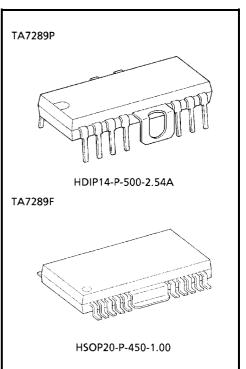
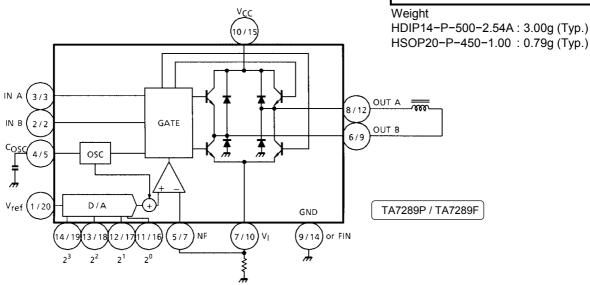
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA7289P,TA7289F

PWM STEPPING MOTOR DRIVER


The TA7289P, TA7289F are PWM solenoid driver designed especially for use high efficiency stepping motor control. It consist of 1.5A peak current drive capable output full bridge driver, oscillation circuit for PWM switching, 4bit D–A for output current control and TTL compatible input circuit.

FEATURES

- Wide Range of Operating Voltage : V_{CC} (opr.) Min. = 6~27 V
- High Current Capability: IO Max = 1.5 A (PEAK)
- LS-TTL Compatible Control Inputs (IN A, IN B)
- Few External Components Required.
- Build-in 4bit DAC.

BLOCK DIAGRAM

Note: Pin (1), (4), (6), (8), (11) of TA7289F are all NC (Non-connection)

PIN FUNCTION

PIN No.		PIN	FUNCTIONAL	DECODIDITION	
Р	F	SYMBOL	FUNCTIONAL DESCRIPTION		
1	20	V _{ref}	NF voltage supply input terminal		
2	2	IN B	Signal input terminal	Function	
3	3	IN A	Signal input terminal		
4	5	C _{OSC}	Internal oscillation frequency input terminal		
5	7	NF	Output current detection terminal		
6	9	OUT B	Output B terminal		
7	10	VI	Comparator input terminal		
8	12	OUT A	Output A terminal		
9	14	GND	GND terminal		
10	15	V _{CC}	Power voltage supply terminal		
11	16	2 ⁰	D / A input terminal		
12	17	2 ¹	D / A input terminal		
13	18	2 ²	D / A input terminal		
14	19	2 ³	D / A input terminal		
FIN	FIN	GND	GND terminal		

Note: Pin (1), (4), (6), (8), (11) of TA7289F are all NC (Non-connection)

FUNCTION

IN A	IN B	OUT A	OUT B	MODE
L	L	OFF	OFF	STOP
Н	L	Н	L	CW / CCW
L	Н	L	Н	CCW / CW
н	Н	OFF	OFF	STOP

INPUT CIRCUIT (IN A, IN B)

Input circuit is shown in Fig.1 IN A and IN B are TTL compatible "Low Active" type and have a hysteresis of 0.8 V Typ at $T_j = 25$ °C.

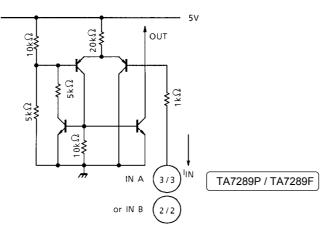


Fig. 1

<u>TOSHIBA</u>

D / A AND Vref CIRCUIT

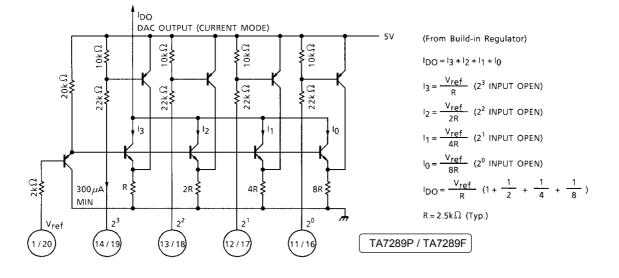
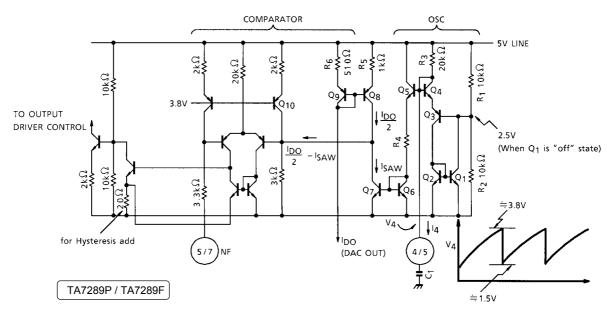



Fig. 2

 I_{DO} of current mode DAC output is proportional to multipled voltage of V_{ref} (PIN (1) (or (20))) and DAC inputs. DAC inputs are all "low active" type and required input current of 300 μA MIN for each input terminal.

OSC AND COMPARATOR

Sawtooth OSC circuit consists of Q1 through Q4 and R1 through R3.

 $R_1 \mbox{ and } R_2 \mbox{ are voltage divider of } 5 \mbox{ V build-in regulator.}$

 Q_1 is turned "off" when V4 is less than the voltage of 2.5 V + V_{BE} Q4 + V_{BE} Q3 approximately equal to 3.8 V. V4 is increased by C1 charging of I4. Q1 and Q2 are turned "ON" when V4 becomes V4 – H level. Lower level of V4 (V4 – L) is equal to V_{BE} Q4 + V_{BE} Q3 + V_{SAT} Q1 approximately equal to 1.5 V.

V4 is calculated by following equation.

$$V_4 = 5 \cdot (1 - e - \frac{1}{C_1 \cdot R_3} \cdot t)$$
 (1)

Assuming that $V_4 = 1.5 V (t = t_1)$ and $= 3.8 V (t = t_2)$.

 C_1 is external capacitance connected to Pin (4) (or (5)) and R_3 is on-chip 20 k Ω resistor. Therefore, OSC frequency is calculated as follows.

$$t_1 = -C_1 \cdot R_3 \cdot \ln \left(1 - \frac{1.5}{5}\right) \dots (2)$$

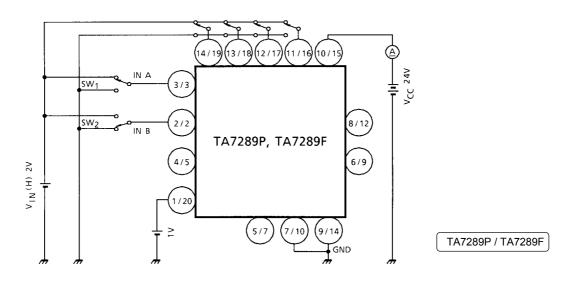
$$t_2 = -C_1 \cdot R_3 \cdot \ln \left(1 - \frac{3.8}{5}\right).$$
 (3)

$$f_{OSC} = \frac{1}{t_1 - t_2} = \frac{1}{C_1 \cdot (R_3 \cdot \ln (1 - \frac{1.5}{5}) - R_3 \cdot \ln (1 - \frac{3.8}{5}))}$$

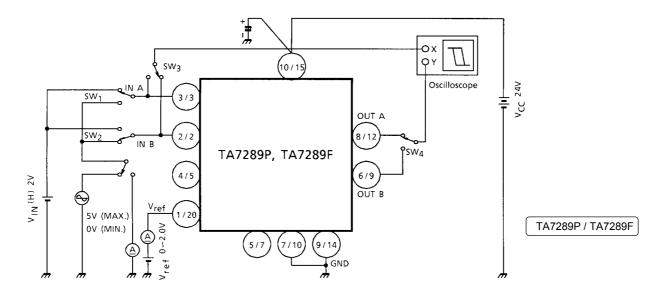
$$= \frac{1}{21.4 \text{ C}_1} (\text{kHz}) (\text{Unit of C}_1 \text{ is } \mu\text{F})$$

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Supply Voltage		V _{CC}	V _{CC} 30		
Supply Voltage		V _{ref}	30	V	
Reference Voltage		V _{IN}	7	v	
		VI	2		
	TA7289P		1.5	A	
Output Current	TA7289F	I _{O (MAX.)}	0.8		
Output Current	TA7289P		0.7		
	TA7289F	IO (AVE.)	0.3		
Power Dissipation	TA7289P	PD (Note)	2.3	W	
	TA7289F		1.0	vv	
Operating Temperature		T _{opr}	-30~85	°C	
Storage Temperature		T _{stg}	-55~150	°C	

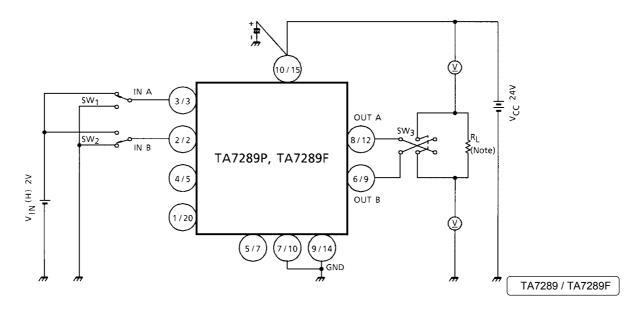

Note: NO HEAT SINK

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V_{CC} = 24 V, Ta = 25°C)

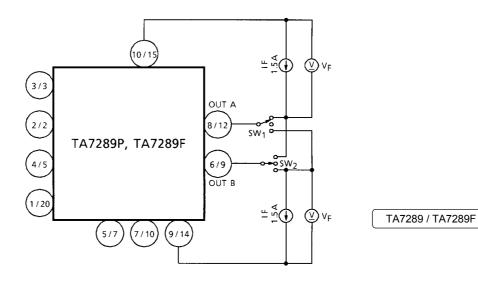

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN	TYP.	MAX	UNIT
	I _{CC1}	1	CW / CCW	Output : Open	12	20	30	mA
	I _{CC2}		STOP		12	20	30	
Quiescent Current	I _{CC3}		CW / CCW mode, $2^0 \sim 2^3$: H		12	20	30	
	I _{CC4}		CW / CCW mode, $2^0 \sim 2^3$: L		13	23	32	
Output Voltage	V _{IN (H)}	2	IN A IN B, Source type.		2.0		7.0	v
Oulput Vollage	V _{IN (L)}				-0.4	_	0.8	
Input Hysteresis Width	ΔV_{IN}	2	_		_	0.8	_	V
Input Current	I _{IN1}	2	IN A, IN B V _{IN} = 0 V Source type		_	25	35	
input Current	I _{IN2}	2	2 ⁰ , 2 ¹ , 2 ² , 2 ³ V _{IN} = 0 V Source type		90	160	200	μA
	V _{SAT U-1}	-	I _{OUT} = 0.2 A		_	1.1	1.5	V
	VSAT L-1				_	0.8	1.1	
Output Saturation Valtage	V _{SAT U-2}		3 I _{OUT} = 0.7 A		_	1.2	1.7	
Output Saturation Voltage	V _{SAT L-2}	3			_	0.9	1.3	
	V _{SAT U-3}		1		— 1.8	2.6		
	V _{SAT L-3}		I _{OUT} = 1.5 A		_	1.2	1.9	
Control Supply Voltage	V _{ref}	_	_		GND		2.0	V
Control Supply Current	I _{ref}	2	V _{ref} = 0~2.0 V		_	25	35	μA
Diada Carward Valtage	V _{FU}	- 4	I _F = 1.5 A		_	2.6	3.3	V
Diode Forward Voltage	V _{FL}				_	0.8	1.1	
Output Leakage Output	I _{L-U}	F	V _L = 30 V		_		50	
Output Leakage Current	IL-L	- 5	V _L = 30 V		_		50	μA
NF Terminal Current	I _{NF}	6	Source type $V_{NF} = 0 \sim 2.0 V$ T _j = $0 \sim 125^{\circ}C$		180	300	490	μA
Internal Supply Output Voltage	V _{CC2}	6	_		_	5	_	V
Resistor for Oscillation (R3)	R _{OSC}	6	T _j = 0~125°C		13	20	32	kΩ

TEST CIRCUIT 1

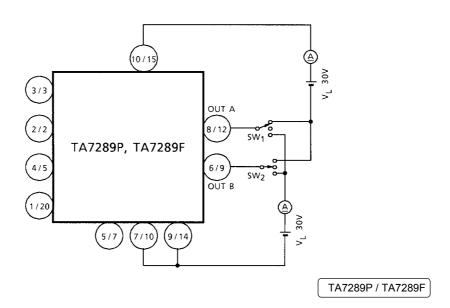
ICC1, 2, 3, 4



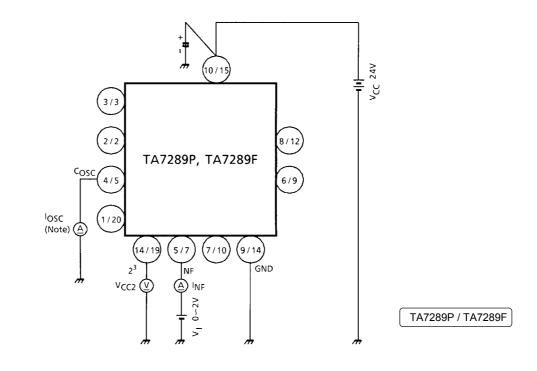
TEST CIRCUIT 2 VIN (H), (L), IIN1, 2, Δ VIN, Iref


TEST CIRCUIT 3

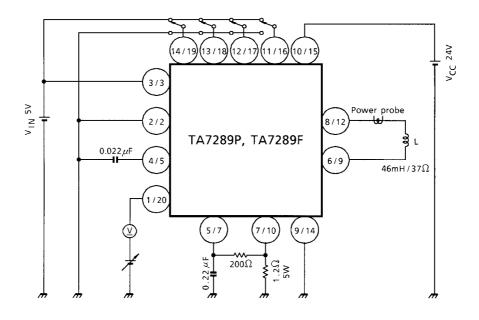
VSAT U1, L1, U2, L2, U3, L3



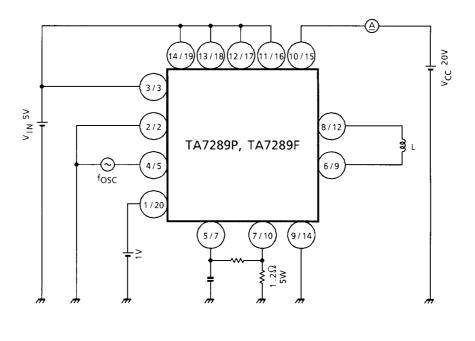
Note: Calibrate I_{OUT} to 0.2A / 0.7A / 1.5A by R_L


TEST CIRCUIT 4 V_{FU}, V_{FL}

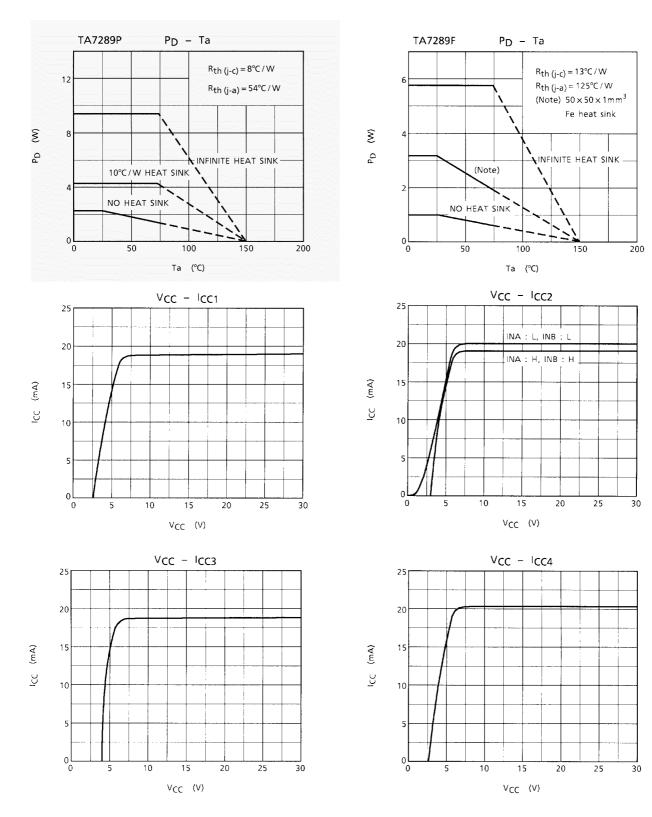
TEST CIRCUIT 5 I_{L-U}, I_{L-L}

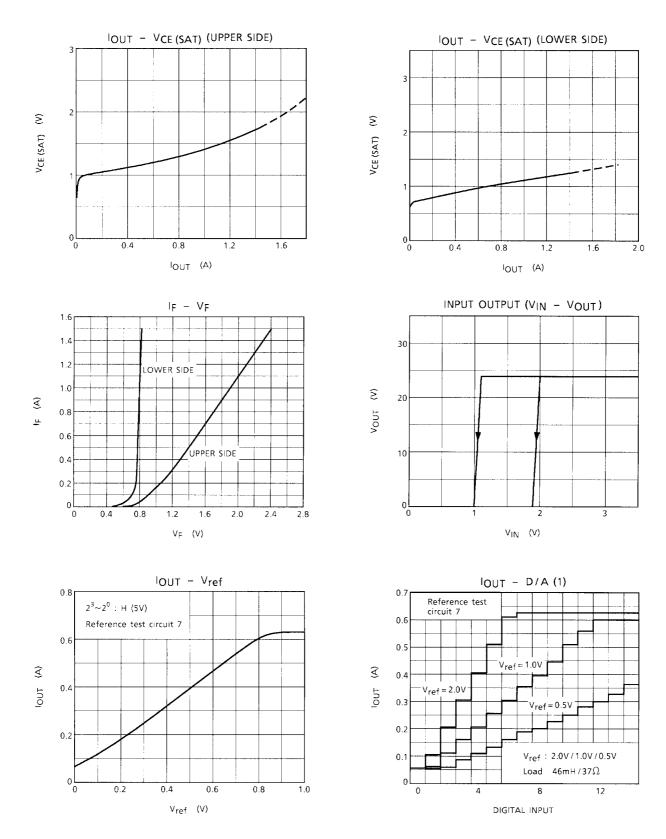


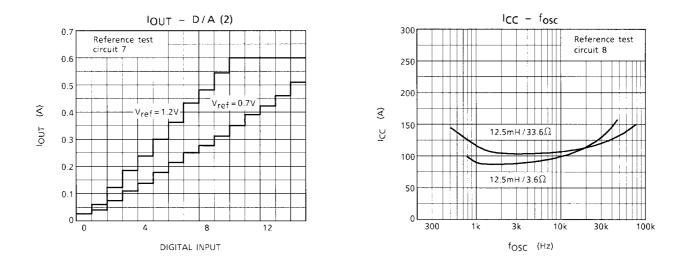
TEST CIRCUIT 6


Note: $R_{OSC} = \frac{V_{CC2}(V)}{I_{OSC}(A)}(\Omega)$

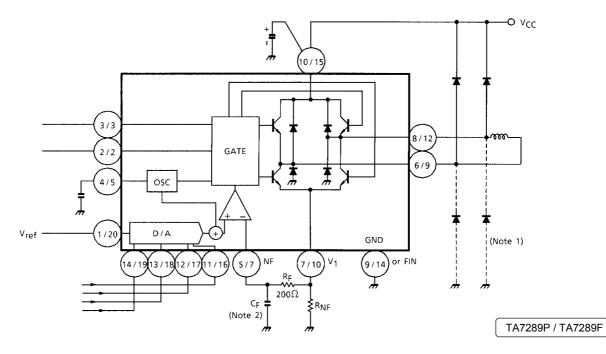
TEST CIRCUIT 7 I_{OUT} - V_{ref} CHARACTERISTIC, I_{OUT} - D / A CHARACTERISTIC


TA7289P / TA7289F


TEST CIRCUIT 8 I_{CC} – FREQUENCY CHARACTERISTIC

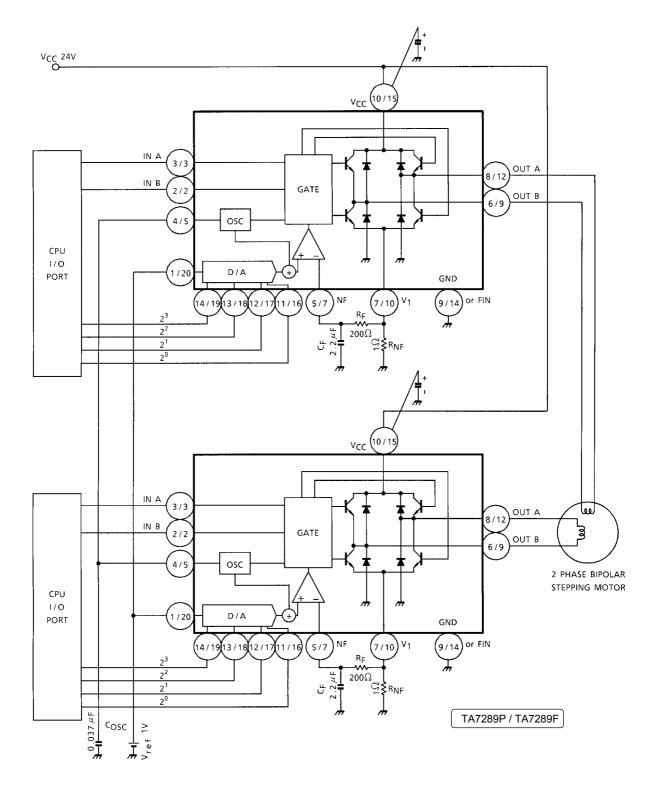


TA7289P / TA7289F


<u>TOSHIBA</u>

APPLICATION CIRCUIT 1

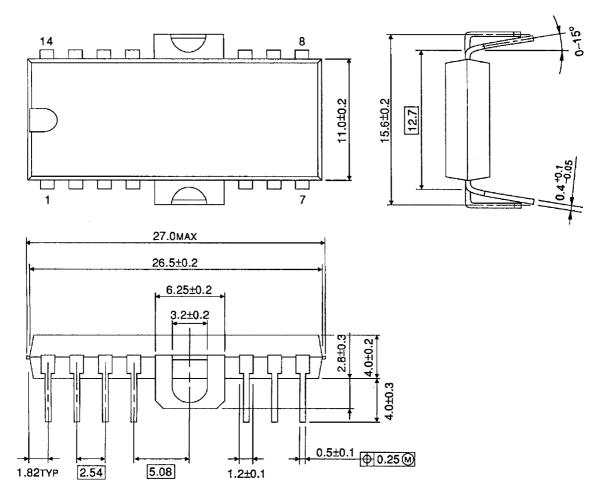
Note 1: Connect if required.


Note 2: Recommended R_F value is approximately 200 Ω .

And C_F value is concerned with the OSC frequency.

We recommend to select optimum value of C_F under the experimental consideration of noise cutting and time delay characteristics.

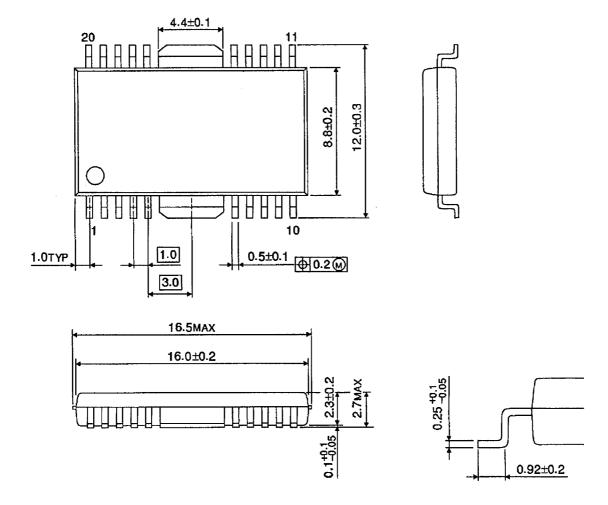
Note 3: Utmost care is necessary in the design of the output line, V_{CC} and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.


APPLICATION CIRCUIT 2 (PWM chopper stepping motor driver)

PACKAGE DIMENSIONS

HDIP14-P-500-2.54A

Unit: mm



Weight: 3.00 g (Typ.)

PACKAGE DIMENSIONS

HSOP20-P-450-1.00

Unit: mm

Weight: 0.79 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.