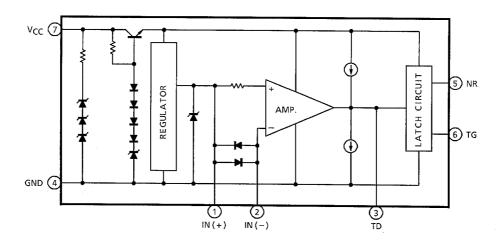

#### TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

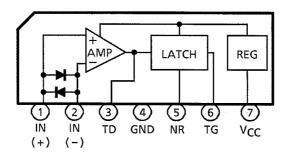
# **TA7510S**

#### EARTH LEAK BREAKER


#### **FEATURES**

- High Sensibility :  $V_{Trip} = 7mV$  (Typ.)
- Compose of Toshiba Original SIP (7Pin) so that it is possible to manufacture very small Earth Leak Breaker by using this device.
- Having High Reliability for the swing of supply voltage.
- Be possible to turn on External Thyristor Because of having Regulator Circuit.
- Having stability Trip Voltage Value.
- High Speed Rising Time.




Weight: 0.7g (Typ.)

#### **BLOCK DIAGRAM**



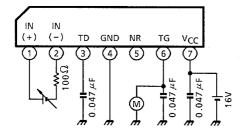
1

#### **PIN CONNECTION**

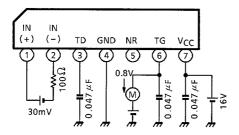


### MAXIMUM RATINGS (Ta = 25°C)

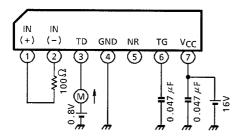
| CHARACTERISTIC        | SYMBOL | CONDITION  | RATING     | UNIT |  |
|-----------------------|--------|------------|------------|------|--|
| Supply Current        | ICC    | _          | 10         | mA   |  |
| Input Current         | IIM    | +IN- (-IN) | 250 (Note) | mA   |  |
|                       |        | +IN-GND    | 30         |      |  |
|                       |        | -IN-GND    | 30         |      |  |
| Power Dissipation     | PD     | _          | 400        | mW   |  |
| Operating Temperature | Topr   | _          | -30~85     | °C   |  |
| Storage Temperature   | Tstg   | _          | -55~125    | °C   |  |


Note: In case the current between +IN and -IN, Pulse width must be less than 1ms.

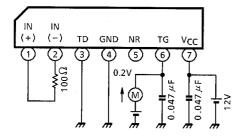
## **ELECTRICAL CHARACTERISTICS (Ta = 25°C)**


| CHARACTERISTIC                       | SYMBOL                | TEST<br>CIR-<br>CUIT | TEST CONDITION                                                       | MIN | TYP. | MAX | UNIT |
|--------------------------------------|-----------------------|----------------------|----------------------------------------------------------------------|-----|------|-----|------|
| Trip Voltage                         | V <sub>TRIP</sub>     | 1                    | V <sub>CC</sub> = 16V, Ta = −30~85°C                                 | 4   | _    | 10  | mV   |
| Supply Current (1)                   | ICC                   | 2                    | V <sub>CC</sub> = 12V<br>(+IN) - (-IN) = 30mV                        | _   | 550  | 900 | μΑ   |
| Gate Current                         | I <sub>TGH</sub>      | 3                    | V <sub>CC</sub> = 16V, V <sub>TG</sub> = 0.8V<br>Ta = 25°C           | 100 | _    | _   | - μΑ |
|                                      |                       |                      | $V_{CC}$ = 16V, $V_{TG}$ = 0.8V<br>Ta = -30~85°C                     | 90  | _    | _   |      |
| Time Current                         | I <sub>TDH</sub>      | 4                    | V <sub>CC</sub> = 16V, V <sub>TD</sub> = 0V                          | 30  | _    | 100 | μΑ   |
| TD Terminal " L " Current            | I <sub>TDL</sub>      | 5                    | V <sub>CC</sub> = 16V, V <sub>TD</sub> = 0.8V<br>(+IN) - (-IN) Short | 20  | _    | 70  | μΑ   |
| ON Voltage Of Internal Latch Circuit | V <sub>ON (SCR)</sub> | 6                    | V <sub>CC</sub> = 16V                                                | 0.7 | _    | 1.6 | V    |
| Output " L " Current                 | I <sub>TGL</sub>      | 7                    | V <sub>CC</sub> = 12V, V <sub>TG</sub> = 0.2V<br>Ta = -30~85°C       | 100 | _    | _   | μΑ   |
| Input Clamp Voltage                  | V <sub>INC</sub>      | 8                    | V <sub>CC</sub> = 12V, I <sub>IN</sub> = 30mA                        | 4.6 | _    | 6.9 | V    |
| Differential Input Clamp Voltage     | $V_{DFC}$             | 9                    | I <sub>DF</sub> = 100mA                                              | 0.7 | _    | 1.3 | V    |
| VCC Terminal Voltage                 | V <sub>CCM</sub>      | 10                   | I = 10mA                                                             | 22  | _    | 30  | V    |
| Operating Supply Current (2)         | I <sub>CC (ON)</sub>  | 11                   | V <sub>CC</sub> = 16V, V <sub>TG</sub> = 0.8V<br>Ta = -30~85°C       | _   | _    | 2.5 | mA   |
| Output " OFF " Supply Voltage        | V <sub>CC (OFF)</sub> | 12                   | _                                                                    | _   | 4.5  | _   | V    |
| Operating Time                       | t <sub>ON</sub>       | 13                   | V <sub>CC</sub> = 16V<br>(+IN) - (-IN) = 0.3V                        |     | 1    | _   | ms   |

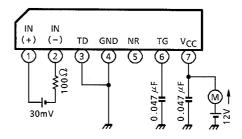
#### **TEST CIRCUIT**


#### 1.Trip voltage VTRIP

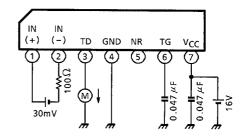



#### 3.Gate current ITGH



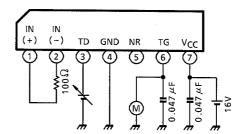

#### 5.TD terminal "L" current ITDL



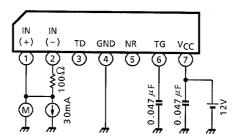

#### 7.Output "L" current ITGL



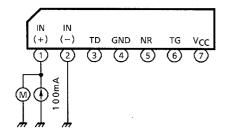
#### 2.Supply current (1)



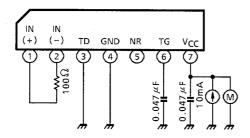

#### 4.Time current ITDH



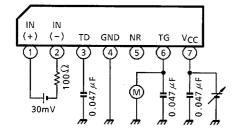

## 6.On voltage of internal latch circuit


Von (SCR)

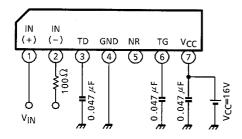


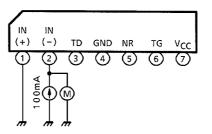

#### 8.Input clamp voltage VINC



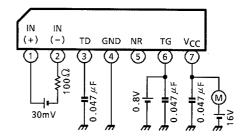

#### 9.Differential input clamp voltage VDFC



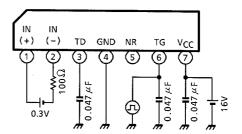

#### 10.V<sub>CC</sub> terminal voltage V<sub>CCM</sub>



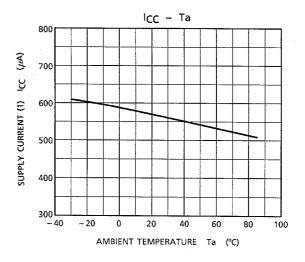

12.Latch " OFF " supply voltage V<sub>CC</sub> (OFF)

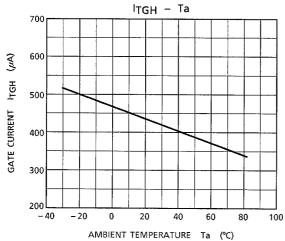


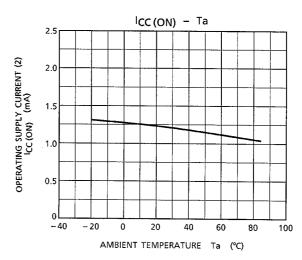

#### 14.Latch operation







#### 11.Operating current (2)





#### 13. Operating time



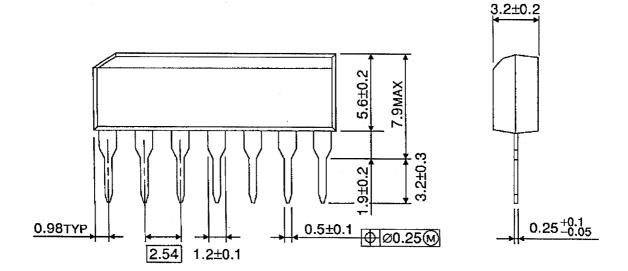


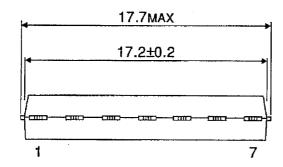






### APPLICATION CIRCUIT (High speed earth leak breaker at 100V or 200V)





6

#### **PACKAGE DIMENSIONS**

P-SIP7-2.54A

Unit: mm





Weight: 0.7g (Typ.)

#### **RESTRICTIONS ON PRODUCT USE**

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

8

The information contained herein is subject to change without notice.