General Descrlption
The MAX161 and MX7581 are CMOS single-chip 8-bit, 8 -channel data acquisition systems (DAS). Each chip includes an 8-bit A/D converter, 8-channel multiplexer, 8×8 dual port RAM with contention logic, and microprocessor compatible I/O logic. When combined system is produced that interfaces with the majority of microprocessors
Conversions take place on a continuous, channel sequencing basis using a microprocessor clock or port RAM so that any stored automatically in dual time under microprocessor control.
The MAX161 is an enhanced, pin-compatible version of the MX7581. Improvements include faster conversion and interface timing, lower zero error and drift, reduced power dissipation and availability in military temperature grades. All devices are available in 28 pin DIP and Small Outline (SO) packages.

Applications
Digital Signal Processing
Data Loggers
Automatic Test Equipmen
Robotics
Process Control
Functional Diagram

- Fast Conversion Time: 20رsec (MAX161)
- No Missing Codes Over Temperature
- On Chip 8×8 Dual Port RAM
- Interfaces Directly To Z80/8085/6800
- Ratiometric Capability
- Interleaved DMA Operation

Ordering Information

PART	TEMP. RANGE	PACKAGE*	ERROR
MAX161ACPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$17 / 8 \mathrm{LSB}$
MAX161BCPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$3 / 4 \mathrm{LSB}$
MAX161CCPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP	$1 / 2 \mathrm{LSB}$
MAX161ACWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$17 / 8 \mathrm{LSB}$
MAX161BCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$3 / 4 \mathrm{LSB}$
MAX161 CCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Small Outline	$1 / 2 \mathrm{LSB}$
MAX161CC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	$17 / 8 \mathrm{LSB}$
MAX161AEPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$17 / 8 \mathrm{LSB}$
MAX161BEPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$3 / 4 \mathrm{LSB}$
MAX161CEPI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$1 / 2 \mathrm{LSB}$
MAX161AEWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Small Outline	$17 / 8 \mathrm{LSB}$
MAX161BEWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Small Outline	$3 / 4 \mathrm{LSB}$
MAX161CEWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Small Outline	$1 / 2 \mathrm{LSB}$
MAX161AMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$17 / 8 \mathrm{LSB}$
MAX161BMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$3 / 4 \mathrm{LSB}$
MAX161CMJI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	CERDIP**	$1 / 2 \mathrm{LSB}$

Pin Configuration

MAXIM
Call toll free 1-800-998-8800 for free samples or literature.

CMOS 8-Bit 8-Channel

 Data Acquisition SystemABSOLUTE MAXIMUM RATINGS

	V
AGND to DGND $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$	
Digital Input Voltage to DGND (pins 1316-19)	-0.3V, V_{DO}
Digital Output Voltage to DGND (pins 12,20-27)	-0.3V, V VD
CLK (pin 15) input voltage to DGND	-0.3V, VDD
$V_{\text {fef (}}(\mathrm{pin} \mathrm{10)}$) to AGND	$\pm 25 \mathrm{~V}$
$V_{\text {bofs }}(\mathrm{pin} 1)$ to AGND	$\pm 17 \mathrm{~V}$
AIN (0-7) (pins 9-2)	$\pm 17 \mathrm{~V}$

Operating Temperature Range	
MAX161XC, M $\times 7581 \mathrm{~J} / \mathrm{K} / \mathrm{L}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
M $\times 7581 \mathrm{~A} / \mathrm{B} / \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX161XE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ}$
MAX161XM, MX7581S/T/U	$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$
Lead Temperature (Soldering, 10	
Power Dissipation (Package)	
Plastic DIP (Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$)	1200 mW
Ceramic (Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$)	1000
CERDIP (Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$)	
Small Outline (Derate 12mW/	

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these or any other conditions above those indicated in the operational sections of the specitications is nor implive. Exposure to operation of the device it hess or any other conditions above toose indicated in the on
absolute maximum rating conditions for extended periods may affeci device reliability
ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNITS
ACCURACY (at $\mathrm{f}_{\text {CLK }}=4.0 \mathrm{MHz}$ for MAX161, 1.2MHz for MX7581)							
Resolution				8			Bits
Relative Accuracy		MAX161A, MX7581J/A/S MAX161B, MX7581K/B/T MAX161C, MX7581L/C/U			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \\ & \pm \end{aligned}$	$\begin{aligned} & \begin{array}{l} 11 / 4 \\ \pm 1 / 4 \\ \pm 1 / 2 \end{array} \end{aligned}$	LSB
Differential Nonlinearity		MAX161A, MX7581J/A/S MAX161B, MX7581K/B/T MAX161C, MX7581L/C/U			$\begin{aligned} & \pm 3 / 4 \\ & \pm 1 / 2 \\ & \pm / 4 \end{aligned}$	$\begin{aligned} & \pm 1 / / 8 \\ & \pm 1 / 8 \\ & \pm 1 / 4 \end{aligned}$	LSB
Offset Error (See Figure 5, Note 1)		Adjustable to zero	MAXt64A MAX161B MAX161C		$\begin{aligned} & \pm 60 \\ & \pm 40 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 120 \\ & \pm 60 \\ & \pm 40 \end{aligned}$	mV
			MX7581J/A/S MX7581K/B/T MX7581L/C/		$\begin{aligned} & \pm 60 \\ & \pm 40 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 80 \\ & \pm 50 \end{aligned}$	
Gain Error, Worst Channel (See Figure 5, Note 2)		Adjustable to zero	MAX161A, MX7581J/A/S MAX161B, MX7581K/B/T MAX161C, MX7581L/C/U		$\begin{aligned} & \pm 3 \\ & \pm 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 6 \\ & \pm 4 \\ & \pm 2 \end{aligned}$	LSB
Gain Match Between Channels (See Figure 5)		Adjustable to zero	MAX161A, MX7581J/A/S MAX161B, MX7581K/B/T MAX161C, MX7581L/C/U		$\begin{aligned} & 2 \\ & 1 \\ & 1 / 2 \end{aligned}$	3 2 1	LSB
B ors Gain Error (Note 3)					± 1		LSB
ANALOG INPUTS							
input Resistance at $V_{\text {feF }}$ BoFs. and AIN7-AIN0	RIN	Pins 1 to 10 (Note 4)		10	20	30	k!
$V_{\text {REF }}$ (For Specified Performance)	$V_{\text {fef }}$			-10.5		-9.5	v
$V_{\text {PEF }}$ Range					Vto-15		v
Nominal Analog Input Range		- Unipolar Mode (See Figure 5) -Unipolar Mode (See Figure 7) Bipolar Mode (See Figure 9)		$\begin{gathered} 0 \\ -V_{\text {REF }} \\ -V_{\text {BOFS }} \end{gathered}$		$\begin{gathered} +V_{\text {AEF }} \\ 0 \\ V_{\text {PEF }} \\ -V_{\text {BOFS }} \\ \hline \end{gathered}$	v
DIGITAL INPUTS (ES, ALE, CLK, A0-A2)							
Logic HIGH Threshold	$V_{\text {INH }}$			+2.4	+20		v
Logic LOW Threshold	$V_{\text {INL }}$				+1.2	$+0.8$	v
Input Leakage Current	1 N	$V_{1 N}=0 \vee$ or $V_{D D}$			001	1	$\mu \mathrm{A}$
Input Capacitance	CIN	(Note 5)			4	5	pF

CMOS 8-Bit 8-Channel Data Acquisition System

ELECTRICAL CHARACTERISTICS (Continued) ($V_{D D}=+5 \mathrm{~V}, V_{\text {REF }}=-10 \mathrm{~V}, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ unless otherwise specified)						
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
DIGITAL OUTPUTS ((STAT, DBO-DB7)						
Output HIGH Voltage	V_{OH}	$\mathrm{I}_{\text {SOURCE }}=40 \mu \mathrm{~A}$	4.5	4.8		v
Output LOW Voltage	$\mathrm{V}_{\text {OL }}$	$\left.\right\|_{\text {SINK }}=1.6 \mathrm{~mA}$		0.2	0.6	v
Floating State Leakage	ILKG	OBO-DB7		0.3	10	$\mu \mathrm{A}$
Floating State Capacitance		DBO-DB7, $\mathrm{V}_{\text {Out }}=O \mathrm{~V}$ to $\mathrm{V}_{\text {D }}$		5	10	pF
Output Code		See Figure 5 See Figure 7 See Figure 9	Unipo Comp Offset			
POWER REQUIREMENTS						
Supply Voltage	$V_{\text {D }}$		+4.5	+5.0	+5.5	v
Supply Current	$\mathrm{IDO}_{\text {d }}$	MAX161, MX7581 Static MAX161 Dynamic ($\mathrm{I}_{\mathrm{CLK}}=\mathbf{4 . 0 \mathrm { MHz } \text {) }}$ MX7581 Dynamic (f ${ }^{\text {CLK }}=1.2 \mathrm{MHz}$)		3 3 3	5 5 8	mA

 Note 3. Typical change in Bofs gain from $+25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$ is ± 2 LSBs.
Nole 4. $R_{\text {ROFS }} / R_{\text {AIN }}$ mismatch causes transfer function rotation about positive full scale. The effect is an offset and a gain term when using the Circuits of Figure 7 and 9 .
TIMING CHARACTERISTICS - MAX161 ($C_{L}=100 \mathrm{pF}$, See Figure 1)

parameter	SYMBOL	MIN	TYP	MAX	UNITS
ALE Pulse Width	t_{H}	50	35		ns
Address Valld to Latch Set-Up Time	${ }_{\text {tals }}$	45	30		ns
Address Valid to Latch Hold Time	talh	10	0		ns
Address Latch to CS Set-Up Time	tlcs	10	0		ns
CS to Output Propagation Delay	$\mathrm{tacc}^{\text {a }}$		125	200	ns
$\overline{\text { CS }}$ Pulse Width	$\mathrm{taw}^{\text {cm }}$	250	175		ns
$\overline{\mathrm{C}}$ ¢ to Output Float Propagation Delay	${ }_{\text {t }}$		30	50	ns
CS to Low Impedance Bus	$t_{\text {ctz }}$		70	100	ns
Clock Frequency (Note 6)	${ }_{\text {ctik }}$		6	4.0	MHz

TIMING CHARACTERISTICS - MX7581 (C $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, See Figure 1)

PARAMETER	SYmbol	MIN	TYP	MAX	UNITS
ALE Pulse Width	t_{H}	80	50		ns
Address Valid to Latch Ser-Up Time	$\mathrm{t}_{\text {ALS }}$	70	45		ns
Address Valid to Latch Hold Time	$\mathrm{t}_{\text {ALH }}$	20	10		ns
Address Latch to $\overline{C S}$ Set-Up Time	tlcs	20	10		ns
$\overline{\mathrm{CS}}$ to Output Propagation Delay	$\mathrm{tacc}^{\text {che }}$		200	250	ns
$\mathrm{C} \overline{\text { s Pulse With }}$	tow	280	250		ns
$\overline{\text { CS }}$ to Output Fioat Propagation Delay	${ }_{\text {taf }}$		50	80	ns
CS to Low impedance Bus	talz		100	150	ns
Clock Frequency (Note 6)	${ }_{\text {fle }}$		1.6	12	MHz
Note 6. Guaranteed conversion time for stated accuracy of $20 \mu \mathrm{~s} / \mathrm{ch}$ annel with 4.0 MHz clock for MAX 161 , and $66.7 \mu \mathrm{~s} / \mathrm{ch}$ annel with 1.2 MHz clock for the MX7581					

CMOS 8-Bit 8-Channel Data Acquisition System

Detailed Description

Basic Operation
The MAX161 and MX7581 sequentially convert analog signals on 8 input channels into separate 8 -bit dat words. The data is continually updated in on-chip RAM, with each channel's conversion result assigned to a separate RAM address. Consequently, the conversion process is user transparent in that output data is read directly from RAM. The device can run
directly from a microprocessor clock $(6800$ type systems) or control signal (ALE in 8085 type systems) A functional diagram of the MAX161 and MX7581 is shown on the front page.

A/D Conversion

Internally, the conversion process is divided into 10 phases, each 8 clock periods long. In the first phase, the input multiplexer is decremented and the contro logic is reset. STAT (pin 12) goes low for 8 clock cycles at the beginning of this period. (STAT also goes low for 72 clock periods after channel is version then takes place during phases 2 through 9 version then takes place during phases 2 through
Finally, data is loaded into RAM during phase 10 .
A single channel conversion takes 80 input clock periods while a complete scan through all channels requires 640 clock periods. Internal start-up logic
initializes the converter within 800 clock periods after power is applied.

Digital Interface

Channel Selection
Table 1 shows the truth table for channel selection RAM locations are addressed by AO-A2. In systems with a multiplexed address/data bus, the address is and data busses are separate the address latches can be made transparent by tying ALE HIGH.

Table 1:
Channel Selection Truth Table

A2	A1	AO	ALE	CHANNEL DATA TO BE READ
0	0	0	1	Channel 0
0	0	1	1	Channel 1
0	1	0	1	Channel 2
0	1	1	1	Channe 3 3
1	0	0	1	Channel 4
1	0	1	1	Channe 15
1	1	0	1	Channel 6
1	1	1	1	Channel 7

Timing And Control
Control timing for the MAX161 and MX7581 is shown in Figure 1. When CS (pin 13) is HIGH, the three
state data drivers are in their high impedance state The drivers switch to the active state when $\overline{C S}$ goes LOW. Output data is valid after time $t_{A C C}$

Figure 1. Interface Timing Diagram
Data Read Operation
The MAX161 and MX7581 continuously scan and convert analog input signals without regard to the channel being selected for data output. The on-chip RAM and contention logic allow data to be read cess. The output data (RAM contents) is simply the most recent conversion result for the selected channel. Automatic Interleaved DMA is provided by internal Automatic interleaved DMA is provided by internal
logic to ensure that memory updates do not take place when the memory is being addressed by a microprocessor. RAM is normally updated on a rising clock edge, 6 clock periods prior to STAT going LOW, provided $\overline{C S}$ is HIGH (i.e. data is not being read). If $\overline{C S}$ is LOW (read operation in progress), then the memory update is delayed by 3 clock periods. By delaying the update, data will not be
written in RAM during a READ as long as CS is kept shorter than 3 clock periods. The possibility of a "contention" error with an asynchronous READ is therefore eliminated if $\overline{C S}$ is less than 3 clock periods long. Although asynchronous reading errors are eliminiated with this feature, it in no way restricts
compatibility with other manufacturers' MX 7581 s .

CMOS 8-Bit 8-Channel Data Acquisition System

Figure 2. STAT Timing Diagram

Figure 3. Hardware Channel Identification

L8GLXW/L9LXVW
Figure 4. Software Channel Identification

Operating Circuits

For the following circuits, the offset and gain adjustments shown in Figures 5,7 and 9 are often needed (The offset and gain error of the MAX161C are 1 LSB and 2LSB respectively). In those cases, A1 and R1-R12 can be omitted. Note that in all case where full scale is adjusted, offset must be trimmed first.

Unipolar Binary Operation
Figures 5 and 6 show the analog circuit connections Figures 5 and 6 show the analog circuit connections
and the resulting transfer characteristic for basic uniand the resulting transfer characteristic for basic unce is connected to pin 10 through resistor R9 and a clock is connected to pin 15. Calibration is as follows:

Offset
Offset (zero error) is trimmed using the bipolar offse pin, Bofs. Resistors R10-R12 form a voltage divide buffered by A1 which drives Bofs. A0-A2 are taken LOW and latched using ALE so that channel 0 is continuously monitored. With AINO $=+19.5 \mathrm{mV}$ (i.e $1 / 2$ LSB for 10 V full scale) adjust R11 until DB7-DB channels is identical so one adjustment takes care o all eight inputs.

Apply +9941 ($\mathrm{FS}-3 / 2 \mathrm{SB}$) to all inputs (AINO-AIN7)
Apply +9.941 V (F.S. $-3 / 2$ LSB) to all inputs (AINO-AIN 7) address with ALE. Adjust trimmer RN of the selected input so that DB7-DB1 are HIGH and DBO (LSB) flickers. Repeat for other channels

CMOS 8-Bit 8-Channel Data Acquisition System

 (Complimentary Binary) Operation Figures 7 and 8 show the analog circuit connections and typical transfer characteristic for unipolar (0 to tion is as follows
Offset

A0-A2 are taken LOW and latched using ALE activating channel 0 . The offset voltage is identical for all channels so only one trim is needed. With NO $=-9.98 \mathrm{~V}$ (i.e. - F.S. DB7-DB1 are LOW and DB0 (LSB) flickers.

Full Scale Apply $-58.6 \mathrm{mV}(3 / 2 \mathrm{LSB})$ to all channels (AINO-AIN7) and select the required channel using AO-A2 and latch the address with ALE. Adjust trimmer RN of the selected channel until DB7-DB1 are HIGH and the DBO (LSB) flickers. Repeat for other channels.

Bipolar (Offset Binary) Operation
Figures 9 and 10 show the analog circuit connections and typical transfer characteristic for +5 V bipolar operation. Calibration is as follows:

Offset

A0-A2 are taken LOW and latched using ALE, selec-
A0-A2 are taken LOW and latched using ALE, selecchannels so only one trim is needed. With AINO $=$ -4.980 V (i.e. -F.S. $+1 / 2 \mathrm{LSB}$), adjust R11 so that DB1-DB7 are LOW and DB0 (LSB) flickers.

Full Scale
Apply +4.941 V (+ F.S. $-3 / 2 \mathrm{LSB}$) to all channels (AINOAiN7) and select the required channel using A0-A2 and latch the adodress with ALE. Adjust trimmer RN of the selected channel until DB1-DB7 are HIGH and DB0 (LSB) flickers. Apply -19.5 mV to each gain
 procedure.

Application Hints

Analog and Digital Ground
AGND and DGND should be connected together at the device to prevent the possibility of injecting noise into the A/D converter. In systems where the AGNDNND connection is not local, connect clamp diodes pins

VDD (pin 28) should be bypassed to AGND using a
$10 \mu \mathrm{~F}$ electrolytic and $0.1 \mu \mathrm{~F}$ ceramic capacitor. Lead lengths should be kept as short as possible.

Logic Deglitching In μ P App/icatlons Unspecified states on the address bus (due to different rise and fall times) can cause glitches at the $\overline{\mathrm{CS}}$ pin, initiating unwanted reads. These glitches can be $\frac{\text { avoided by gating the address decoding logic with }}{\mathrm{RD}}$ (8085A) or VMA (6800) as shown in Figures 11 and 12.

Figure 11. 8085A Interface

Figure 12 6800 therface

CMOS 8-Bit 8-Channel

Data Acquisition System

	Ordering Information (continued)			

[^0]This section contains physical dimensions for all packages currently supplied by Maxim.

A

[^0]: Waxm, canno assume responsiblly for usc of any circuity other than circuity controly crmbotics
 8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737.7600
 6) 1995 Maxim Integrated Products

