DOCUMENT NO. 29000 D47 REVISION 1, OCT. 1978

PART NUMBER R6522

R6500 Microcomputer System DATA SHEET

VERSATILE INTERFACE ADAPTER (VIA)

SYSTEM ABSTRACT

The 8-bit R6500 microcomputer system is produced with Nchannel, silicon-gate, depletion-load technology. Its performance speeds are enhanced by advanced system architecture. Its innovative architecture results in smaller chips – the semiconductor threshold to cost-effectivity. System cost-effectivity is further enhanced by providing a family of 10 software-compatible microprocessor (CPU) devices, memory and I/O devices... as well as low-cost design aids and documentation.

DESCRIPTION

The R6522 VIA adds two powerful, flexible Interval Timers, a serial-to-parallel/parallel-to-serial shift register and input latching on the peripheral ports to the capabilities of the R6520 Peripheral Interface Adapter (PIA) device. Handshaking capability is expanded to allow control of bidirectional data transfers between VIAs in multiple processor systems and between peripherals.

Control of peripherals is primarily through two 8-bit bidirectional ports. Each of these ports can be programmed to act as an input or an output. Peripheral I/O lines can be selectively controlled by the Interval Timers to generate programmable-frequency square waves and/or to count externally generated pulses. Positive control of VIA functions is gained through its internal register organization: Interrupt Flag Register, Interrupt Enable Register, and two Function Control Registers.

FEATURES

- Organized for simplified software control of many functions
- Compatible with the R650X and R651X family of microprocessors (CPUs)
- Bi-directional, 8-bit data bus for communication with microprocessor
- Two Bi-directional, 8-bit input/output ports for interface with peripheral devices
- CMOS and TTL compatible input/output peripheral ports
- Data Direction Registers allow each peripheral pin to act as either an input or an output
- Interrupt Flag Register allows the microprocessor to readily determine the source of an interrupt and provides convenient control of the interrupts within the chip
- Handshake control logic for input/output peripheral data transfer operations
- Data latching on peripheral input/output ports
- Two fully-programmable interval timers/counters
- Eight-bit Shift Register for serial interface
- Forty-pin plastic or ceramic DIP package.

	Order umber	Package Type	Frequency	Temperature Range
R65 R65 R65 R65 R65 R65 R65	522P 522AP 522C 522AC 522AC 522APE 522ACE 522ACE 522ACE 522CMT	Plastic Plastic Ceramic Ceramic Plastic Plastic Ceramic Ceramic Ceramic	1 MHz 2 MHz 1 MHz 2 MHz 1 MHz 2 MHz 1 MHz 2 MHz 2 MHz 1 MHz	$\begin{array}{c} 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C} \\ 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C} \\ 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C} \\ 0^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \\ 40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \\ 40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \\ 40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \\ 55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C} \end{array}$
ТО R6500 < СРU	R BIT DATA BI R V Ø2 CLO REGISTER AT CHIP SELEC IR	V	R6522	CONTROL 8 BIT DATA PORT CONTROL
	L	I	2 Interface D	

Ordering Information

		_
	40	
	39	CA2
PA1 - 3	38	RS0
PA2 - 4	37	
PA3 🗖 5	36	AS2
PA4 🗖 6	35	
PA5 🗖 7	34	RES
PA6 🗖 8	33	
PA7 🗖 9	32	01
PB0 🗖 10) 31	D D2
PB1 [11	30	D D3
PB2 - 12	29	
PB3 🗖 13	3 28	D 05
PB4 14	27	D6
PB5 🗖 15	5 26	70
РВ6 🗖 16	25	φ 2
PB7 17	24	CS1
СВ1 🗖 18	23	CS2
CB2 - 19		B/W
	21	IRO
Pin (Configurati	on

C Rockwell International Corporation 1978 All Rights Reserved Printed in U.S.A.

OPERATION SUMMARY

Register Select Lines (RS0, RS1, RS2, RS3)

The four Register select lines are normally connected to the processor address bus lines to allow the processor to select the internal R6522 register which is to be accessed. The sixteen possible combinations access the registers as follows:

RS3	RS2	RS1	RSO	Register	Remarks	RS3	RS2	RS1	RSO	Register	Remarks
Ľ	L	L	۰L.	ORB		н	L	L	L	T2L-L	Write Latch
L	L	L	- н	ORA	Controls Handshake					T2C-L	Read Counter
L	L	н	L	DDRB		H	L :	L	н	T2C-H	Triggers T2L-L/T2C-L Transfer
L	L	н	н	DDRA		н	L	н		SR	Tansier
L	н	L	L	T1L-L	Write Latch	н	L	н	н	ACR	
				T1C-L	Read Counter	н	н	L	L	PCR	
L	н	L	Н	T1C-H	Trigger T1L-L/T1C-L Transfer	н	н	L	н	IFR	
L	н	н	Ľ	T1L-L		н	н	н	L	IER	
L	н	н	H	T1L-H		н	H.	Н	Н	ORA	No Effect on Handshake

Note: L = 0.4V DC, H = 2.4V DC.

Timer 2 Control

RS3	RS2	RS1	RS0	R/W = L	R/W = H
Н	Ĺ	Ļ	L	Write T2L-L	Read T2C-L Clear Interrupt flag
н	L	L	н	Write T2C-H Transfer T2L-L to T2C-L Clear Interrupt flag	Read T2C-H

Writing the Timer 1 Register

The operations which take place when writing to each of the four T1 addresses are as follows:

RS3	RS2	RS1	RSO	Operation (R/W = L)
L	н	L	L	Write into low order latch
				Write into high order latch
L	н	L	н	Write into high order counter
				Transfer low order latch into low order counter
				Reset T1 interrupt flag
L L	H	н	L	Write low order latch
×	Н	н	Н	Write high order latch Reset T1 interrupt flag

Reading the Timer 1 Registers

For reading the Timer 1 registers, the four addresses relate directly to the four registers as follows:

RS3	RS2	RS2 RS1 RS0		Operation (R/W = H)
L	H a	L	L	Read T1 low order counter Reset T1 interrupt flag
L	H	L i	Н	Read T1 high order counter
L	H ₁	Н	L	Read T1 low order latch
L	н	Н	H	Read T1 high order latch

TIMING CHARACTERISTICS

Read Timing Characteristics (loading 130 pF and one TTL load)

Parameter	Symbol	Min	Тур	Max	Unit	
Delay time, address valid to clock positive transition	TACR	180	·	-	nS	
Delay time, clock positive transition to data valid on bus	TCDR	-	-	395	nS	
Peripheral data setup time	TPCR	300		-	nS	
Data bus hold time	T _{HR}	10	-	-	nS	
Rise and fall time for clock input		-	_	25	nS	

Read Timing Characteristics

Write Timing Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Enable pulse width	тс	0.47	· · ·	25	μS
Delay time, address valid to clock positive transition	TACW	180	-	-	nS
Delay time, data valid to clock negative transition	тосм	300	-	· _ ·	nS
Delay time, read/write negative transition to clock positive transition	тусу	180	-	_	nS
Data bus hold time	тну	10	-	-	nS
Delay time, Enable negative transition to peripheral data valid	TCPW		· _ ·	1.0	μS
Delay time, clock negative transition to peripheral data valid CMOS (VCC - 30%)	тсмоѕ	-	-	2.0	μS

I/O Timing Characteristics

Characteristic	Symbol	Min	Тур	Мах	Unit
Rise and fall time for CA1, CB1, CA2 and CB2 input signals	T _{RF}	_		1.0	μs
Delay time, clock negative transition to CA2 negative transition (read handshake or pulse mode)	TCA2		_	1.0	μs
Delay time, clock negative transition to CA2 positive transition (pulse mode)	T _{RS1}	- 1	_	1.0	μs
Delay time, CA1 active transition to CA2 positive transition (handshake mode)	T _{RS2}	_		2.0	μs
Delay time, clock positive transition to CA2 or CB2 negative transition (write handshake)	^т wнs			1.0	μs
Delay time, peripheral data valid to CB2 negative transition	T _{DC}	0	- -	1.5	μs
Delay time, clock positive transition to CA2 or CB2 positive transition (pulse mode)	T _{RS3} ,			1.0	μs
Delay time, CB1 active transition to CA2 or CB2 positive transition (handshake mode)	T _{RS4}			2.0	μs
Delay time, peripheral data valid to CA1 or CB1 active transition (input latching)	TIL	300	-		ns
Delay time CB1 negative transition to CB2 data valid (internal SR clock, shift out)	T _{SR1}	-		300	ns
Delay time, negative transition of CB1 input clock to CB2 data valid (external clock, shift out)	T _{SR2}	· · · · ·		300	ns
Delay time, CB2 data valid to positive transition of CB1 clock (shift in, internal or external clock)	T _{SR3}		_	300	ns
Pulse Width — PB6 Input Pulse	TIPW	2		_	μs
Pulse Width — CB1 Input Clock	TICW	2			μs
Pulse Spacing — PB6 Input Pulse	IPS	2	_		μs
Pulse Spacing CB1 Input Pulse	ICS	2	_	_	μs

I/O Timing Characteristics

Timer 1 Operating Modes

Two bits are provided in the Auxiliary Control Register to allow selection of the T1 operating modes. These bits and the four possible modes are as follows:

ACR7 Output Enable	ACR6 "Free-Run" Enable	Mode				
0	0	Generate a single time-out interrupt each time T1 is loaded				
0	1	Generate continuous interrupts				
1	0	Generate a single interrupt and an output pulse on PB7 for each T1 load operation				
1	1	Generate continuous interrupts and a square wave output on PB7				

FUNCTION CONTROL

Control of the various functions and operating modes within the R6522 is accomplished primarily through two registers, the Peripheral Control Register (PCR), and the Auxiliary Control Register (ACR). The PCR is used primarily to select the operating mode for the four peripheral control pins. The Auxiliary Control Register selects the operating mode for the Interval Timers (T1, T2), and the Serial Port (SR).

Peripheral Control Register

The Peripheral Control Register is organized as follows:

Bit #	7	6	5	4	3	2	1	0
Function		CB2 Control		CB1 Control		CA2 Control		CA1 Control

Typical functions are shown below:

PCR3	PCR2	PCR1	Mode
0	о	0	Input mode – Set CA2 interrupt flag (IFRO) on a negative transition of the input signal. Clear IFRO on a read or write of the Peripheral A Output Register.
0	0	1	Independent interrupt input mode – Set IFRO on a negative transition of the CA2 input sig- nal. Reading or writing ORA does not clear the CA2 interrupt flag.
0	1	0	Input mode – Set CA2 interrupt flag on a positive transition of the CA2 input signal. Clear IFRO with a read or write of the Peripheral A Output Register.
0	1	1	Independent interrupt input mode — Set IFR0 on a positive transition of the CA2 input sig- nal. Reading or writing ORA does not clear the CA2 interrupt flag.
1	0	0	Handshake output mode – Set CA2 output low on a read or write of the Peripheral A Output Register. Reset CA2 high with an active transition on CA1.
1	0	1	Pulse output mode – CA2 goes low for one cycle following a read or write of the Peripheral A Output Register.
1	1	0	Manual output mode – The CA2 output is held low in this mode.
1	1.	1	Manual output mode – The CA2 output is held high in this mode.

Auxiliary Control Register

Many of the functions in the Auxiliary Control Register have been discussed previously. However, a summary of this register is presented here as a convenient reference for the R6522 user. The Auxiliary Control Register is organized as follows:

Bit #	7	6	5	4	3	2	1	0
Function	T1 Control		T2 Control	Shif	Shift Register Control		PB Latch Enable	PA Latch Enable

Shift Register Control

The Shift Register operating mode is selected as follows:

ACR4	ACR3	ACR2	Mode
0	0	0	Shift Register Disabled.
0	0	1	Shift in under control of Timer 2.
0	1	0	Shift in under control of system clock.
0	1	1	Shift in under control of external clock pulses.
1	0	· · · O	Free-running output at rate determined by Timer 2.
1	0	1	Shift out under control of Timer 2.
1	1	0	Shift out under control of the system clock.
1	1	1	Shift out under control of external clock pulses.

T2 Control

Timer 2 operates in two modes. If ACR5 = 0, T2 acts as an interval timer in the one-shot mode. If ACR5 = 1, Timer 2 acts to count a predetermined number of pulses on pin PB6.