$V_{\text {feF }}$

Bipolar Operation
Bipolar, or four-quadrant, operation is shown Figure 3. A second amplifier and three matched resis tors are required. The output vs. code table is listed determines polarity while the remaining bits contro amplitude.
To adjust the circuit, load the DAC with a code o 100000000000 and trim R1 for a OV output. With R1 and R2 omitted an alternative a output. Wrim is to the ratio of R3 and R4 for OV out. Full scale can be trimmed by loading the DAC with all "zeros" or all "ones" and adjusting the amplitude of $V_{\text {REF }}$ or varying R5 until the desired positive or negative output is obtained. The op-amp recommendations made in the Unipolar Operation section apply for bipolar operation as well.

Voltage Mode (SIngle Supply)

The MX7520 is connected as a voltage output DAC Figure 4. OUT1 is connected to the external reference and OUT2 is grounded. VREF, now the DAC output, is a voltage source with a constant output resistance o ladder (nominally $10 \mathrm{k} \Omega$). In most circuits this output is buffered with an op-amp.

Figure 4. Single Supply Vottage Mode Operation

An advantage of voltage mode operation is single supply operation for the complete circuit, i.e. a negative reference is not required for a positive output. It restricted. The reference input (voltage at OUT1) must always be positive and is limited to no more than 3.5 V when VOD is 15 V . If the reference voltage is greater than 3.5 V , or $V_{D D}$ is reduced, linearity is degraded

Dynamic Considerations

In static or DC applications, the AC characteristics o the output amplifier are not critical. In higher speed applications, where either the reference input is an new programmed value the AC parameters of the output op-amp must be considered. Another error source in dynamic applications is parasitic. coupling of signal from the VREF terminal to
OUT1 or OUT2. This is normally a function of board layout and package lead-to-lead capacitance. Signals can also be injected into the DAC outputs when the digital inputs are switched. This digital feedthrough is mostly dependent on circuit board layout and on-chip capacitive coupling. Layout induced feedthrough can be minimized with guard traces between digital inputs, $V_{\text {REF }}$ and the DAC outputs.

CMOS 10 and 12 Bit

 Multiplying D/A Converters
_- Ordering Information (continued) \qquad

PART	TEMP. RANGE	PACKAGE*	ERROR
Mx7521JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	0.2\%
MX7521KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	0.1\%
MX7521LN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	0.05\%
Mx7521JCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	0.2\%
MX7521KCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	0.1\%
MX7521LCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	0.05\%
Mx7521J/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	0.2\%
MX7521JQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	0.2\%
MX7521KQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	0.1\%
MX7521LQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP**	0.05\%
MX7521JD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	0.2\%
MX7521KD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	0.1\%
Mx7521LD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	0.05\%
MX7521SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	0.2\%
M $\times 7521$ TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	0.1\%
MX7521UQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	0.05\%
M $\times 7521$ SD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	0.2\%
MX7521TD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	0.1\%
MX7521UD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	0.05\%

*. MX7520-16 /ead package, MX7521-18 laad package.
Maxim reserves the right to ship Ceramic packages in lieu of

CMOS 10 and 12 Bit Multiplying D/A Converters

MAXIM

CMOS 10 and 12 Bit

Multiplying D/A Converters

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses ar

8 \qquad _Maxim Integrated Products, $\mathbf{1 2 0}$ San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 (C) 1995 Maxim Integrated Products Printed USA MAxIM is a registered trademark of Maxim Integrated Products.

