Features

- No External Components Except PIN Diode
- Supply-voltage Range: 2.7 V to 5.5 V
- Automatic Sensitivity Adaptation (AGC)
- Automatic Strong Signal Adaptation (ATC)
- Automatic Supply Voltage Adaptation
- Enhanced Immunity against Ambient Light Disturbances
- Available for Carrier Frequencies between 30 kHz to 76 kHz; adjusted by Zener-Diode Fusing \pm 2.5\%
- TTL and CMOS Compatible

Applications

- Audio Video Applications
- Home Appliances
- Remote Control Equipment

Description

The IC T2526 is a complete IR receiver for data communication developed and optimized for use in carrier-frequency-modulated transmission applications. Its function can be described using the block diagram of Figure 1. The input stage meets two main functions. First it provides a suitable bias voltage for the PIN diode. Secondly the pulsed photo-current signals are transformed into a voltage by a special circuit which is optimized for low noise applications. After amplification by a controlled gain amplifier (CGA) the signals have to pass a tuned integrated narrow bandpass filter with a center frequency f_{0} which is equivalent to the choosen carrier frequency of the input signal The demodulator is used first to convert the input burst signal to a digital envelope output pulse and to evaluate the signal information quality, i.e., unwanted pulses will be suppressed at the output pin. All this is done by means of an integrated dynamic feedback circuit which varies the gain as a function of the present enviromental conditions (ambient light, modulated lamps etc.). Other special features are used to adapt to the current application to secure best transmission quality. The T2526 operates in a supply-voltage range from 2.7 V to 5.5 V . By default, the T 2526 is optimized for best performance within 2.7 V to 3.3 V .

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning SO8 and TSSOP8

Pin Description

Pin	Symbol	Function
1	VS	Supply voltage
2	n.c.	Not connected
3	OUT	Data output
4	n.c.	Not connected
5	IN	Input PIN-diode
6	GND	Ground
7	n.c.	Not connected
8	n.c.	Not connected

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage	V_{S}	-0.3 to 6	V
Supply current	I_{S}	3	mA
Input voltage	V_{IN}	-0.3 to V_{S}	V
Input DC current at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	I_{IN}	0.75	mA
Output voltage	V_{O}	-0.3 to V_{S}	V
Output current	I_{O}	10	mA
Operating temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	30	mW

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction ambient SO8	$\mathrm{R}_{\mathrm{thJA}}$	130	k / W
Junction ambient TSSOP8	$\mathrm{R}_{\mathrm{thJA}}$	tbd	K / W

Electrical Characteristics, 3-V Operation

$\mathrm{T}_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 3.3 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
1	Supply								
1.1	Supply-voltage range		1	$\mathrm{V}_{\text {S }}$	2.7	3.0	3.3	V	C
1.2	Supply current	$\mathrm{I}_{\mathrm{IN}}=0$	1	$\mathrm{I}_{\text {S }}$	0.7	0.9	1.2	mA	B
2	Output								
2.1	Internal pull-up resistor 1)	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ;$ see Figure 12	1,3	$\mathrm{R}_{\text {PU }}$		30/40		k Ω	A
2.2	Output voltage low	$\mathrm{R}_{2}=2.4 \mathrm{k} \Omega ;$ see Figure 12	3, 6	$\mathrm{V}_{\text {OL }}$			250	mV	B
2.3	Output voltage high		3, 1	V_{OH}	$\mathrm{V}_{\mathrm{S}}-0.25$		Vs	V	B
2.4	Output current clamping	$\mathrm{R}_{2}=0$; see Figure 12	3, 6	$\mathrm{I}_{\mathrm{OCL}}$		8		mA	B
3	Input								
3.1	Input DC current	$\mathrm{V}_{\text {IN }}=0$; see Figure 12	5	$\mathrm{I}_{\text {IN_DCmAX }}$	-150			$\mu \mathrm{A}$	C
3.2	Input DC current; see Figure 5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 ; \mathrm{Vs}=3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	5	$\mathrm{I}_{\text {In_DCMAX }}$		-350		$\mu \mathrm{A}$	B
3.3	Min. detection threshold current; see Figure 3	Test signal: see Figure 11 $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{IN} \text { _DC }}=1 \mu \mathrm{~A}$; square pp, burst $\mathrm{N}=16$, $\mathrm{f}=\mathrm{f}_{0} ; \mathrm{t}_{\text {PER }}=10 \mathrm{~ms},$ Figure 10; $B E R=50^{2)}$	3	$I_{\text {Eemin }}$		-700		pA	B
3.4	Min. detection threshold current with AC current disturbance IIN_AC100 $=3 \mu \mathrm{~A}$ at 100 Hz		3	$\mathrm{I}_{\text {Eemin }}$		-1500		pA	C
3.5	Max. detection threshold current with $\mathrm{V}_{\mathrm{IN}}>0 \mathrm{~V}$	```Test signal: see Figure 11 \(\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\), \(\mathrm{I}_{\mathrm{IN}_{\mathrm{N}} \mathrm{DC}}=1 \mu \mathrm{~A}\); square pp, burst \(\mathrm{N}=16\), \(f=f_{0} ; t_{\text {PER }}=10 \mathrm{~ms}\), Figure 10; BER = \(5 \%{ }^{2)}\)```	3	$I_{\text {Eemax }}$	-200			$\mu \mathrm{A}$	D

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
Notes: 1. Depending on version, see "Ordering Information"
2. $B E R=$ bit error rate; e.g., $B E R=5 \%$ means that with $P=20$ at the input pin $19 \ldots 21$ pulses can appear at the Pin OUT
3. After transformation of input current into voltage

Electrical Characteristics, 3-V Operation (Continued)

$\mathrm{T}_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 3.3 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
4	Controlled Amplifier and Filter								
4.1	Max. value of variable gain (CGA)			$\mathrm{G}_{\text {Varmax }}$		51		dB	D
4.2	Min. value of variable gain (CGA)			$\mathrm{G}_{\text {VARMIN }}$		-5		dB	D
4.3	Total internal amplification ${ }^{3)}$			$\mathrm{G}_{\text {MAX }}$		71		dB	D
4.4	Center frequency fusing accuracy of bandpass	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{f}_{\text {03V_FUSE }}$	-2.5	f_{0}	+2.5	\%	A
4.5	Overall accuracy center frequency of bandpass			$\mathrm{f}_{03 \mathrm{~V}}$	-5.5	f_{0}	+3.5	\%	C
4.6	Overall accuracy center frequency of bandpass	$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$		$\mathrm{f}_{03 \mathrm{~V}}$	-4.5	f_{0}	+3.0	\%	C
4.7	BPF bandwidth	$-3 \mathrm{~dB} ; \mathrm{f}_{0}=38 \mathrm{kHz}$; see Figure 9		B		3.8		kHz	C

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
Notes: 1. Depending on version, see "Ordering Information"
2. $B E R=$ bit error rate; e.g., $B E R=5 \%$ means that with $P=20$ at the input pin $19 \ldots 21$ pulses can appear at the Pin OUT
3. After transformation of input current into voltage

Electrical Characteristics, 5-V Operation

$\mathrm{T}_{\text {amb }}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 5.5 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
5	Supply								
5.1	Supply-voltage range		1	V_{S}	4.5	5.0	5.5	V	C
5.2	Supply current	$\mathrm{I}_{\mathrm{N}}=0$	1	$\mathrm{I}_{\text {S }}$	0.9	1.2	1.5	mA	B
6	Output								
6.1	Internal pull-up resistor 1)	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \\ & \text { see Figure } 12 \end{aligned}$	1,3	R_{PU}		30/40		k Ω	A
6.2	Output voltage low	$\begin{aligned} & \mathrm{R}_{2}=2.4 \mathrm{k} \Omega \\ & \text { see Figure } 12 \end{aligned}$	3,6	$\mathrm{V}_{\text {OL }}$			250	mV	B
6.3	Output voltage high		3,1	V_{OH}	$\mathrm{V}_{\mathrm{S}}-0.25$		Vs	V	B
6.4	Output current clamping	$\mathrm{R}_{2}=0$; see Figure 12	3,6	$\mathrm{I}_{\mathrm{OCL}}$		8		mA	B

[^0]
Electrical Characteristics, 5-V Operation (Continued)

$\mathrm{T}_{\text {amb }}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 5.5 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
7	Input								
7.1	Input DC current	$\mathrm{V}_{\mathrm{IN}}=0 ;$ see Figure 12	5	$\mathrm{I}_{\text {IN_DCMAX }}$	-400			$\mu \mathrm{A}$	C
7.2	Input DC-current; see Figure 6	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 ; \mathrm{Vs}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	5	$\mathrm{I}_{\text {In_dCmax }}$		-700		$\mu \mathrm{A}$	B
7.3	Min. detection threshold current; see Figure 4	Test signal: see Figure 11 $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{IN} \text { _DC }}=1 \mu \mathrm{~A}$; square pp, burst $N=16$, $\mathrm{f}=\mathrm{f}_{0}$; $\mathrm{t}_{\text {PER }}=10 \mathrm{~ms}$, Figure 10; $B E R=50^{2}$	3	$\mathrm{I}_{\text {Eemin }}$		-890		pA	B
7.4	Min. detection threshold current with AC current disturbance IIN_AC100 $=3 \mu \mathrm{~A}$ at 100 Hz		3	$\mathrm{I}_{\text {Eemin }}$		-2500		pA	C
7.5	Max. detection threshold current with $\mathrm{V}_{\mathrm{IN}}>0 \mathrm{~V}$	$\begin{aligned} & \hline \text { Test signal: } \\ & \text { see Figure } 11 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{IN} \text { DC }}=1 \mu \mathrm{~A} ; \\ & \text { square } \mathrm{pp}, \\ & \text { burst } \mathrm{N}=16, \\ & \mathrm{f}=\mathrm{f}_{0} ; \mathrm{t}_{\text {PER }}=10 \mathrm{~ms}, \\ & \text { Figure } 10 ; \mathrm{BER}=5 \%^{2)} \\ & \hline \end{aligned}$	3	$I_{\text {Eemax }}$	-500			$\mu \mathrm{A}$	D
8	Controlled Amplifier and Filter								
8.1	Max. value of variable gain (CGA)			$\mathrm{G}_{\text {VARMAX }}$		51		dB	D
8.2	Min. value of variable gain (CGA)			$G_{\text {VARMIN }}$		-5		dB	D
8.3	Total internal amplification ${ }^{3)}$			$\mathrm{G}_{\text {MAX }}$		71		dB	D
8.4	Resulting center frequency fusing accuracy	$\begin{aligned} & \mathrm{f}_{0} \text { fused at } \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$		$\mathrm{f}_{05 \mathrm{~V}}$		$\mathrm{f}_{03 \mathrm{~V} \text {-FUSE }}$ $+0.5$		\%	A

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, D = Design parameter
Notes: 1. Depending on version, see "Ordering Information"
2. $B E R=$ bit error rate; e.g., $B E R=5 \%$ means that with $P=20$ at the input pin $19 \ldots 21$ pulses can appear at the Pin OUT
3. After transformation of input current into voltage

ESD
All pins $\Rightarrow 2000$ V HBM; 200V MM, MIL-STD-883C, Method 3015.7
Reliability
Electrical qualification (1000h) in molded SO8 plastic package

Typical Electrical Curves at $\boldsymbol{T}_{\text {amb }}=25^{\circ} \mathrm{C}$

Figure 3. $\mathrm{I}_{\text {Eemin }}$ versus $\mathrm{I}_{\mathrm{IN} \text { DC }}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

Figure 4. $\mathrm{I}_{\text {Eemin }}$ versus $\mathrm{I}_{\mathbb{N} _\mathrm{DC}}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Figure 5. $\mathrm{V}_{\mathbb{I N}}$ versus $\mathrm{I}_{\mathbb{I N} _\mathrm{Dc}}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

Figure 6. $\mathrm{V}_{\mathbb{I N}}$ versus $\mathrm{I}_{\mathbb{I N} _\mathrm{Dc}}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Figure 7. Data Transmission Rate, $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

Figure 8. Data Transmission Rate, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Figure 9. Typical Bandpass Curve

$Q=f / f_{0} / B ; B=-3 d B$ values.
Example: $\quad Q=1 /(1.047-0.954)=11$

Figure 10. Illustration of Used Terms
Example: $f=30 \mathrm{kHz}$, burst with 16 pulses, 16 periods

Figure 11. Test Circuit

Figure 12. Application Circuit

Chip Dimensions

Figure 13．Chip Size in $\mu \mathrm{m}$

Note：Pad coordinates are given for lower left corner of the pad in $\mu \mathrm{m}$ from the origin 0,0

Dimensions	Length inclusive scribe	1.16 mm
Width inclusive scribe	1.37 mm	
Thickness	$290 \mu \pm 5 \%$	
Pads	$90 \mu \times 90 \mu$	
Pad metallurgy	Fusing pads	$70 \mu \times 70 \mu$
	AlSiTi	

Finish
$\mathrm{Si}_{3} \mathrm{~N}_{4}$ thickness $1.05 \mu \mathrm{~m}$

Ordering Information

Delivery: unsawn wafers (DDW) in box, SO8 (150 mil) and TSSOP8 (3 mm body).

Extended Type Number	$P L^{2)}$	$R_{P U}{ }^{3)}$	$D^{4)}$	Type
T2526N0xx ${ }^{1 /}$-yyy ${ }^{5}$	2	30	2179	Standard type: ≥ 10 pulses, enhanced sensibility, high data rate
T2526N1xx ${ }^{1)}$-DDW	1	30	2179	
T2526N2xx ${ }^{1)}$ - yy 5	2	40	1404	Lamp type: ≥ 10 pulses, enhanced suppression of disturbances, secure data transmission
T2526N3xx ${ }^{11}$-DDW	1	40	1404	
T2526N6xx ${ }^{1)}$ - yy 5	2	30	3415	Short burst type: ≥ 6 pulses, enhanced data rate
T2526N7xx ${ }^{1 /}$-DDW	1	30	3415	

Notes: 1. xx means the used carrier frequency value $\mathrm{f}_{0} 30,33,36,38,40,44$ or 56 kHz . (76 kHz type on request)
2. Two pad layout versions (see Figure 14 and Figure 15) available for different assembly demand
3. Integrated pull-up resistor at PIN OUT (see electrical characteristics)
4. Typical data transmission rate up to bit/s with $\mathrm{f}_{0}=56 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ (see Figure 10)
5. yyy means kind of packaging:
..........................DDW -> unsawn wafers in box
..6AQ -> (only on request, TSSOP8 taped and reeled)
Pad Layout
Figure 14. Pad Layout 1 (DDW only)

Figure 15. Pad Layout 2 (DDW, SO8 or TSSOP8)

(6) \square GND (5) $\square^{\text {IN }}$				
(1)				
VS				
T2526				
(3)OUT	FUSING			
$\square \square$	$\square \square$	\square	\square	\square

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
e-mail
literature@atmel.com
Web Site
http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel ${ }^{\circledR}$ is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.

[^0]: *) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
 Notes: 1. Depending on version, see "Ordering Information"
 2. $B E R=$ bit error rate; e.g., $B E R=5 \%$ means that with $P=20$ at the input pin $19 \ldots 21$ pulses can appear at the Pin OUT
 3. After transformation of input current into voltage

