SP1600 SERIES # SP1660B (HIGHZ) SP1661B (LOWZ) DUAL 4-INPUT OR/NOR GATE SP1660B provides simultaneous OR-NOR output functions with the capability of driving 50Ω lines. This device contains an internal bias reference voltage, ensuring that the threshold point is always in the centre of the transition region over the temperature range (0°C to +75°C). The input pulldown resistors eliminate the need to tie unused inputs to $V_{\rm FE}$. #### **FEATURES** - Gate Switching Speed Ins Typ. - MECL/PECL II and MECL 10000 Compatible - \blacksquare 50 Ω Line Driving Capability - Operation With Unused I/Ps Open Circuit - Low Supply Noise Generation #### **APPLICATIONS** - Data Communications - Instrumentation - PCM Transmission Systems Fig. 1 Logic diagram # ABSOLUTE MAXIMUM RATINGS Power supply voltage |V_{CC} -V_{EE}| 8V Base input voltage 0V to V_{EE} O/P source current <40mA Storage temperature 55°C to +150°C Junction operating temp. <+125°C Fig. 2 Circuit diagram ## SP1660/1 ## **ELECTRICAL CHARACTERISTICS** This PECL III circuit has been designed to meet the d.c. specifications shown in the characteristics table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC 14A2CB or equivalent) or a transverse air flow greater than 500 linear ft/min should be maintained while the circuit is in either a test socket or is mounted on a printed circuit board. Test procedures are shown for only one gate. The other gates are tested in the same manner, Outputs are tested with a 50Ω resistor to $-2.0 \, \text{Vd.c.}$ | | | | | | | | | | TEST VO | TEST VOLTAGE VALUES (V) | | | | | | |---|-------------------|----------------------|---------------------|--------|--------|----------|--------|--------|------------------|-------------------------|-----------|-------------|---------------|-------|-------| | | | | | | | | | | Test
perature | ViH max | VIL min | VIHA min | VILA max | VEE | 1 | | | | | | | | | | | 0°C | -0.840 | -1.870 | -1.135 | -1.500 | -5.2 | | | | | | | | | | | | +25°C | -0.810 | -1.850 | -1.095 | -1.485 | -5.2 | | | | | | | | | | | | +75°C | -0.720 | -1.830 | -1.035 | -1.460 | -5.2 | | | Characteristic | Symbol | Pin
Under
Test | SP1660B Test Limits | | | | | | | | | | | | | | | | | 0 | °c | +25°C | | +75°C | | | TEST V | OLTAGE AP | PLIED TO PI | INS LISTED BI | ELOW: | | | | | | Min | Max | Min | Max | Min | Max | Units | VIH max | VIL min | VIHA min | VILA max | VEE | ov | | Power Supply Drain Current | l _E | 8 | - | - | - | 28 | - | - | mA | - | | _ | - | 8 | 1,16 | | Input Current | lin H | | - | - | - | 350 | - | | μА | | - | - | - | В | 1,16 | | | l _{in L} | | - | - | 0.5 | - | - | - | μΑ | - | | - | - | 8 | 1,16 | | NOR Logic 1 | Von | 3 | -1.000 | -0.840 | -0.960 | -0.810 | -0.900 | -0.720 | ٧ | - | 4 | - | - | 8 | 1,16 | | Output Voltage | | 1 | | | 1 | 1 | 1 | | | - | 5 | - | - | 1 | 1 | | | | 1 1 | 1 1 | | 1 1 | 1 1 | | 1 1 | 1 1 | _ | 6 | - | - | 1 1 1 | | | | | + | | + | 1 + | | | | | _ | 7 | _ | | 1 | | | NOR Logic 0 | Vol | 3 | -1.870 | -1.635 | -1.850 | -1.620 | -1.830 | -1.595 | V | 4 | | | | 8 | 1,16 | | Output Voltage | -01 | li | 1 | 1 | 1 | 1 | | 1.000 | i | 5 | _ | - | _ | l i l | l "i" | | | | | | | | | | 1 | | 6 | 1 | _ | _ | 1 | | | | | | 1 + | 1 | | 1 | | 1 | 1 1 | 7 | | | _ | 1 1 | ١ ١ | | OR Logic 1 | | 2 | -1.000 | -0.840 | -0.960 | -0.810 | -0.900 | -0.720 | v | 4 | | | | 8 | 1,16 | | | Voн | 1 2 | -1.000 | -0.840 | -0.960 | -0.810 | -0.900 | -0.720 | l Y | | - | | - | 8 | 1,16 | | Output Voltage | | 1 | | | 1 1 | | 1 1 | | | 5 | - | - | - | 1 1 3 | | | | | | | 1 | ↓ | 1 1 | 1 1 | 1 | | 6 7 | - | - | - | | | | OR Logic 0 | Vol | 2 | 1 070 | 1005 | -1.850 | 1 600 | -1.830 | 1.00 | v | | 4 | | | 8 | 1,16 | | | VOL | 1 | -1.670 | -1.635 | -1.850 | -1.620 | -1.830 | -1.595 | ĭ | | 5 | | | 1 0 | 1,16 | | Output Voltage | | | | | 1 | | | | | - | | - | - | 1 1 3 | | | | | | | 1 + | 1 | 1 1 | 1 1 | 1 1 | | - | 6 7 | - | | 1 1 | | | NOBLEST | | 3 | -1.020 | - | -0.980 | - | -0.920 | - | v | | | | 4 | 8 | 1.16 | | NOR Logic 1
Threshold Voltage | VOHA | 3 | -1.020 | | -0.980 | _ | -0.920 | - | ı i | | | | 5 | 8 | 1,16 | | | | | | - | | | | | | 790 | | - | | | | | | | | 1 | - | 1 1 | - | | - | 1 1 | - | | - | 6 | 1 1 | 1 | | | | | , | | - | - | | - | - | - | - | - | 7 | ' | | | NOR Logic 0 | VOLA | 3 | - | -1.615 | - | -1.600 | - | -1.575 | >- | - | - | 4 | - | 8 | 1,16 | | Threshold Voltage | | | - | | - | | - | | | - | - | 5 | - | | | | | | l i | - | 1 1 | - | 1 | - | 1 1 | 1 | - | - | '6 | - | 1 1 | 1 | | | | | | , | | <u> </u> | - | | - | | | 7 | - | | | | OR Logic 1 | VOHA | 2 | -1.020 | - | -0.980 | - | -0.920 | - | Y | - | - | 4 | - | 8 | 1,16 | | Threshold Voltage | | | | - | | - | | - | | - | | 5 | - | | | | | | | | - | ↓ | - | | - | | - | - | 6 | - | 1 1 1 | 1 | | OR Logic 0 | | 2 | - | -1.615 | - | -1.600 | - | -1.575 | v | | - | 7 | 4 | 8 | 1,16 | | Threshold Voltage | VOLA | í | _ | -1.615 | - | -1.600 | - | 1.573 | ĭ | | _ | _ | 5 | 1 1 | 1,16 | | Threshold Voltage | | | - | | - | | - | | | 7.0 | | | | 1 1 1 | ľ | | | | 1 | - | 1 | - | | - | 1 1 | 1 | - | - | - | 6
7 | 1 1 | | | Switching Times (50!! Load) | | <u> </u> | Тур | Max | Тур | Max | Тур | Max | | Pulse In | Pulse Out | | | -3.2V | +2.0V | | | | | | | 1.1 | 1.7 | 1,2 | 1.9 | | ruist In | 3 | _ | _ | 8 | 1.16 | | Propagation Delay | 4.3- | 3 | 1.1 | 1.7 | | | | | ns | 1 | | 33 | | 0 | 1,16 | | | t4 _ 2 ~ | 2 | 1.1 | 1.7 | 1.1 | 1.7 | 1.2 | 1.9 | | | 2 | - | - | | | | | 14-2- | 2 | 1.0 | 1.5 | 1.0 | 1.5 | 1.1 | 1.7 | | | 2 | ~ | - | | | | | ta - 3 · | 3 | 1.0 | 1.5 | 1.0 | 1.5 | 1.1 | 1.7 | , | 1 | 3 | | - | , | • | | Rise Time | 13+ | 3 | 1.5 | 2.1 | 1.5 | 2.1 | 1.6 | 2.3 | ns | 4 | 3 | - | - | 8 | 1,16 | | | 12+ | 2 | 1.5 | 2.1 | 1.5 | 2.1 | 1.6 | 2.3 | ns | 4 | 2 | - | - | 8 | 1,16 | | Fall Time * Individually test each input app | t3_ | 3 | 1.4 | 2.1 | 1.4 | 2.1 | 1.5 | 2.3 | ns | 4 | 3 | - | - | 8 | 1,16 | | | tz- | 2 | 1.4 | 2.1 | 14 | 2.1 | 1.5 | 2.3 | ns | 4 | 2 | - | _ | 8 | 1,16 | Fig. 3 Switching time test circuit and wave forms at +25°C