Toshiba Bipolar Integrated Circuit Silicon Monolithic

TA2160FN

Low Consumption Current Stereo Headphone Amplifier (1.5/3 V use)

The TA2160FN is low consumption current stereo headphone amplifier IC for headphone stereo. It is suitable for 1.5 V or 3 V headphone stereo.

Features

- Low consumption current

Current value ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$, typ.)

- $\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}$

ICCQ $=1.6 \mathrm{~mA}$ (No signal)
ICC $=4.6 \mathrm{~mA}(0.1 \mathrm{~mW} \times 2 \mathrm{ch})$
$\mathrm{I}_{\mathrm{CC}}=8.6 \mathrm{~mA}(0.5 \mathrm{~mW} \times 2 \mathrm{ch})$

- $\mathrm{VCC}=3 \mathrm{~V}$

ICCQ $=3.0 \mathrm{~mA}$ (No signal)
ICC $=4.8 \mathrm{~mA}(0.1 \mathrm{~mW} \times 2 \mathrm{ch})$
ICC $=8.8 \mathrm{~mA}(0.5 \mathrm{~mW} \times 2 \mathrm{ch})$

- Built-in ripple filter
- Preamplifier stage
- Built-in input capacitor for reducing buzz noise
- Input coupling condensor-less
- Built-in preamplifier mute
- Power amplifier stage
- Built-in bass boost function with AGC
- Built-in treble boost function
- Built-in input capacitor for reducing buzz noise
- GV $=25 \mathrm{~dB}$ (typ.)
- Built-in power amplifier mute
- Operating supply voltage range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
$\mathrm{VCC}(\mathrm{opr})=0.95$ to 4.5 V
TOSHIBA

Terminal Explanation (terminal voltage: typical terminal voltage at no signal with test circuit, $\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

	Terminal			Termin
No.	Name	Function	Internal Circuit	Voltage (V)
8	PW IN_{A}	Input of power amplifier (This terminal also has function of ADD amplifier input.)		0.73
11	PW IN_{B}			
9	PW NFA	NF of power amplifier		
10	PW NFB			
13	PRE MUTE	Muting switch of preamplifier $\left\{\begin{array}{l}\text { PRE MUTE ON: } \mathrm{H} \text { level } \\ \text { PRE MUTE OFF: L level }\end{array}\right.$ Refer to application note 3 (2)		-
14	AGC DET	Smoothing terminal of boost AGC circuit		-
15	PW GND	Power GND for power drive stage	-	0
16	V_{CC}	-		1.3
25	BASE	Base biasing terminal of transistor for ripple filter		0.6
26	RF OUT	Ripple filter circuit supplies internal circuit except power drive stage with power source		1.24
28	RF IN	Ripple filter terminal		1.24

Terminal		Function	Internal Circuit	Termin al Voltage (V)
No.	Name			
20	AGC IN	Input of boost AGC circuit The input level to the boost amplifier is controlled by the input level of this terminal. Input impedance: $22 \mathrm{k} \Omega$ (typ.)		-
21	PW INC	Input of center amplifier		0.73
22	BST OUT	Output of boost amplifier		0.73
23	BST NF	NF of boost amplifier		0.73
24	LPF	Low pass filter terminal of bass boost	Input of power amplifier	0.73

Application Note

1. Preamplifier Stage

Output DC voltage of preamplifier
Output DC voltage of preamplifier is determined by external resistors $R 1$ and $R 2$ as shown in Figure 1.

Figure 1 Output DC Voltage of Preamplifier
$\mathrm{VO}(\mathrm{PRE})=\mathrm{VREF}-\Delta \mathrm{V} \times(\mathrm{R} 2 / \mathrm{R} 1+1)$

- VREF $=0.73 \mathrm{~V}$ (typ.)

VREF is changed when resistance is connected between RF OUT terminal and VREF IN terminal (Refer to application note 3 (1)).

- $\Delta \mathrm{V}$ is an offset voltage which is designed to 28.6 mV .

It is as follows in case that the DC voltage is calculated by the constant of a test circuit.

$$
\begin{aligned}
\mathrm{VO}(\mathrm{PRE}) & =0.73 \mathrm{~V}-28.6 \mathrm{mV}(200 \mathrm{k} \Omega / 22 \mathrm{k} \Omega+1) \\
& =0.44 \mathrm{~V}
\end{aligned}
$$

Output DC voltage of preamplifier should be fixed about $\mathrm{VCC} / 2$, because preamplifier get a enough dynamic range.

2. Power Amplifier Stage

(1) Input of power amplifier

Each input signal should be applied through a capacitor. In case that DC current or DC voltage is applied to each amplifier, the internal circuit has unbalance and the each amplifier doesn't operate normally.
It is advised that input signal refer to VREF voltage, in order to reduce a pop noise or low frequency leak.
(2) Bass boost function
(a) System

This IC has the bass boost function in power amplifier stage. After this system adds the low frequency ingredient of side amplifier, it is applied into the center amplifier. And the bass boost level is controlled by the variable impedance circuit (Figure 2)

- Flow of the bass boost signal

Variable impedance circuit \rightarrow Boost amplifier \rightarrow Center amplifier

- Flow of the bass boost level

Output of center amplifier \rightarrow AGC DET (level detection) \rightarrow Variable impedance circuit operation
The system of treble boost function is realized by frequency characteristic adjustment of the side amplifier.

Figure 2 Bass Boost System
(b) AGC circuit

The AGC circuit of bass boost function is realized by the variable impedance circuit. The AGC DET circuit detects the low frequency level of center amplifier. When this level becomes high, the variable impedance circuit operates, and this circuit attenuates the input level of center amplifier.

The AGC DET circuit is the current input, so that the output voltage of ADD amplifier is changed into the current ingredient by resistor Rb and capacitor C 5 which are shown in Figure 2. And it is smoothed and detected by DET circuit (pin 14). And the direct current should not be applied to the AGC IN circuit, because, as for the circuit, the sensitivity setup is high.

Moreover, the AGC signal level is decreased in case that the resistor R5 is connected with the capacitor C5 in series. And the AGC point can be changed. But the center amplifier is clipped in the low frequency in case that the resistor R5 is larger.
(c) Bass boost

The signal flow of bass boost function is as follows, refer to Figure 3.
LPF (internal resistors 2R1 and external capacitor C1)
\rightarrow ATT (variable impedance circuit)
\rightarrow HPF (BST amplifier)
\rightarrow BPF (LPF: internal resistor R4 and external capacitor C3, HPF: external capacitor C4 and internal resistor R5)
\rightarrow Center amplifier
The center amplifier signal becomes the reverse phase, because the phase of audio frequency range is reversed with two LPFs.

Figure 3 Block Diagram of Bass Boost

The transfer function of bass boost is as follows from Figure 3.
$\mathrm{G}(\omega)=\mathrm{G}_{1}(\omega) \cdot \mathrm{A}_{1} \cdot \mathrm{G}_{2}(\omega) \cdot \mathrm{G}_{3}(\omega) \cdot \mathrm{A}_{2}$
The bass boost effect is changed by external resistor or external capacitor. The transfer function and cutoff frequency are as follows.
i Transfer function of LPF

$$
\mathrm{G}_{1}(\omega)=1 /(1+\mathrm{j} \omega \mathrm{C} 1 \cdot \mathrm{R} 1)
$$

$$
\mathrm{f}_{\mathrm{L}}=1 / 2 \pi \mathrm{C} 1 \cdot \mathrm{R} 1
$$

ii Transfer function of BPF

$$
\begin{aligned}
& \mathrm{G}_{3}(\omega)=\mathrm{j} \omega \mathrm{C} 4 \cdot \mathrm{R} 5 /\left[1+\mathrm{j} \omega(\mathrm{R} 4 \cdot \mathrm{C} 3+\mathrm{R} 5 \cdot \mathrm{C} 3+\mathrm{C} 4 \cdot \mathrm{R} 4)-\omega^{2} \mathrm{R} 4 \cdot \mathrm{C} 3 \cdot \mathrm{R} 5 \cdot \mathrm{C} 4\right] \\
& \mathrm{f}_{\mathrm{O}}=1 / 2 \pi \sqrt{\mathrm{R} 4 \cdot \mathrm{C} 3 \cdot \mathrm{R} 5 \cdot \mathrm{C} 4} \\
& \text { iii } \quad \mathrm{HPF} \text { gain and ct of frequency } \\
& \mathrm{G}_{2}(\omega)=1+\mathrm{R} 2 /(\mathrm{R} 3+1 / \mathrm{j} \omega \mathrm{C} 2) \\
& \mathrm{fHC}=1 /(2 \pi \mathrm{R} 3 \cdot \mathrm{C} 2)
\end{aligned}
$$

Figure 4 BPF

Graph 1 Characteristic of Bass Boost
iv fo and f_{L}
The fL and fo should be set up out of the audio frequency range. In case that the fo and f_{L} is inside of audio frequency range and AGC circuit operates, the voltage gain decrease.
v HPF
The fHC should be made $1 / 2$ or less frequency as compared with the fL and fo. The phase difference is large near the fHC , so that the bass boost level runs short. And the HPF gain of middle or high frequency range should be set to 10 dB or more.
(3) Treble boost function

This function is realized by using the PW NF terminal. For details, please refer to application note.

3. Total

(1) Changeover of power amplifier output DC voltage at 3 V set.

The output DC voltage of the power amplifier is raised by the resistance connected between the RF OUT terminal and the VREF IN terminal.
In case of 3 V set, the dynamic range spreads.

Figure 5 Adjutment of output DC voltage
(2) Switch
(a) Switch terminal

The current flows through each terminal, in case that these terminals are connected with H level independently, evevn though the IC off mode.
It is necessary to connect an external pull-down resistor with each terminal in case that IC is turned on due to external noise etc. The sensitivity of each switch is set up highly.
(b) Pop noise

It is advised to connect R and C with each switch, to reduce the pop noise in switchover (see Fig.1). It is better that the constants are $\mathrm{R}=100 \mathrm{k} \Omega, \mathrm{C}=1 \mu \mathrm{~F}$. As for the constants, select the optimum one depending on each a set carefully.

Figure 6 Pop noise
(c) Sensitivity voltage of each switch $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
(1) BST SW, PW MUTE

(2) PRE MUTE

	BST SW $\left(\mathrm{V}_{7}\right)$	PW MUTE $\left(\mathrm{V}_{12}\right)$
H level/open	BST ON	Power mute off
L level	BST OFF	Power mute on

	PRE MUTE $\left(\mathrm{V}_{13}\right)$
H level	Pre mute on
L level	Pre mute off

(3) Ripple filter

It is necessary to connect a low saturation transistor (2SA1362 etc.) for ripple filter, because this IC doesn't have transistor for ripple filter. Care should be taken to stabilize the ripple filter circuit, because the ripple filter circuit supplies internal circuit except power drive stage with power source.
(4) Capacitor

Small temperature coefficient and excellent frequency characteristic is needed by capacitor below.

- Oscillation preventing capacitors for power amplifier output
- Capacitor between VREF and GND
- Capacitor between VCC and GND
- Capacitor between RF OUT and GND

Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	4.5	V
Output current	I_{O} (peak)	100	mA
Power dissipation	$\mathrm{P}_{\mathrm{D}}($ Note $)$	550	mW
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$-25 \sim 75$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: Derated above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ in proportion of $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics

(unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$, SW1: a , SW3: a , SW4: a ,
SW5: OPEN
Preamplifier stage: $\mathbf{R g}=\mathbf{2 . 2} \mathbf{k} \Omega, R_{\mathrm{L}}=10 \mathrm{k} \Omega$, SW6: a
Power amplifier stage: $\mathbf{R g}=600 \Omega, R_{L}=32 \Omega$, SW2: a)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Quiescent supply current		ICCQ1		PRE + PW	-	1.6	3.0	mA
		ICCQ2		PRE: OFF, SW4: b	-	1.3	2.4	
		ICCQ3		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{PRE}+\mathrm{PW}, \\ & \text { SW5: ON } \end{aligned}$	-	3.0	5.5	
		ICCQ4	-	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, PRE: OFF, SW4: b, SW5: ON	-	2.7	5.0	
Power supply current during drive		$\mathrm{I}_{\mathrm{CC} 1}$	-	PRE + PW, $0.1 \mathrm{~mW} / 32 \Omega \times 2 \mathrm{ch}$	-	4.6	-	mA
		$\mathrm{I}_{\mathrm{CC} 2}$	-	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{PRE}+\mathrm{PW}$, $0.1 \mathrm{~mW} / 32 \Omega \times 2 \mathrm{ch}$, SW5: ON	-	4.8	-	
	Open loop voltage gain	Gvo	-	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=-22 \mathrm{dBV}, \\ & \text { NF resistor }(240 \Omega) \text { : short } \end{aligned}$	65	80	-	dB
	Closed loop voltage gain	Gvc	-	$V_{0}=-22 d B V$	-	35	-	dB
	Maximum output voltage	$\mathrm{V}_{\text {om1 }}$	-	THD $=1 \%$	160	250	-	mVrms
	Total harmonic distortion	THD1	-	$\mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}, \mathrm{~V}_{0}=-22 \mathrm{dBV}$	-	0.1	0.3	\%
	Equivalent input noise voltage	$\mathrm{V}_{\text {ni }}$	-	$\mathrm{Rg}=2.2 \mathrm{k} \Omega$, DIN/AUDIO NAB $(G v=35 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz})$, SW6: b	-	1.5	2.7	$\mu \mathrm{Vrms}$
	Cross talk	CT1	-	$V_{0}=-22 d B V$	-	60	-	dB
	Ripple Rejection ratio	RR1	-	$\begin{aligned} & \mathrm{f}_{\mathrm{r}}=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{r}}=-32 \mathrm{dBV} \\ & \mathrm{BPF}=100 \mathrm{~Hz} \end{aligned}$	-	70	-	dB
	Preamplifier muting attenuation	ATT1	-	$\mathrm{V}_{0}=-22 \mathrm{dBV}$, SW4: $\mathrm{a} \rightarrow \mathrm{b}$	-	84	-	dB
	Voltage gain	$\mathrm{G}_{\mathrm{V} 1}$	-	$V_{0}=-22 \mathrm{dBV}$	23	25	27	dB
	Channel balance	CB	-	$V_{0}=-22 d B V$	-1.5	0	+1.5	dB
	Output power	P_{01}	-	$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{THD}=10 \%$	3	6	-	mW
		$\mathrm{P}_{\mathrm{o} 2}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{THD}=10 \%, \\ & \mathrm{SW5}: \mathrm{ON} \end{aligned}$	8	12	-	
	Total harmonic distortion	THD2	-	$\mathrm{P}_{\mathrm{o}}=1 \mathrm{~mW}$	-	0.1	0.5	\%
	Output noise voltage	$\mathrm{V}_{\text {no }}$	-	Rg = 600Ω, DIN/AUDIO, SW2: b	-	30	60	$\mu \mathrm{Vrms}$
	Cross talk	CT2	-	$\mathrm{V}_{0}=-22 \mathrm{dBV}$	34	43	-	dB
	Ripple rejection ratio	RR2	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}, \mathrm{f}_{\mathrm{r}}=100 \mathrm{~Hz}, \\ & \mathrm{~V}_{\mathrm{r}}=-32 \mathrm{dBV}, \mathrm{BPF}=100 \mathrm{~Hz} \end{aligned}$	-	80	-	dB
	Power amplifier muting attenuation	ATT2	-	$\mathrm{V}_{\mathrm{O}}=-22 \mathrm{dBV}$, SW3: $\mathrm{a} \rightarrow \mathrm{b}$	-	80	-	dB
$$	Voltage gain	GV2	-	$\begin{aligned} & \mathrm{f}=40 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{in}}=-64 \mathrm{dBV}, \\ & \text { SW1: b, } \\ & \text { MONI: C-AMP - GND } \end{aligned}$	45	48.5	52	dB
	Voltage gain	Gv3	-	$\begin{aligned} & \mathrm{f}=40 \mathrm{~Hz}, \mathrm{~V}_{\text {in }}=-47 \mathrm{dBV}, \\ & \text { SW1: b, } \\ & \text { MONI: C-AMP - GND } \end{aligned}$	31	34.5	38	dB
	Maximum output voltage	$V_{\text {om2 }}$	-	$\begin{aligned} & f=40 \mathrm{~Hz}, \mathrm{THD}=1 \%, \\ & \text { SW1: b, } \\ & \text { MONI: C-AMP - GND } \end{aligned}$	-	270	-	mVrms
	Muting attenuation	ATT3	-	$\begin{aligned} & \mathrm{f}=40 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{o}}=-32 \mathrm{dBV}, \\ & \mathrm{SW} 1: \mathrm{b} \rightarrow \mathrm{a} \end{aligned}$	-	58	-	dB
Ripple filter output voltage		$\mathrm{V}_{\text {RF OUT }}$	-	$\mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{RF}}=20 \mathrm{~mA}$	0.9	0.93	-	V

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Ripple filter ripple rejection ration	RR3	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{RF}}=20 \mathrm{~mA} \\ & \mathrm{f}_{\mathrm{r}}=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{r}}=-32 \mathrm{dBV} \\ & \mathrm{BPF}=100 \mathrm{~Hz} \end{aligned}$	35	42	-	dB
Preamplifier on voltage	V_{13}	-	$\mathrm{V}_{\mathrm{CC}}=0.95 \mathrm{~V}$	0	-	0.3	V
Preamplifier off current	$1{ }_{13}$	-		5	-	-	$\mu \mathrm{A}$
Power amplifier on current	$1{ }_{12}$	-		5	-	-	$\mu \mathrm{A}$
Power amplifier off voltage	V_{12}	-		0	-	0.3	V
Boost switch on current	17	-		5	-	-	$\mu \mathrm{A}$
Boost switch off voltage	V_{7}	-		0	-	0.3	V

TOSHIBA
TOSHIBA

TA2160FN

Package Dimensions

SSOP30-P-300-0.65

Weight: 0.17 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

