TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA2159F

FM Synthesizer Tuner

TA2159F is the FM synthesizer tuner with built-in FM front end, FM IF/detector, FM stereo decoder, PLL and system microcontroller which is designed for 3 V audio equipment.

Since the IC is equipped with an UP-SEARCH key, it can be used to receive broadcasts by itself.

Features

- Low supply current. ($\mathrm{VCC}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

ICC $=17 \mathrm{~mA}$ (typ.)

- Operating supply voltage range: $\mathrm{VCC}=1.8 \sim 3.6 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Tuner Block

Weight: 0.48 g (typ.)

- For NEW FCC.
- Built-in mute circuit for IF count output.
- For adopting ceramic discriminator, it is not necessary to adjust the FM quad detector circuit.
- Built-in FM MPX VCO circuit.
- PLL/Controller Block
- Reference frequency: 3.125 kHz
- Data transfer: By 3-line R/W (read/write), CK (clock), and DATA (data) bus

And by 2-line UART (transfer speed 1200 bps)

- Oscillator frequency: 75 kHz
- UP-SEARCH key input: Controls tuner without microcontroller
- Area selection: Japan, $76 \sim 90 \mathrm{MHz} @ 100 \mathrm{kHz}$ steps
:EUR. and USA $87.5 \sim 108 \mathrm{MHz} @ 50 \mathrm{kHz}$ steps
- Auto search function: IF count method ($1 / 8 \mathrm{IF}=1.3375 \mathrm{MHz}$)

Pin Assignment

Pin Descriptions

1. Tuner

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Characteristics	Internal Circuit	Terminal Voltage atNo Signal(typ.) (V)
36	MIX OUT		3.0
37	$V_{C C}$ (VCC for FM IF, FM MPX stage)	-	3.0
38	FM IF IN		3.0
39	GND (GND for FM IF, FM MPX stage)	-	0
40	AGC		0

| Pin
 No.
 Characteristics | | Terminal Voltage at
 No Signal
 (typ.) (V) |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Characteristics	Internal Circuit	Terminal Voltage at No Signal (typ.) (V) FM
48	MPX IN		0.7
49	DET OUT		0.9
50	IF REQ		-
51	ST LED		-

| Pin
 No. | Characteristics | | Terminal Voltage at
 No Signal
 (typ.) (V) |
| :--- | :--- | :--- | :--- | :--- | :--- |

2. PLL microcontroller

PIN No.	Symbol	Pin Name	Function and Operation	Remarks
7	IF-NOISE	IF amp input noise cut control output	Cuts noise on the IF amp input pin at normal reception by connecting via C to pins 50 (IF REQ) and 19 (IF IN). At normal reception: Outputs Low level. At IF seek: Open	
8	TEST1	Test mode control input	Inputs Test mode control signal. When High is input, Test mode; when Low, normal operation. Use by applying Low level.	
9	AREA	Area input	Inputs area setting signal. Japan: Inputs High 76~90 MHz @100 kHz steps Eur. and U.S.A.: Inputs Low 87.5~108 MHz @50 kHz steps	
10	BUS dis	Transmission mode switching input	Inputs Transmission/No-Transmission mode selection signal. Transmission mode: Inputs Low. Pin 25: RW (Din) Pin 26: DATA (Dout) Pin 27: CLOCK No-Transmission mode: Inputs High. Pin 25: Outputs Low. Pin 26: Outputs Low. Pin 27: SCAN input Output Low is set at SLEEP = Low mode. Insert pullup resistor to input High at No-Transmission mode	No-Transmission mode Transmission mode
11	UP key	UP-SEARCH key input	Starts up-search when UP-SEARCH key is Low. Automatically detects a station and stops. If no station detected at transmission mode, continue searching. If no station detected after a whole search at no-transmission mode, selects fmin. 76 MHz or 87.5 MHz , outputs a beep, and turns off the radio. The radio turns on when the up key is pressed, and starts up-search. When not using keys, leave the pin open. When SLEEP = Low, output is set to Low (pull-up off).	

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	Symbol	Pin Name	Function and Operation	Remarks
12	UART/3BUS TEL key	UART 3BUS switching input TEL input key	When BUS dis = Low, inputs 3BUS selection signal. Because output is High at sleep mode, input High through pullup resistor. $\begin{aligned} & \text { 3BUS = Inputs Low. } \\ & \text { UART = Inputs High. } \end{aligned}$ When BUS dis = High, this key is the TEL input key. Every time this key falls to Low level, pin 15 (TEL/RADIO) output is set to Low \rightarrow High \rightarrow Low, and soon. When TEL/RADIO = Low, turns off the radio; when High, turns on the radio. When not using the TEL key, leave the pin open. When SLEEP = Low, output is set to Low (pull-up off).	
14	Beep	Beep output	Searches for the station when the UP-SEARCH key is pressed at no-transmission mode. If a station is not detected after a whole search or an automatic preset scan, outputs a beep.	
15	MONO/ST TEL/RADIO	MONO /STREO control output \qquad TEL/RADIO status output	Directly connected to pin 47 (LPF1) of the tuner block. Controls output and forced mono according to the BUS data. STREO = Input mode (open) MONO = Outputs Low. When BUS dis = H, switches output from Low to High every pin 12 (TEL key) input. Radio $=$ Outputs High. TEL = Outputs Low (radio off).	(15)
16	MUTE	Muting output mode	Output mode, normally used for muting control signal output. The signal is used as IF count ON/OFF signal in tuner block and MUTE signal.	
17	TEST2	Test mode control input	Input pin used for controlling TEST mode. "H" (high) level indicates TEST mode, while "L" (low) indicates normal operation. Since a pull-down resistor is built into the pin, at normal operation, leave the pin open or set it to Low.	(17)

PIN No.	Symbol	Pin Name	Function and Operation	Remarks
24	TUNER Power	Tuner block power control output	Turns on/off a PNP transistor and controls (switches on/off) the tuner block power supply. At power on (D5 = 1): Outputs Low. At power off (D5 = 0): Open When the radio is off or in Sleep mode, the pin is open. At Radio on or Sleep is released, the pin outputs Low.	(24)
	RW (D_{IN}) DATA (DOUT) CLOCK	Serial data input/output	When BUS dis = Low, inputs/outputs serial data. Switches the pin function according to the state of pin 12 (UART/3BUS). UART Pin $12=$ High Pin $25=$ DIN $_{\text {IN }}$ Pin $26=$ DOUT $^{\text {OU }}$ Pin $27=$ Open $3 B U S$ Pin $12=$ " L " Pin $25=$ RW Pin $26=$ DATA Pin $27=$ CLOCK When the operation is only by the UP key without the cable, pullup 25 pin, and fix the input High for both UART and 3BUS.	$25,26,27$
25, 26, 27	OUT "L" OUT "L" SCAN	SCAN key input	When BUS dis = High: Since pins 25 and 26 output Low, leave open or connect to GND. Pin 27 inputs active high SCAN key signal. 1. Pressing the SCAN key and UP-SEARCH keys together, the auto pre-set scan starts from the point at the UP-SERCH key is at High. If no station detected, selects fmin. 76 MHz or 87.5 MHz , outputs a beep, and turns off the radio. 2. Every time the SCAN key is at High level, calls the memorized stations sequentially. (Max 10 station) When not using the SCAN key, set pin 27 to Low.	
32	$\overline{\text { RESET }}$	Reset input	Device system reset signal input pin. While RESET is at Low level, a reset is applied. When RESET reaches High level, the program starts from address 0. Start the program after V_{DD} reaches the specified value.	

PIN No.	Symbol	Pin Name	Function and Operation	Remarks
33	XOUT			Crystal Oscillator pin
Crystal oscillator pin.				
A reference 75 kHz crystal oscillator pin is				
connected to the XIN and XOUT pins.				

Application Note

1. FM detection circuit

For the FM detection circuit, detection coil is able to use instead of ceramic discriminator. Recommended circuit and recommended coil are as follows.

Test Frequency	$\begin{aligned} & \mathrm{Co} \\ & (\mathrm{pF}) \end{aligned}$	Qo	Turns				Wire (mm $)$	Reference
			1-2	2-3	1-3	4-6		
10.7 MHz	51	45	-	-	30	-	0.08UEW	TOKO Co., Ltd. 600BEAS-10018Z

2. Forced manual switch

- Forced manual switchover is done by pin 47
- As the figure below shows, when the electronic switch uses a transistor, keep VCE (sat, saturated voltage between the collector and emitter) up to 0.2 V . At this time, if the voltage on pin 47 exceeds 0.2 V or the current from the pin drops below $30 \mu \mathrm{~A}$ ($\mathrm{VCC}_{\mathrm{CC}}=3 \mathrm{~V}$ typ.), Forced Monaural may not be set.

3. Vcc line

The tuner have two voltage supply terminals, VCC (for AM, FM IF, MPX stage) and RF VCC (for FM RF stage). Set up the potential diffrence between VCC and RF VCC 0.4 V (typ.) or less, otherwise there is the case that this IC doesn't oprete normally.
4. How to control the Divider of FM OSC.

Divider of FM OSC ON/OFF switching is controlled by external pull-up resistor of pin 52 .
In case of Divider of FM OSC is used, it is necessary to set up the value of R under 470Ω (typ.).
When R is over 470Ω, it is feared that Divider is not operating. (At this time, buffer output frequency is equal to FM OSC frequency.)

Mode	SW8	Output Frequency	Output Level (typ.)
FM	OPEN	$1 / 1$ FM OSC	35 mVrms
	ON	$1 / 16$ FM OSC	110 mVrms

Note 1: The $1 / 16$ FM OSC is used to set the combination of the tuner and PLL. When combining the tuner and PLL using the IC, do not select the $1 / 1$ FM OSC.

5. IF Count Flow

6. Setting Constants of External Devices for the Crystal Oscillator Circuit

When determining the required capacitance values of the external components, please send a PCB of the finalized layout with the ICs mounted on it to the manufacturer of the crystal oscillator for them to test. If necessary, Toshiba can supply ICs with a range of different parasitic capacitance values on request. In addition, please use a crystal oscillator with the lowest possible CI value.

A Daishinku K.K. crystal oscillator (with a maximum CI value of $30 \mathrm{k} \Omega$) was tested with Toshiba's test PCB (using capacitors of 18 pF and 22 pF).

3-Line Bus Specifications

1. Specified radio station data transfer from main microcontroller to tuner microcontroller (D3_0 < 8)

CLOCK (TUNNER \rightarrow MAIN)

DATA $\{$	$($ MAIN \rightarrow TU	ER								
	Input	H	D7_0	H	F15_8	H	F7_0	H	Input mode	
	(TUNNER \rightarrow MAIN)									
,	Pulled up								C7_0	Pulled up

2. Radio station display data transfer from tuner microcontroller to main microcontroller (D3_0 $\geqq 8$)

3. Clock and data timing

D7: 0 fixed

D7	0

D6: NG bit

The main microcontroller verifies the D6 bit using the check sum of data sent from the tuner microcontroller. If D6 is NG, the main microcontroller sets the D6 bit to 1 (NG) and resends it to the tuner microcontroller within 10 ms . After receiving $\mathrm{D} 6 \mathrm{bit}=1$, the tuner microcontroller invalidates $\mathrm{D} 6=1$ which was received before the resent $\mathrm{D} 6=1$. Thus, the resent data are updated 10 ms later.

D6	NG bit
0	OK
1	NG

D5: POWER

Used to hold the internal data with the tuner in standby state (crystal oscillator in low-current dissipation mode). Linked to pin 24, I/O port (at power on: Low output, at standby: OPEN output).

D5	POWER	Pin 24
0	OFF	OPEN
1	ON	L

D4: STEREO

Used to set OUT port for switching between stereo and monaural. Linked to pin 9, I/O port (Forced monaural: Low output, Stereo: OPEN output)

D4	STEREO/MONO
0	STEREO
1	MONO

Setting Formats

D3	D2	D1	D0	Command
0	0	0	0	Search stop and PLL set
0	0	0	1	-
0	0	1	0	-
0	0	1	1	-
0	1	0	0	-
0	1	0	1	PLL set and down search
0	1	1	0	PLL set and up search
0	1	1	1	-
1	0	0	0	Search stop
1	0	0	1	1 step down
1	0	1	0	1 step up
1	0	1	1	-
1	1	0	0	-
1	1	0	1	Down search
1	1	1	0	Up search
1	1	1	1	Frequency data load

F15~F12

1. Main microcontroller to tuner microcontroller

F15	F14	F13	F12
D3	D2	D1	D0

2. Tuner microcontroller to main microcontroller

F14	Search State
0	STOP
1	BUSY

F11~F0

Radio station formats

				F11_F8	F7_F4	F3_F0
0	0	0	0	-	0	0.0
0	0	0	1	-	1	0.1
0	0	1	0	-	2	0.2
0	0	1	1	-	3	0.3
0	1	0	0	-	4	0.4
0	1	0	1	-	5	0.5
0	1	1	0	60	6	0.6
0	1	1	1	70	7	0.7
1	0	0	0	80	8	0.8
1	0	0	1	90	9	0.9
1	0	1	0	100	-	-
1	0	1	1	$60+50 \mathrm{k}$	-	-
1	1	0	0	$70+50 \mathrm{k}$	-	-
1	1	0	1	$80+50 \mathrm{k}$	-	-
1	1	1	0	$90+50 \mathrm{k}$	-	-
1	1	1	1	$100+50 \mathrm{k}$	-	-

UART Specifications

When sending frequency data from PC (D3_0 < 8)

When sending frequency data from tuner microcontroller (D3_0>=8)

Check sum C7_0 = D7_0 + F15_8 + F7_0

- If the next 1-byte data are not sent within T: 20 ms , an error occurs.
- 0x00 must be sent as start data.
- Command data used for communications are the same as commands used for communications between the main and tuner microcontrollers.

Test circuit coil data

(1) Wide VT range

Coil No.	Test Freq	$\stackrel{\mathrm{L}}{(\mu \mathrm{H})}$	$\begin{gathered} \mathrm{Co} \\ (\mathrm{pF}) \end{gathered}$	Qo	Turns					Wire (mm ϕ)	Reference
					1-2	2-3	1-3	1-4	4-6		
$\mathrm{L}_{1} \mathrm{FM}$ RF	100 MHz	-	-	79	-	-	$2 \frac{1}{2}$	-	-	0.16UEW	TOKO Co., Ltd. 666SNF-305NK
$\mathrm{L}_{2} \mathrm{FM}$ OSC	100 MHz	-	-	76	-	-	2	-	-	0.16UEW	TOKO Co., Ltd. 666SNF-306NK

(2) Narrow V_{T} range (Eur. and U.S.A. band)

Coil No.	Test Freq	$\stackrel{\mathrm{L}}{(\mu \mathrm{H})}$	$\begin{gathered} \text { Co } \\ (\mathrm{pF}) \end{gathered}$	Qo	Turns					$\begin{aligned} & \text { Wire } \\ & (\mathrm{mm} \phi) \end{aligned}$	Reference
					1-2	2-3	1-3	1-4	4-6		
$\mathrm{L}_{1} \mathrm{FM}$ RF	100 MHz	-	33.4	61	-	-	3	-	-	$\begin{gathered} 0.09 \\ \text { 2UEW } \end{gathered}$	TOKO Co., Ltd. 657AN-1609
L2 FM OSC	100 MHz	-	40.2	67	-	-	3	-	-	$\begin{gathered} 0.08 \\ \text { 2UEW } \end{gathered}$	TOKO Co., Ltd. 657AN-1608

(3) Narrow V_{T} range (Japan band)

Coil No.	Test Freq	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{aligned} & \mathrm{Co} \\ & (\mathrm{pF}) \end{aligned}$	Qo	Turns					Wire (mm)	Reference
					1-2			1-4	4-6		
L_{1} FM RF	100 MHz	-	24.9	66	-	-	4	-	-	$\begin{gathered} 0.09 \\ \text { 2UEW } \end{gathered}$	TOKO Co., Ltd. 657AN-1611
$\mathrm{L}_{2} \mathrm{FM}$ OSC	100 MHz	-	17.9	69	-	-	5	-	-	$\begin{gathered} 0.09 \\ \text { 2UEW } \end{gathered}$	TOKO Co., Ltd. 657AN-1610

$L_{1}:$ FM RF
$L_{2}:$ FM OSC

Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics		Symbol	Rating	Unit
Tuner	Supply voltage	V_{CC}	8	V
	LED current	ILED	10	mA
	LED voltage	VLED	8	V
PLL microcontroller	Supply voltage	V_{DD}	-0.3~4.0	V
	Output withstanding voltage 1 (N-ch open-drain)	$\mathrm{V}_{\mathrm{O} 1}$	$-0.3 \sim V_{D D}+0.3$	
	Output withstanding voltage 2	$\mathrm{V}_{\mathrm{O} 2}$	-0.3~4.0	
	Input voltage	V_{IN}	$-0.3 \sim V_{\text {DD }}+0.3$	
Power dissipation (Note 4)		$P_{\text {D }}$	700	mW
Operating temperature		Topr	-10~60	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$

Note 2: 7 pin IF-count, 8 pin TEST1, 9 pin AREA
Note 3: 24 pin Tuner power pin
Note 4: Power consumption is rated at $25^{\circ} \mathrm{C}$. At temperatures higher than $25^{\circ} \mathrm{C}$, power consumption is decreased by 7 mW per ${ }^{\circ} \mathrm{C}$.

Electrical Characteristics

1. Tuner

(unless otherwise specified, $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~F} / \mathrm{E} \quad: \mathrm{f}=\mathbf{9 8} \mathrm{MHz}, \mathrm{f}_{\mathrm{m}}=\mathbf{1 k H z}$
FM IF: $\mathrm{f}=\mathbf{1 0 . 7} \mathbf{~ M H z}, \Delta \mathrm{f}= \pm \mathbf{7 5} \mathbf{k H z}$, $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
MPX : $\mathrm{f}_{\mathrm{m}}=\mathbf{1} \mathbf{k H z}$)

Characteristics			Symbol	Test Circuit	Test C	dition	Min	Typ.	Max	Unit	
Supply current			ICC (FM)	-	$\mathrm{V}_{\text {in }}=0, \mathrm{FM}$ mod		-	15	19	mA	
F/E	Input limiting voltage		$\mathrm{V}_{\text {in }}(\mathrm{lim})$	-	$\left\lvert\, \begin{aligned} & \mathrm{V}_{\mathrm{in}}=60 \mathrm{~dB} \mu \mathrm{~V} \\ & -3 \mathrm{~dB} \text { limiting } \end{aligned}\right.$		-	12	-	$\mathrm{dB} \mu \mathrm{V}$ EMF	
FM IF	Input limiting voltage		$\mathrm{V}_{\text {in }}(\mathrm{lim}) \mathrm{IF}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=80 \mathrm{~dB} \mu \mathrm{~V} \\ & -3 \mathrm{~dB} \text { limiting } \end{aligned}$		35	40	45	$\mathrm{dB} \mu \mathrm{V}$ EMF	
	Recovered output voltage		$\mathrm{V}_{\text {OD }}$	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$		200	250	300	mVrms	
	Signal to noise ratio		S/N	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$		-	75	-	dB	
	Total harmonic distortion		THD	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$		-	0.3	-	\%	
	AM rejection ration		AMR	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$		-	60	-	dB	
	IF count output frequency		f_{IF} (FM)	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$		1.3373	1.3375	1.3377	MHz	
	IF count output voltage		V_{IF} (FM)	-	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$		200	260	-	$m V_{p-p}$	
	IF count output sensitivity		IF sens (FM)	-			46	51	56	$\mathrm{dB} \mu \mathrm{V}$ EMF	
Pin 49 output resistance			R_{50}	-	FM mode		-	0.75	-	$\mathrm{k} \Omega$	
MPX	Input resistance		R_{IN}	-			-	55	-	$\mathrm{k} \Omega$	
	Output resistance		ROUT	-			-	5	-	$\mathrm{k} \Omega$	
	Max composite signal input voltage		$V_{\text {in }}$ MAX (Stereo)	-	$L+R=90 \%$, SW3: LPF ON $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$, TH	$\begin{aligned} & 10 \%, \\ & =3 \% \end{aligned}$	-	700	-	mVrms	
	Separation		Sep.	-	$L+R=$ 180 mVrms , $\mathrm{P}=20 \mathrm{mVrms}$ SW3: LPF ON	$\mathrm{f}_{\mathrm{m}}=100 \mathrm{~Hz}$	-	45	-	dB	
			$\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$			35	45	-			
			$\mathrm{f}_{\mathrm{m}}=10 \mathrm{kHz}$			-	35	-			
	Total harmonic distortion	Monaural		THD (Monaural)	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$		-	0.3	-	\%
		Stereo		THD (Stereo)	-	$\mathrm{L}+\mathrm{R}=180 \mathrm{mVrms}$, P = 20 mVrms , SW3: LPF ON		-	0.35	-	
	Voltage gain		GV	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrm}$		-2.8	-1.3	0.2	dB	
	Channel balance		C.B.	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrm}$		-1.5	0	1.5	dB	
	Stereo LED sensitivity	ON	$\mathrm{V}_{\mathrm{L}}(\mathrm{ON})$	-	Pilot input (19 kHz)		-	10	14	mVrms	
		OFF	V_{L} (OFF)	-			5	8	-		
	Stereo LED hysteresis		V_{H}	-	To LED turn o on	om LED turn	-	2	-	mVrms	
	Capture range		C.R.	-	$\mathrm{P}=15 \mathrm{mVrms}$		-	± 8	-	\%	
	Signal noise ratio		S / N	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrm}$		-	80	-	dB	
Muting attenuation			MUTE	-	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrm}$		-	70	-	dB	

2. PLL microcontroller (Unless otherwise noted, $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Range of operating supply voltage	$V_{\text {DD1 }}$	-	Under CPU operation (Note 4)	1.8	\sim	3.6	V
	$\mathrm{V}_{\mathrm{DD} 2}$	-	Under PLL operation (Note 4)	1.8	\sim	3.6	
Range of memory retention voltage	V_{HD}	-	Crystal oscillation stopped (CKSTP instruction executed) (Note 4)	0.75	~	3.6	V
Range of operating supply voltage	${ }^{\text {DD1 }}$	-	PLL operation (LPF mode) at input 15 MHz .	-	-	1.3	mA
	IDD2	-	Power OFF at transmission mode (PLL OFF, CPU ON, X'tal ON)	-	40	60	$\mu \mathrm{A}$
	IDD3	-	Power OFF at No-transmission mode (PLL OFF, CPU OFF, X'tal ON)	-	20	30	$\mu \mathrm{A}$
Memory retention current	IHD	-	SLEEP = "L" (PLL OFF, CPU OFF, X'tal OFF)	-	0.1	1.0	$\mu \mathrm{A}$
Crystal oscillation frequency	${ }_{\text {fXt }}$	-	(Note 4)	-	75	-	kHz
Crystal oscillation start-up time	$\mathrm{t}_{\text {st }}$	-	Crystal oscillation $\mathrm{f}_{\mathrm{XT}}=75 \mathrm{kHz}$	-	-	1.0	s

Note 4: Guaranteed when $\mathrm{V}_{\mathrm{DD}}=1.8 \sim 3.6 \mathrm{~V}, \mathrm{Ta}=-10 \sim 60^{\circ} \mathrm{C}$
24 pin tuner power output, 25 pin RW (D_{IN}), 26 pin DATA ($\mathrm{D}_{\text {OUT }}$), 27 pin CLOCK/SCAN

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"L" level	loL 1	-	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$	1.4	2.8	-	mA
Input leak current		lıI	-	$\mathrm{V}_{\text {IH }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
Input voltage	"H" level	$\mathrm{V}_{1 \mathrm{H} 1}$	-	-	$\begin{gathered} V_{D D} \times \\ 0.8 \end{gathered}$	~	3.6	V
	"L" level	$\mathrm{V}_{\text {IL1 }}$	-	-	0	~	$\underset{0 .}{\mathrm{V}_{\mathrm{DD}} \times} \times$	

7 pin IF count output, 8 pin TEST1 input, 9 pin AREA input

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"L" level	IOL1	-	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$	1.4	2.8	-	mA
Input leak current		l LI	-	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
Input voltage	"H" level	$\mathrm{V}_{1 \mathrm{H} 1}$	-	-	$\begin{gathered} \mathrm{VDD} \times \\ 0.8 \end{gathered}$	~	V_{DD}	V
	"L" level	VIL1	-	-	0	\sim	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.2 \end{gathered}$	

10 pin Basdis input, 11 pin Up key input, 12 pin input, 14 pin Beep output, 15 pin I/O

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"H" level	lOH_{1}	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} \end{aligned}$	-1.5	-3.0	-	mA
	"L" level	IoL1	-	$\mathrm{V}_{\text {OL }}=0.3 \mathrm{~V}$	1.4	2.8	-	
Input leak current		lıI	-	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
Input Voltage	"H" level	$\mathrm{V}_{\mathrm{H} 1}$	-	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.8 \end{gathered}$	\sim	$V_{D D}$	V
	"L" level	VIL	-	-	0	\sim	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.2 \end{gathered}$	
Input pull-up/pull down register		RIN1	-	When I/O port P1 is set to pull-up or pull-down. (UP key, TEL key)	30	60	120	k Ω

Mute Output

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output current	"H" level	IOH 1	-	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$	-1.5	-3.0	-	
	"L" level	IOL 1	-	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$	1.4	2.8	-	

SLEEP, RESET Input

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Input leak current Input voltage	"H" level	$\mathrm{V}_{\mathrm{IH} 3}$	-	-	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-	-	± 1.0

DO Output

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Output voltage	"H" level	IOH1	-	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$	-1.0	-2.0	-	mA
	"L" level	IOL1	-	$\mathrm{V}_{\mathrm{OH}}=0.3 \mathrm{~V}$	1.4	2.8	-	
Output off leak voltage		ITL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TLH}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TLL}}=0 \mathrm{~V} \end{aligned}$	-	-	± 100	nA

Others

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Input pull-down resistance	RIN2	-	(TEST 2)	5	10	30	k Ω
Input amp. feedback resistance	$\mathrm{R}_{\mathrm{fl} 1 \mathrm{~N} 1}$	-	LF mode (OSCin)	300	600	1200	k Ω
	$\mathrm{R}_{\mathrm{flN} 2}$	-	(IFin)	300	600	1200	

1. Narrow V_{T} range $\left(\mathrm{V}_{\mathrm{T}}=1.05\right.$ to 2.11 V$)$
 THD (\%)

Usable sensitivity, limiting sensitivity ($\mathrm{dB} \mu \mathrm{V}$ EMF) Image rejection ratio (dB)

2. Wide V_{T} range $\left(\mathrm{V}_{\mathrm{T}}=3.04\right.$ to 7.81 V$)$

®
운
운

Application Circuit

Transmission mode specifications: BUS dis (pin 10) = Low

Application Circuit

No-Transmission mode specifications: BUS dis (pin 10) $=$ High

Package Dimensions

QFP64-P-1010-0.50C
Unit : mm

Weight: 0.48 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

