___ ___ General Description
The MX7541 is a high performance CMOS multiplying 2 bit digital-to-analog converter (DAC). Low powe operation and 12 -bit linearity (0.012%) make it sulable control applications Wafer level laser trimmed thin-film resistors and tem-
perature compensated NMOS switches assure true perature compensated NMOS switches assure true
12-bit performance over the full operating tempera-2-bit performance over the fut operating temperaible with both CMOS and TTL logic levels.
Maxim's MX7541 is electrically and pin compatible Maxim's MX7541 is electrically and pin compatible
with the Analog Devices AD7541. It is available in standard width 18-lead DIP and Small Outline (SO) packages.

Applications

Machine and Motion Control Systems
Automatic Test Equipment
P Controlled Calibration Circuitry
Programmable Gain Amplifiers
Digitally Controlled Filters
Programmable Power Supplies

Typical Operating Circuit

-12 Bit Linearity ($1 / 2$ LSB)

- 1 LSB Gain Accuracy
- Guaranteed Monotonic
- Low Power Consumption
- Four-Quadrant Multiplication
- TTL and CMOS Compatible
- Pin-For-Pin Second Source

Ordering Information

PART	TEMP. RANGE	PACKAGE*	ERROR
MX7541JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	1 LSB
MX7541kN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	LSB
MX7541JCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	1 LSB
MX7541KCWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	LSB
MX7541J/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	1 LSB
M X 7541 AQ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP*	1 LSB
M $\times 7541 \mathrm{BQ}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CERDIP ${ }^{\text {c }}$	LSB
M P 541AD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	1 LSB
MX7541BD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Ceramic	12 LSB
M $\times 7541$ SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP"	1 LSB
M $\times 7541$ TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP*	LSB
M $\times 7541$ SD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	1 LSB
M $\times 7541$ TD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic	\therefore LSB

Pin Configuration

CMOS 12 Bit
 Multiplying D/A Converter

ABSOLUTE MAXIMUM RATINGS
$V_{\text {DD }}$ to GND
$V_{\text {REF }}$ to $G N D$
$\mathrm{R}_{\text {FB }}$ to GND
Digital Input Voltage to GND
Output Voltage (OUT1, OUT2) (Note 1)
Power Dissipation (Derate $6 \mathrm{~mW} /^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$) $\quad-0.3 \mathrm{~V}^{2}, V_{\text {DD }}$

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
DC ACCURACY						
Resolution			12			Bits
Nonlinearity		MX7541J/A/S (Note 2) MX7541K/B/T (Note 3)			$\begin{aligned} & \pm 1 \\ & \pm 0 . \end{aligned}$	LSB
Gain Error (Note 4)		Using $\mathrm{R}_{\mathrm{FB}} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $T_{\text {MIN }}$ to $T_{\text {Max }}$			$\begin{aligned} & \pm 12.5 \\ & \pm 16.7 \end{aligned}$	LSB
Power Supply Rejection	PSRR	$\begin{aligned} & V_{D D}=+14.5 \mathrm{~V} \text { to }+15.5 \mathrm{~V}, T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\% \% V_{D D}$
Output Leakage Current		$\begin{aligned} & V_{\text {REF }}= \pm 10 \mathrm{~V} ; T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & +50 \\ & \pm 200 \\ & \pm 20 \end{aligned}$	nA
Reference Input Resistance	$\mathrm{R}_{\mathrm{fEF}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5		20	$\mathrm{k} \Omega$
DYNAMIC PERFORMANCE (Note 5)						
Output Current Setting Time		To 1/2LSB			1	$\mu \mathrm{s}$
Feedthrough Error		$V_{\text {REF }}=20 \mathrm{~V}_{\text {P.P }}$ at 10 kHz			1	$m V_{p . p}$
DIGITAL INPUTS						
Logic HIGH Threshold	$V_{\text {INH }}$		+2.4			V
Logic LOW Threshold	$\mathrm{V}_{\text {INL }}$				+0. 8	V
Input Leakage Current		Digital Inputs $=0$ or $V_{D D}$			$=1$	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$	(Note 5)			8	pF
Input Coding		Binary, Offset Binary				
ANALOG OUTPUTS						
Output Capacitance (Note 5)	Cout	Digital Inputs $=V_{\text {INH }}$ OUT1 OUT2 $\begin{array}{ll}\text { Digital Inputs }=V_{\text {INL }} & \text { OUT } \\ \text { OUT2 }\end{array}$			$\begin{gathered} 200 \\ 60 \\ 60 \\ 200 \end{gathered}$	pF
POWER REQUIREMENTS						
Operating Supply Range	$V_{D D}$	Accuracy Not Guaranteed	+5		+16	\checkmark
Power Supply Current	I_{DD}	Digital Inputs $=\mathrm{V}_{\text {INH }}$ or $\mathrm{V}_{\text {INL }}$			2	mA

保 12 may exceed the Absolute Maximum Voltage rating if the current is limited to 30 mA or less.
Note 2: $\mathrm{M} \times 7541 \mathrm{~J} / \mathrm{A} / \mathrm{S}$ are monotonic to 11 bits
Note 3: $\mathrm{M} \times 7541 \mathrm{~K} / \mathrm{B} / \mathrm{T}$ are monotonic to 12 bit
Note 4. Maximum
Guanteed by design but not 100% tested

2

\qquad

CMOS 12 Bit
 Multiplying D/A Converter

Detailed Description

The basic MX7541 DAC circuit consists of a lasertrimmed, thin-film R-2R resistor array with NMOS weighted currents are switched to either OUT1 or OUT2 depending on the status of each input bit. Most applications require only an output op-amp and reference source. The $V_{\text {REF }}$ input accepts a wide range of signals including fixed and time varying voltage or current inputs.

Figure 2. Unipolar Binary Operation
Table 1. Code Table

- Unipolar Binary

analog output
$-V_{\text {REF }}\left(\frac{4095}{4096}\right)$
$-V_{\text {REF }}\left(\frac{2048}{4096}\right)=-1 / 2 V_{\text {REF }}$
$-V_{\text {fer }}\left(\frac{1}{4096}\right)$
ov shown in Figure 2. The circuit is used for unipola binary operation and/or 2-quadrant multiplication The code table is given in Table 1. Note that th polarity of the output is the inverse of the reference input.
In many applications, gain adjustment of the MX7541 will not be necessary. In those cases, and also when will not be necessary. In those cases, and also when
gain is trimmed but only at the reference source resistors R1 and R2 in Figure 2 can be omitted However, if the trims are required and the DAC is to operate over a wide temperature range, then low tempco ($<300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors should be used at R and R 2

Table 2. Code Table -
Bipolar (Offset Binary) Operation

CMOS 12 Bit
 Multiplying D/A Converter

Bipolar Operation

Bipolar, or four-quadrant, operation is shown in Figure 3. A second amplifier and three matched resistors are required. Matching to 0.01% is recom the output which is "offset binary" is listed in Table 2. In multiplying applications, the MSB determines output polarity while the other 11 bits control amplitude.

Output Amplifler Offset

For best linearity. OUT1 and OUT2 should be terminconnected to the summing junction of an inverting op-amp. The amplifier's offset voltage can degrade the linearity of the DAC by causing OUT 1 to be terminated to a non-zero voltage. The resulting error is typically $4 / 3 V_{\text {OS }}$ to $2 V_{\text {os, }}$ a change of $2 / 3 V_{\text {OS }}$. An amplifier with 3 mV of offset will therefore degrade the
linearity by 2 mV , almost a full LSB with a 10 V reflinearity by 2 mV , almost a full LSB with a $10 \mathrm{ref-}$ such as the MAX400 should be used, or the amplifier offset must be trimmed to zero. A good rule of thumb is that VoS should be no more than $1 / 10$ of an LSB's value.
An output amplifier's input bias current (I_{B}) can also mit the DAC's performance since $I_{B} \times R_{F B}$ generates an offset error. IB should therefore be much less than he DAC output current for 1 LSB, typically 250 nA with $V_{\text {REF }}=10 \mathrm{~V}$. One tenth of this value, 25 nA , is paired if the output amplifier's noninverting input is grounded through a "bias current compensation resistor." This resistor adds to the offset at this pin and should not be used.

Dynamic Considerations

In static or DC applications, the AC characteristics of In static or DC applications, the AC characteristics of applications, where either the reference input is an AC signal or the DAC output must quickly settle to a new programmed value, the AC parameters of the output op-amp must be considered
Another error source in dynamic applications is parasitic coupling of signal from the VREF terminal to OUT1 or OUT2. This is normally a function of board layout and package lead-to-lead capacitance. Signals digital inputs are switched. This digital feedthrough is mostly dependent on circuit board layout and on chip capacitive coupling. Layout induced feedthrough can be minimized with guard traces between digital inputs, $V_{\text {REF }}$, and the DAC outputs.

Compensation

A compensation capacitor, C 1 , may be needed when he DAC is used with a high speed output amplifier The purpose of the capacitor is to cancel the pole feedback resistance Its value depends on the type op-amp used but typical values range from 10 to 33 pF . Too small a value causes output ringing while excess capacitance overdamps the output. The size of C 1 can be minimized, and output settling per ormance improved, by keeping the PC board trac and stray capacitance at OUT1 as small as possible.

Grounding and Bypassing
Since OUT1, OUT2 and the output amp's noninvert ing input are sensitive to offset voltages, nodes tha are to be grounded should be connected directly to resistance (less than 0.2 Ω) path. The current at OUT and OUT2 varies with input code creating a code dependent error if these terminals are connected to ground (or a virtual ground) through a resistive path. A $1 \mu \mathrm{~F}$ bypass capacitor, in parallel with a $0.01 \mu \mathrm{~F}$ ceramic cap, should be connected as close to the DAC's VDD and GND pins as possible.
The MX7541 has high-impedance digital inputs. To minimize noise pick-up, they should be tied to eithe VDD or GND when not used. It is also good practic to connect active inputs to VDD or GND through high valued resistors ($1 \mathrm{M} \Omega$) to prevent static charge when a circuit card is left unconnected.

Chip Topography

[^0]
[^0]: Maxv: cannol assume responsibility for use of any circutty other than crouty ontrely embodice
 4 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737.7600

