MMXIM
 Calibrated 12－Bit A／D Convortor

＿＿＿Genoral Description
The MX7578 is a complete，calibrated 12－bit AD con－ verter（ADC）which includes a conversion clock．Internal calibration circuitry maintains true 12－bit performance over the full operating temperature range without external adjustments．In addition，each conversion includes an auto－zero cycle which reduces zero errors to typically below $100 \mu \mathrm{~V}$
$\overline{C H I P} \overline{\text { SELECT}}, \overline{\text { READ }}$ ，and WRITE inputs are included for easy microprocessor interfacing without additional logic． 2 －byte， 12 －bit conversion data is provided over an 8 －bit three－state output bus．Either byte may be read first． Two converter busy flags facilitate polling of the converter＇s status．
The MX7578＇s analog input range is 0 V to +5 V when using $a+5 \mathrm{~V}$ reference．Refer to Maxim＇s MAX178 data sheet for a plug－in upgrade with track／hold and internal reference．
Digital－Signal Processing
Applications
High－Speed Data Acquisition
High－Accuracy Process Control

Pin Configurations

Foatures
Continuous Transparent Callbration of Offse and Gain
True 12－Blt Performance without Adjustments
－Zero Error Typically＜100رV
－Standard Microprocessor Interface
－24－Pin DIP／Wide SO and 28－Pin PLCC Packages
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MX7578KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Plastic DIP
M $\times 7578 \mathrm{KCWG}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO ${ }^{* *}$
MX7578KP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 PLCC
M $\times 7578 \mathrm{~K} / \mathrm{D}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊
M $\times 7578 \mathrm{KEWG}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO＊＊
MX7578BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 CERDIP＊
MX7578BD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Ceramic SB
MX7578TO	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 CERDIP＊
MX7578TD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Ceramic SB

＊Maxim reserves the right to ship Ceramic SB in lieu of CERDIP
＊＊ Consult factory．

ノVムXIノV

Calibrated 12－Bit A／D Converter

VDo to DGND Vss to DGND AGND to DGND VCc to DGND REFIN to AGND AIN to AGND Digital Input Voltage to DGND Digital Output Voltage to DGND Stresses beyond those listed under＂Ab operation of the device at these or any absolute maximum rating conditions for ELECTRICAL CHARAC $(\mathrm{VDD}=+15 \mathrm{~V}, \mathrm{VCC}=+5 \mathrm{~V}, \mathrm{VSS}=-5$	Iute Maximum her condition xtended peri	$-0.3 \mathrm{~V},+17 \mathrm{~V}$ $+0.3 \mathrm{~V},-7 \mathrm{~V}$ V REFIN +0.3 V $-0.3 \mathrm{~V},+7 \mathrm{~V}$ $3 \mathrm{~V}, \mathrm{VDD}+0.3 \mathrm{~V}$ $.3 \mathrm{~V}, \mathrm{VDD}+0.3 \mathrm{~V}$ $.3 V, V_{D D}+0.3 V$ $3 \mathrm{~V}, \mathrm{~V} D+0.3 \mathrm{~V}$ Ratings＇may caus beyond those indic s may affect device OV, flck $=140 \mathrm{kH}$	Operating MX7578K M $\times 7578$ Power Diss to $+75^{\circ} \mathrm{C}$ Derate ab Storage Te manentdama in the operati bility． ternal，all spe	Ran KN／KP G y Pac by olderin ice of the $T_{A}=T_{A}$	osec．） are stress ratings on cifications is not impt o Tmax，unless oth	to $+70^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $10+125^{\circ} \mathrm{C}$ 1000 mW $10 \mathrm{~mW} / \mathrm{C}$ $10+150^{\circ} \mathrm{C}$ $+300^{\circ} \mathrm{C}$ a functional Exposure to se noted．）
PARAMETER	SYMBEL		TIONS	MIN	TYP MAX	UNTTS
ACCURACY						
Resolution				12		Bits
Total Unadjusted Error（Note 1）	TUE				$\pm{ }^{-1}$	LSB
Differential Nonlinearity	DNL	No missing cod	uaranteed		\pm	LSB
Full－Scale Error（Gain Error）					$\pm 1 / 4$	LSB
Full－Scale Tempco					0.25	ppm／$/ \mathrm{C}$
Zero Error					$\pm 1 / 4$	LSB
Zero Error Tempco					0.25	ppm／$/{ }^{\circ} \mathrm{C}$
ANALOG INPUT						
Input Voltage Range		$V_{\text {REF }}=+5 \mathrm{~V}$		σ	＋5	V
On－Channel Input Capacitance	CAIN				8	pF
Input Leakage Current	IAIN	$\begin{aligned} \mathrm{AIN} & =0 \mathrm{~V} \text { to }+5 \mathrm{l} \\ \mathrm{TA}^{\prime} & =+2{50^{\circ} \mathrm{C}}_{\mathrm{TA}_{\mathrm{A}}} \end{aligned}$			$\begin{array}{r} 10 \\ 100 \\ \hline \end{array}$	nA
REFERENCE INPUT						
REFIN Range	Vrefin	For specified pe	mance	＋5 $\pm 5 \%$		V
		Degraded trans	accuracy	＋4	＋6	
REFIN Input Current		REFIN $=+5.0 \mathrm{~V}$			1.0	mA

$\left(V_{D D}=+15 \mathrm{~V}, \mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}\right.$ ，REFIN $=+5.0 \mathrm{~V}$ ，fCLK $=140 \mathrm{KHz}$ extemal，all specifications $T_{A}=T_{M I N}$ to $T_{\text {MAX }}$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS	min	TYP	max	UNMTS
LOGIC INPUTS（ $\overline{\text { RD，CS，WR，BYSL）}}$						
Input High Voltage	V_{IH}	$\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$	＋2．4			V
Input Low Voltage	VIL	$\mathrm{VcC}=+5 \mathrm{~V} \pm 5 \%$			＋0．8	v
Input Current	lin	$\begin{aligned} V_{I N} & =0 \text { to } V C C: \\ T_{A} & =+25^{\circ} \mathrm{C} \\ T_{A} & =T_{M I N} \text { to } T_{\text {max }} \end{aligned}$			$\begin{array}{r} \pm 1 \\ \pm 10 \\ \hline \end{array}$	$\mu \mathrm{A}$
Input Capacitance	CIN	（Note 2）			10	pF
CLOCK						
Input High Voltage	V_{IH}	$\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$	＋3．0			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$			＋0．8	V
Input High Current	$11 /$	$\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$			＋1．5	mA
Input Low Current	ILL	$\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$			± 10	$\mu \mathrm{A}$
LOGIC OUTPUTS（DBO－DB7，BUSY）						
Output High Voltage	VOH	$\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$ ，ISOURCE $=200 \mu \mathrm{~A}$	＋4．0			V
Output Low Voltage	VOL	$V C C=+5 \mathrm{~V} \pm 5 \%, \mathrm{ISINK}=1.6 \mathrm{~mA}$			＋0．4	v
Floating State Leakage Current （DB0－DB7）	ILKG	VOUT $=\mathrm{OV}$ to VCC			± 1	$\mu \mathrm{A}$
Floating State Output Capacitance（DB0－DB7）	Cout	（Note 2）			15	pF
CONVERSION TIME（Note 3）						
With External Clock		fCLK $=140 \mathrm{kHz}$	100			$\mu \mathrm{s}$
With Internal Clock		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ；Use clock components shown in figure 6 ．	100		150	$\mu \mathrm{s}$
POWER REQUIREMENTS（Note 4）						
Power－Supply Voltage	VDD			＋15		v
	$V_{S S}$			－5		
	VCC			＋5		
Power－Supply Current	IDD			5.5	7.5	mA
	Iss			5.0	7.5	
	Icc	$\mathrm{VIN}=\mathrm{V}_{1}$ or $\mathrm{V}_{1} \mathrm{H}$		0.1	1.0	
$V_{D D}$ Supply Rejection		$\mathrm{V}_{\text {OD }}=+14.25 \mathrm{~V}$ to $+15.75 \mathrm{~V}, \mathrm{~V}$ SS $=-5 \mathrm{~V}$		± 0.03		LSB
VSS Supply Rejection		$\mathrm{VSS}=-4.75 \mathrm{~V}$ to $-5.25 \mathrm{~V}, \mathrm{~V} \mathrm{DD}=+15 \mathrm{~V}$		± 0.02		LSB

Calibrated 12-Bit A/D Converter

TIMING CHARACTERISTICS (Note 5, Figures 1 and 2)

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$\mathrm{TA}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$			UNTTS
			MIN	TYP	max	MIN	TYP	max	MIN	TYP	MAXX	
$\overline{\text { CS }}$ to $\overline{\text { WR }}$ Setup Time	11		0			0			0			ns
$\overline{\text { WR Pulse Width }}$	tz(INT)	Internal Clock Operation	200			240			280			ns
$\overline{\text { Wr Puise Width }}$	t2(EXT)	External Clock Operation	10		-	10			10			$\mu \mathrm{s}$
$\overline{\text { CS }}$ to $\overline{\text { WR }}$ Hold Time	${ }_{3}$		0			0			0			ns
$\overline{\mathrm{WR}}$ to $\overline{\mathrm{BUSY}}$ Propagation Delay	${ }_{4}$			80	200		95	250		110	300	ns
$\overline{\text { BUSY }}$ to CS Setup Time	t5	(Note 2)	0			0			0			ns
$\overline{C S}$ to $\overline{\text { RD S Setup Time }}$	t6		0			0			0			ns
RD Pulse Width	17		200			240			280			ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Hold Time	t8		0.			0			0			ns
BYSL to $\overline{\text { RD }}$ Setup Time	t9		50			50			50			ns
BYSL to $\overline{\text { RD }}$ Hold Time	t10		0			0			0			ns
$\overline{\mathrm{RD}}$ to Valid Data (Note 6)	111	$\begin{aligned} & \text { (Bus Access } \\ & \text { Time) } \end{aligned}$		60	200		75	240		85	280	ns
$\overline{\mathrm{RD}}$ to Three-State Output (Note 7)	t12	(Bus Relinquish Time)	20		130	20		160	20		180	ns

Note 5: Data is timed from $\mathrm{VOH}_{1}, \mathrm{VOL}$; all input control signals are timed from a voltage level of +1.6 V and specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}=2 \mathrm{Ons}$
Note 6: t 11 , the time required for an output to cross 0.8 V or 2.4 V , is measured with the load circuits of Figure 3

Figure 1. Start Cycle Timing
\qquad

Calibrated 12－Bit AD Converter

Figure 2．Read Cycle Timing
Pin Description

PIN	NAME	FUNCTION
1	CAZ	Auto－Zero Capacitor Input．Connect other end of capacitor to AGND．
2	AIN	Analog Input
3	N．C．	No Connect
4	REFIN	Voltage Reference Input．The MX7578 is specified with REFIN $=+5.0 \mathrm{~V}$.
5	AGND	Analog Ground
6	DGND	Digital Ground
7	VCC	Logic Supply Digital inputs and outputs are ITL compatible for VCC $=+5 \mathrm{~V}$.
$8-15$	DBO－ DB7	Three－State Data Outputs．Active when $\overline{\text { CS }}$ and RD are brought Iow．Individual pin func－ tions depend upon BYTE SELECT（BYSL） input．

DATA BUS OUTPUT，$\overline{\mathbf{C S}}, \overline{\overline{\text { RD }}=\text { LOW }}$		
PIN	BYSL $=$ HIGH	BYSL＝LOW
8	BUSY（Note 8）	DB7
9	LOW（Note 9）	DB6
10	LOW（Note 9）	DB5
11	LOW（Note 9）	DB4
12	DB11（MSB）	DB3
13	DB10	DB2
14	DB9	DB1
15	DB8	DB0（LSB）

Note 8：Hioh cuuring aconversion，BUSY is a conventer staus flag

Calibrated 12－Bit A／D Converter

MX7578

 Oporating Information
Figure 5 shows an operational diagram for the MX7578． The only required passive components are a hold capacitor （CAZ）and timing components（RCLK，CCLK1，CCLK2）for the on－chip clock oscillator．Only CAZ is required when the MX7578 is used with an external clock．Individual pin functions are listed in the Pin Description table．

On－Chip Clock Operation

Figure 6 shows the clock circuitry for on－chip clock oper－ ation．Operating waveforms are shown in Figure 7.
The MX7578 is in the auto－zero mode when a conversion is complete（ $\overline{B U S Y}=$ High）．When a new conversion is initiated（ $\overline{C S}=$ Low，$\overline{W R}=$ Low）CAZ charges to a level equal to the analog input voltage minus the input offset voltage of the auto－zero comparator．The auto－ zero cycle must extend at least 10μ s into the new conversion．
When using an internal clock，it is necessary for $\overline{\text { WR }}$ to remain low for 10 us since auto－zero timing is automatically set by the MX7578．This is achieved by switching a con－ set by the MX7578．This is achieved by switching a con－ CCLK2，causing the voltage at the CLK input pin to slowly

Figure 3．Load Circuits for Access Time Test（ t_{1+} ）

Figure 4．Load Circuits for Output Float Delay Test（tiv）
decay from Vcc（Figure 7）．This occurs atter WR returns high．The Schmit trigger circuit monioring the voltage on the CLK input ends the auto－zero cycle when its low－input trigger level is reached．At this point，the constant curren load across the clock capacitors is removed allowing them to charge towards VCC via RCLK．When the voltage at the CLK input reaches the high－trigger level，the constant current load is replaced across CCLK1 and CCLK2．The most significant bit（MSB）decision is made when the low－trigger level is reached．This cycle repeats itself 12 times to provide 12 clock pulses for the conversion cycle． The circuit arrangement of Figure 6 provides the relatively slow auto－zero cycle time at the beginning of a conversion while allowing the clock oscillator to speed up once the auto－zero cycle is complete．

Figure 5．MX7578 Operational Diagram

Figure 6．Circuitry Required for Internal Clock Operation

Figure 7. Operating Waveform-Internal Clock

External Clock Operation

For external clock operation, the CLK input is driven with For external clock operation, the CLK input is driven with
a 74 HC compatible clock source (Figure 8). RCLK, a 74 HC compatible clock source (Figure 8). RCLK CCLK1 and CCLK2 are no longer required. To provide width must be extended to the minimum WR pulse width (EXT) since this is not provided automatically when using an external clock (Figure 9) It is essential that th $\overline{\mathrm{CS}}$ input remain valid throughout the extended $\overline{W R}$ puls width.
Since the MSB decision is made during the second falling edge of the clock input after WR returns high, the extern lock source need not be synchronized with the ex ended WR pulse width

Figure 8. External Clock Operation
MハXIルI

Reacling Data The 12-bit conversion result and the converter status flag are accessible over an 8 -bit data bus. Data is available
from the MX7578 with the least significant bit (LSB) right-justified. Two read operations are needed. The Byte Select (BYSL) input determines which byte is to be read first, 8 LSBs or 4 MSBs plus status flag.
It is necessary to wait for the end of a conversion to obtain valid 12-bit data from the MX7578's successive approximation register (SAR). If a read operation is performed during a conversion, the MX7578 will dump the existing contents of the SAR onto the data bus. There are three different methods that ensure 12 -bit data will be read correctly:

1. Insert a software delay longer than the ADC
conversion time between the conversion start and
the data read operations.
2. $\overline{\mathrm{BUSY}}$ is low during conversion and high at
conversion end. Use this signal as an interrupt to conversion end. Us
3. Poll the converter status flag, BUSY, at user-defined intervals after a conversion start. The status flag is available on the DB7 pin during a high-byte READ. The flag is the left-most bit and can be shifted directly into the microprocessor's carry flag for testing BUSY is high during a conversion.
A write operation to the MX7578 during a conversion will restart the conversion.

Figure 9. Operating Waveform - External Clock

Calibrated 12－Bit A／D Converter

Auto－zero Capachtor（CAZ） The auto－zero capacitor（CAZ）（Figure 5）must be a low－leak－ age，low－dielectric absorption type such as polypropylene polystyrene，or teflon．Connect the outside foil of CAZ to AGND to minimize noise．CAZ should be between 2.2 nF and 6.8 nF ．

Clock

Series connected capacitors，CCLK1 and CCLK2，gener－ ate clock cycles by charging through an external resistor RCLK，and discharging internally through a switch．Fig－ when using the MX7578＇s on－chip clock．Due to varia－ tions in manufacturing the actual operating frequency can differ from chip－to－chip by up to 20% ．For this reason，it is suggested that an external clock be used under the following situations：
1．Applications needing a conversion time within 20% of $100 \mu \mathrm{~s}$ ，the shortest conversion time allowable fo specified accuracy
2．Applications that cannot accept conversion time variations，which may result from internal clock variations．
The internal clock may be adjusted by exchanging the RCLK resistor with a $50 \mathrm{k} \Omega$ potentiometer in series with a $22 \mathrm{k} \Omega$ resistor（Figure 6）．Reducing the value of RcLk from $56 \mathrm{k} \Omega$ to $47 \mathrm{k} \Omega$ decreases the conversion time by approximately 15μ s at room temperature

Analog Input
The high－impedance analog input，AIN，allows simple analog interfacing．signal sources from 0 V to +5 V may be connected directly to AIN without extra buffering for source impedances up to $5 \mathrm{k} \Omega$（Figure 11）．The input／out put transfer characteristic and transition points for this

AMBIENT TEMPERATURE（ ${ }^{\circ}$ C）

Figure 10．Typical Conversion Time vs．Temperature Using 8 \qquad
input signal range are demonstrated in Figure 12 and Table 1．The MX7578 transfer characteristic transition points occur on integer multiples of 1LSB．The output code is natural binary，with： $1 \mathrm{LSB}=$（Full Scale （FS））$/ 4096=(5 / 4096) \mathrm{V}=1.22 \mathrm{mV}$
For signal ranges other than 0 V to +5 V ，use resisto divider networks to provide 0 V to +5 V signal ranges at the MX7578 input pins．Figure 13 shows a divide network for a OV to +10 V signal range．Resistors shourd be of the same type and manufacturer to ensure matched temperature coefficients．The source impedance must now be as low as possi ble since it adds to the resistor divider imped ance．The full－scale error created by source impedance Rs is：Rs／（R1＋R2＋Rs）．

Figure 11．Unipolar OV to $+5 V$ Operation

Figure 12．Ideal Input／Output Transfer Characteristic for
Unipolar Circuit of Figure 11

Calibrated 12－Bit ADD Converter

Figure 14 shows how bipolar signals（ -5 V to +5 V ）are accommodated by referencing a resistor divider network to REFIN．The signal source must be capable of sinking 0.5 mA with the resistor values shown．Refer to Figure 15 and Table 2 for the input／output transfer characteristic and transition points for the $\pm 5 \mathrm{~V}$ signal range，respec－ tively．（FS） $1 / 4096$ ）$(10 / 4096) \mathrm{V}=2.44 \mathrm{mV}$ ． of：$(F S)(1 / 4096)=(10 / 4096) \mathrm{V}=2.44 \mathrm{mV}$

To adjust bipolar zero error，apply $1.22 \mathrm{mV}(+1 / 2 \mathrm{LSB})$ to AIN and adjust the offset of A1 so that the ADC output switches between 100000000000 and 100000000001

Power－Supply Decoupling

Power supplies to the MX7578 should be bypassed with a $10 \mu \mathrm{~F}$ electrolytic or tantulum capacitor in parallel with a $0.01 \mu \mathrm{~F}$ disc ceramic capacitor for clean，high－fre－ quency performance．Place all capacitors as close as possible to the MX7578．

Table 1．Transition Points for Unipolar OV to $\mathbf{+ 5 V}$ Operation

Analog Input（V）	Digital Output
0.00122	000000000001
0.00244	000000000010
\ldots	\ldots
2.49878	011111111111
2.50000	100000000000
2.50122	10000000001
\ldots	\ldots
4.99756	111111111110
4.99878	111111111111

Figure 13．Unipolar ov to +10 V Operation

Table 2 Transition Points for Bipolar -5 V to +5 V Operation

Table 2．Transiuon Points for Bipolar－5V to＋6V Operation
Analog Input（V） Dlgital Output -4.99878 000000000001 -4.99634 000000000010 \ldots \ldots -0.00122 100000000000 +0.00122 100000000001 \ldots \ldots +4.99389 111111111110 +4.99634 11111111111

Figure 14．Bipolar -5 V to +5 V Operation
ルハメノル

Calibrated 12-Bit A/D Converter

Figure 16 shows how to set up a Maxim MX584LH to generate a reference voltage of +5.00 V . An adjustment range of $\pm 75 \mathrm{mV}$ is provided by R 2 . Over the commercial temperature range, the $M \times 584 \mathrm{LH}$ will contribute no more than ± 1 LSB of gain error
During a conversion, transient currents flow at the REFIN input. To prevent dynamic errors, place either a $10 \mu \mathrm{~F}$ poctrolytio or tantalum smoothing capacitor in parall with a $0.01 \mu \mathrm{~F}$ disc ceramic from the REFIN pin to AGND

Layout

When designing a layout for a printed circuit board, keep digital and analog signal lines separated whenever pos sible. It is critical that no digital line run alongside an analog signal line or near the CAZ. Guard the analog inputs, the reference input and the auto-zero input with traces connected to AGND.
Establish a single-point analog ground (AGND) as close to the MX7578 as possible, isolated from the logic sys to the MX7578 as possible, isolated from the logic sys tem. Connect the single-point analog ground to the digital system ground, which is attached to DGND at one
point and as close as possible to the MX7578. The following should be returned to the analog ground point:

Figure 16. MX584LH as Reference Generator
input-signal common, input guards, CAZ, and any by pass capacitors for the reference input and the analog supplies. Low-impedance analog and digital powerupply common returns with wide trace widths are essential for quiet operation of the MX7578

Nolse
To minimize the input noise coupling, input signal leads to AIN and signal return leads from AGND should be kept as short as possible. A shielded cable between source-and ADC is suggested in applications where onger leads are required. Also, care should be taken to reduce the ground-circuit impedances as much as o reduce the ground-circuit impedances as much as possible since any potential difference in grounds bevoltage in series with the input signal.
When interfacing to continuously busy and noisy microprocessor buses, it is possible to get ens a hrough from the bus to the integrated circuit through the package. The problem can be minimized in ceramic side braze (Ceramic SB) packaged chips b grounding the metal lid. Another solution is to isolate M M 7578 from the microprocessor bus with three
state buffers.

Calibrated 12－Bit A／D Converter

Calibrated 12-Bit A/D Converter

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent icenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

