μ P Compatible 14－Bit D／A Converter

The MX7536 is a high performance CMOS monolithic 14－bit digital－to－analog converter（DAC）that is opti－ part．Since the resistors required for 4－quadrant multi－ plying operation are included in the MX7536，only two op amps and a voltage reference are required exter－ nally．Wafer level laser trimmed thin－film resistors and temperature compensated NMOS switches assure specified performance over the full operating temp－ stability．
The MX7536 is configured to operate with an 8－or 16－bit data bus with separate Most Significant（MS） In addition，all digital inputs are compatible with both TTL and 5 V CMOS inputs are ．The device is pro－ tected against CMOS＂latchup＂and does not require external Schottky protection diodes
The MX7536 is available in 28 －pin 600 mil wide DIP， PLCC or Small Outline（SO）packages

Applications

Machine and Motion Control Systems Automatic Test Equipment
Digital Audio
$\mu \mathrm{P}$ Controlled Calibration Circuitry
Programmable Gain Amplifiers
Digitally Controlled Filters
Programmable Power Supplies
Functional Diagram

－14－Bit Monotonic over Full Temperature Range
－Full 4－Quadrant Multiplication
－$\mu \mathbf{P}$ Compatible Double Buffered Inputs
－Exceptionally Low Gain Tempco（2ppm／$/{ }^{\circ} \mathrm{C}$ ）
－Low Output Leakage（ $<20 n A$ ）over the Full Temperature Range
－Low Power Consumption
－TTL and CMOS Compatible
Ordering Information

PART	TEMP．RANGE	PACKAGE＊	ACCURACY
MX7536JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	＋2 LSB
M $\times 7536 \mathrm{KN}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	11 LSB
MX7536JCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SO	＋2 LSB
M $\times 7536 \mathrm{KCWI}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide so	+1 LSB
M P 7536 JP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PLCC	＋2 LSB
M $\times 7536 \mathrm{KP}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PLCC	＋1 LSB
M $\times 7536 \mathrm{~J} / \mathrm{D}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	± 2 LSB
M $\times 7536 \mathrm{AQ}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP	＋2 LSB
M $\times 7536 \mathrm{BQ}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP	± 1 LSB
M $\times 7536 \mathrm{AD}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	± 2 LSB
M $\times 7536 \mathrm{BD}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	＋1 LSB

Mrdering information continued on page io．）
－Maxim reserves the right to shif Ceramic in lieu of CERDIP packages．
Pin Configuration

See page 10 for Plastic Chip Carrier Pin Configuration

μ P Compatible 14-Bit D/A Converter

AC PERFORMANCE CHARACTERISTICS
biect to tes
$\left(V_{D D}=+11.4 \mathrm{~V}\right.$ to $+15.75 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, V_{\text {AGNDS }}=V_{\text {AGNDF }}=O \mathrm{~V} . \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$. Output Amplifier is AD544 unless

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Current Settling Time		$T_{A}=25^{\circ} \mathrm{C}$ To 0.003% of full scale range lout load $=100 \Omega, \mathrm{C}_{\text {EXT }}=13 \mathrm{pF}$. DAC register alternately loaded with all is and all 0 s		0.8	1.5	$\mu \mathrm{sec}$
Digital to Analog Glitch Impulse		$T_{A}=25^{\circ} \mathrm{C}$ Measured with $V_{\text {REF }}=0 \mathrm{~V}$. I IUT load $=100 \Omega$, $\mathrm{C}_{\text {EXT }}=13 \mathrm{pF}$. DAC register alternately loaded with all 1's and all 0's		50		$n \vee$-sec
Multiplying Feedthrough Error (Note 3)		$V_{\text {REF }}= \pm 10 \mathrm{~V}, 1 \mathrm{kHz}$ sine wave DAC register loaded with 10000000000000 $T_{A}=25^{\circ} \mathrm{C}$		4		$m V_{p-p}$
Output Capacitance Cout (lout pin) Cout (lout pin)		$T_{A}=T_{\text {MIN }}, T_{\text {MAX }}$ DAC register loaded with all is DAC register loaded with all Os			$\begin{aligned} & 260 \\ & 130 \end{aligned}$	pF
Output Noise Voltage Density ($10 \mathrm{~Hz}-100 \mathrm{kHz}$)		Measured between R_{FB} and lout $T_{A}=25^{\circ} \mathrm{C}$		50		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

μ P Compatible 14-Bit D/A Converter

9EGLXW
$\left(V_{D D}=+11.4 \mathrm{~V}\right.$ to $+15.75 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {AGNDF }}=\mathrm{V}_{\text {AGNDS }}=0 \mathrm{~V} . \mathrm{V}_{S S}=0 \mathrm{~V}$. All specifications $T_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.

1) See Figure 1 for Timing Diagram.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{\text { CSMSB }}$ or CSLSB to WR Setup Time	t_{1}	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0			ns
CSMSB or CSLSB to WR Hold Time	t_{2}	$T_{\text {A }}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0			ns
LDAC Pulse Width	t_{3}	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 200 \\ & 240 \\ & \hline \end{aligned}$			ns
Write Pulse Width	t_{4}	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 170 \\ & 200 \\ & 240 \end{aligned}$			ns
Data Setup Time	t_{5}	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 140 \\ & 160 \\ & 180 \end{aligned}$			ns
Data Hold Time	t_{6}	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 30 \end{aligned}$			ns

Pin Description

Pin	Function	Description
1	$\mathrm{R}_{\text {Int }}$	Junction point for internal R1 and R2 resistors which invert the $V_{\text {fief }}$ with an external op amp.
2	$V_{\text {feF }}$	Reference input to DAC. It is internally connected to Rofs and $\mathbf{R} 1$.
3	Rfg	Feedback Resistor. Used to close the loop around an external op amp.
4	lout	Current Output
5	AGNDS	Analog Ground Sense. Reference point for external circuitry. This pin should carry minimum current.
6	AGNDF	Analog Ground Force. Carries current from internal analog ground connections. AGNDS and AGNDF are tied together internally.
7	DGND	Digital Ground
8	DB13	Data Bit 13 (MSB)
9	DB12	Data Bit 12
10	DB11	Data Bit 11
11	DB10	Data Bit 10
12	DB9	Data Bit 9
13	DB8	Data Bit 8
14	DB7	Data Bit 7
15	DB6	Data Bit 6
16	DB5	Data Bit 5
17	DB4	Data Bit 4
18	DB3	Data Bit 3
19	DB2	Data Bit 2
20	DB1	Data Bit 1
21	DB0	Data Bit 0 (LSB)
22	CSMSB	Chip Select Most Significant (MS) Byte. Active Low.
23	LDAC	Asynchronous Load DAC input Active Low.

NOTE: $\mathrm{x}=$ Don't Care
＿＿＿Detailed Description trimmed，thin－film 11－bit R－2R resistor array a 3－bit segmented resistor array，and NMOS current switches as shown in Figure 2．The three MSBs are decoded to drive the switches A－G of the segmented array，and array．
Binarily weighted currents are switched to either AGNDF or loUt depending on the status of each reference input current．The remaining $7 / 8$ th current flows into the segmented resistors dividing equally among these 7 resistors．The input resistance at $V_{\text {REF }}$ is constant，and therefore，it can be driven by a voltage or current source of positive or negative polarity．
The MX7536 is optimized for bipolar output operation and uses the offset binary input coding．The R1 and R2 resistors are added to allow inversion of any
reference voltage applied to the $V_{\text {acr }}$ pin by using an external op amp．Furthermore，$R_{\text {OFS }}$ ，which is matched to $R_{F B}$ ，is added to offset the output by a constant $-V_{\text {REF }}$ ，resulting in offset binary coding．
Two separate analog ground pins，AGNDS and AGNDF，are provided to eliminate any variations in the ground potential as seen internally by the DAC． AGNDF is used to sink all current，while AGNDS is used to sense the internal ground potential．An ampli－
fier，A3，can be optionally used to force the internal fier，A3，can be optionally used to force the internal
DAC ground to the system＇s analog ground potential as shown in Figure 2．AGNDF and AGNDS connec－ tions may be changed to accommodate the required output drive and system accuracy．
The equivalent circuit for the DAC is shown in Figure 3．Cout varies from typically 90 pF to 180 pF depend－

Figure 1．MX7536 Timing Diagram
ing on the digital code．R_{0} denotes the equivalen output resistance of the DAC which varies with inpu code．$g\left(V_{\text {RFF，}}, N\right.$ ）is the Thevenin equivalent voltage and the digital input code of the DAC，N

Figure 2．Simplified Circuit Diagram of the MX7536 D／A Section Showing Connection of External Op Amps

μ P Compatible 14-Bit D/A Converter

Figure 3. Equivalent Analog Output Circuit

Digital Section

All digital inputs are both TTL and 5V CMOS logic compatible. All inputs are protected for electrostatic discharge and have typical input currents of less than 1nA. Supply current will be minimized when the digilevels as possible.

Application Information

Bipolar Operation for MX7536

 (4-Quadrant Multiplication) The MX7536 is a dedicated bipolar DAC. Specified accuracy is obtained without the use of expensive 4, R1 and R2 provide an optional gain adjustment, and capacitor C1 helps prevent overshoot and ringing when high speed op amps are used. In this circuit AGNDF and AGNDS are externally shorted to ground. Generally, another op amp is used to Kelvin the ground connection as shown in Figure 5Table 1 shows the Offset Binary Code obtained with the circuit of Figure 5. Note that by inverting the MSB of the DAC word, 2's Complement transfer function can be obtained.

Figure 5. MX7536 Operation with Forced Ground
Offset and Gain Adjustment of MX7536 Offset Ad/ustment

1. Adjust offset of amplifier A1 so that potential at $R_{I N T}$ is $\langle 10 \mu \vee$ with respect to signal ground
2. Load DAC register with all Os
3. Adjust offset of amplifier $A 2$ until $V_{\text {OUT }}=-V_{I N}$ $\pm 10 \mu \mathrm{~V}$.

Gain Adjustment

1. Load DAC register with all is
2. Trim potentiometer R 2 so that $\mathrm{V}_{\text {OUT }}=+\mathrm{V}_{\text {IN }}$

For wide temperature range applications, resistors and potentiometers should have low temperature coeffi cients. In many applications by virtue of the excellen of the MX7536, adjustments may not be needed.

Grounding Considerations
Since $I_{\text {OUT }}$ and the output amplifier's noninverting input are sensitive to offset voltages, nodes that need to be grounded should be connected directly to a sesistance path. Note that the output current at I and AGNDF vary with input code and create a code dependent error if these terminals are connected to ground (or a virtual ground) through a resistive path. It is important to use a proper grounding technique to obtain high accuracy. The two AGND pins (AGNDF AGNDS) provide flexibility in this respect. In Figure 4 AGNDS and AGNDF are shorted together externally and an extra op amp, A2, is not required. Voltage drops due to bond wire resistance are not compenerror (about 0.1LSB due to bond wire resistance

MP Compatible 14－Bit D／A Converter

alone）which can be eliminated by using the circuit of Figure 5．Here A2 maintains AGNDS at signal ground potential．By using Force／Sense techniques all switch potential and any error due to bond wire resistance is eliminated．
Figure 6 is a suggested printed circuit board（PCB） Figure 6 is a suggeste
layout for the $M \times 7536$.

Figure 6．Suggested Layout for MX7536 Circuit of Figure 4

Low Leakage Configuration

Leakage currents in the DAC flowing into the lou Leakage is worse at high temperatures．

Dynamic Considerations
In static or DC applications，the AC characteristics o the output amplifier are not critical in higher speed the output amplifier are not critical．In higher speed AC signal or the DAC output must settle quickly to a new programmed value，the AC parameters of the output op amp must be considered．
Another error source in dynamic applications is para－ sitic signal coupling from the $V_{\text {ReF }}$ terminal to lout This is normally a function of board layout and lead to－lead package capacitance．Signals can also be injected into the DAC outputs＇when the digital inputs are switched．This digital feedthrough is mostly
citive coupling．Layout induced feedthrough can be minimized with guard traces between digital inputs REF，and the DAC outputs

Compensation
A compensation capacitor，C1，may be needed when the DAC is used with a high speed output amplifier The purpose of the capacitor is to cancel the pole formed by the DAC＇s output capacitance and interna op amp used．Typical values range from 10 pF to 33 pF Too small a value causes output ringing while excess capacitance overdamps the output．The size of C 1 can be minimized，and output settling performance mproved，by keeping the PC board trace and stray capacitance at I OUT as small as possible

Bypassing
A $1 \mu \mathrm{~F}$ bypass capacitor，in parallel with a $0.01 \mu \mathrm{~F}$ ceramic capacitor，should be connected as close to the DAC＇s $V_{D D}$ and GND pins as possible．High fre－ quency noise rejection is optimized if tantalum used for the $1 \mu \mathrm{~F}$ capacitor． $\mathrm{V}_{\text {SS }}$ decoupling capacito $4.7 \mu \mathrm{~F}$ is also required if low leakage configuratio is used
The MX7536 has high－impedance digital inputs．To minimize noise pick－up，they should be connected to good practice to connect active inputs to $V_{D D}$ or $G N D$ through high valued resistors（ $1 \mathrm{M} \Omega$ ）to prevent static charge accumulation if these pins are left floating，as might be the case when a circuit card is lef unconnected．

Op Amp Selection

nput offset voltage（ $V_{O S}$ ），input bias current $\left(I_{B}\right)$ and offset voltage drift（tempco of V_{OS} ）are three ke parameters determining the choice of a suitable ampl fier．To maintain specified accuracy with $V_{\text {REF }}$ of 10 V $V_{O S}$ should be less than $30 \mu \mathrm{~V}$ ，and I_{B} should be les than 2 nA ．Open loop gain should be greater than
100,000 ．Maxim＇s MAX 400 has low Vos $(10 \mu \mathrm{~V}$ max） low I_{B}（2nA）and low TC $\mathrm{V}_{\mathrm{OS}}\left(0.03 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ max）．This op amp can be used without requiring any adjustments For medium frequency applications，the OP－27 and for even higher frequency applications the HA－2620 are recommended However these op amps requir external offset adjustment（Table 1）．

Table 1．Amplifier Performance Comparisons
Table 1．Amplifier Performance Comparisons

OP AMP	INPUT OFFSET VOLTAGE（VOS）	INPUT BIAS CURRENT（IB）	OFFSET VOLTAGE DRIFT（TC Vos）	SETTLING TO 0.003% FS
MAX400M	$10 \mu \mathrm{~V}$	2 nA	$0.03 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$50 \mu \mathrm{~s}$
Maxim OP－07A	$25 \mu \mathrm{~V}$	2 VA	$0.06 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$50 \mu \mathrm{~s}$
AD544L	$500 \mu \mathrm{~V}$	25 pA	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~s}$
HA2620	4 mV	35 nA	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$0.8 \mu \mathrm{~s}$

μ P Compatible 14-Bit D/A Converter

 8086A
Interfacing is possible to both 8 - and 16 -bit processors. Figure 7 shows the 808616 -bit processor interfacing to a single M $\times 7536$. In this setup the double buffering feature of the DAC is not used. ADO-AD13 of the 16 -bit data bus are connected to the DAC data bus (DB0-DB13). The 14-bit word is written to the DAC in one MOV instruction and the analog output responds immediately. In this example the DAC 7 is given in Table 2.

Figure 7. MX7536-8086 interface Circuit

In a multiple DAC system the double buffering of the DAC allows the user to simultaneously update all DACs. In Figure 8, a 14-bit word is loaded to the Input Registers of each of the DACs in sequence. Then,
with one instruction to the appropriate address. CS4 (i.e., One instruction to the approp brought low, updating all the DAC simultaneously. Figure 9 shows an interface diagram. The following routine writes data to the DAC input registers and then outputs the data via the DAC register
$\left.\begin{array}{|ll}\hline 01000 \text { MOVE.W \#W,D0 } & \begin{array}{l}\text { : The desired DAC data, W, is } \\ \text { loaded into Data Register } 0 .\end{array} \\ \text { MOVE.W DO,\$E000 } \\ \text { : The Data W is transferred } \\ \text { between D0 and DAC register }\end{array}\right\}$

280 Interface
The MX7536 is ideally suited to being used with 16 -bit processors or in stand-alone applications. However, it can be used with an 8-bit processor as shown in the the $\mathbf{Z 8 0}$.
\qquad Digital Feedthrough
In the interface diagrams shown in Figures 7 to 10 the digital inputs of the DAC are directly connected to the microprocessor bus. Even when the device is no selected, activity on the bus can feedthrough to the DAC output through package capacitance and shows up as noise. This can be minimized by isolating
DAC from the digital bus as shown in Figure 11 .

Table 2. Sample Program for Loading MX7536

ASSUME DS:DACLOAD,CS:DACLOAD DACLOAD SEGMENT AT 000			
00	8 CCO	MOV CX, Cs	:DEFINE DATA SEGMENT REGISTER EQUAL
02	8ED9	movis, ${ }^{\text {cx }}$:TO CODE SEGMENT REGISTER
04	BFOODO	MOVDI,\#D000	:LOAD DI WITH DOOO
07	C705"YZWX"	MOV MEM, \#YZWX	DAC LOADED WITH WXYZ
OB	EA0000		:CONTROL IS RETURNED TO THE
OE	00FF		MONITOR PROGRAM

μ P Compatible 14-Bit D/A Converter

μ P Compatible 14-Bit D/A Converter

MX7536

*LINEAR CIRCUITRY OMITTED FOR CLARITY
Figure 11. MX7536 Interface Circuit Using Latches to Minimize Digital Feedthrough
_Ordering Information (continued)

PART	TEMP. RANGE	PACKAGE*	ACCURACY
MX7536SO	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	$\pm 2 \mathrm{LSB}$
M 7536 GTQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP	$\pm 1 \mathrm{LSB}$
MX7536SD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	$\pm 2 \mathrm{LSB}$
MX 7536 TD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	$\pm 1 \mathrm{LSB}$

Chip Topography

Pin Configuration (continued)

uP Compatible 14－Bit D／A Converter

μ P Compatible 14-Bit D/A Converter

28 Lead Ceramic Sidebraze (DI)
$\theta_{J A}=50^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J C}=15^{\circ} \mathrm{C} / \mathrm{W}$

28 Lead Plastic Chip Carrier (Quad Pak) (QI) $\theta_{J A}=100^{\circ} \mathrm{C} / \mathrm{W}$ $\theta_{\mathrm{JC}}=45^{\circ} \mathrm{C} / \mathrm{W}$

