TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7774P,TA7774F

STEPPING MOTOR DRIVER IC

The TA7774P, TA7774F is 2 phase Bipolar stepping motor driver IC designed especially for 3.5 or 5.25 inches FDD head actuator drives.

It consists of TTL compatible input circuit, dual bridge driver outputs with flyback diodes, changing circuit of motor coil drive voltage (Power saving circuit) and stand-by circuit.

FEATURES

- One Chip 2 Phase Bipolar Stepping Motor Driver.
- Power Saving and Stand-by Operation are available. I stand-by (I_{CC3}) ≤ 115 μA
- Build-in Punch Through Current Restriction Circuit for System Reliability and Noise Suppression.
- TTL Compatible Inputs
- Surface Mount is available with F Type.
- Output Current up to 0.4 A (peak)

Weight

DIP16-P-300-2.54A : 1.11 g (Typ.) HSOP16-P-300-1.00 : 0.50 g (Typ.)

Note: Pin(2), (7), (12), (13) of TA7774F are all NC and Heat Fin is connected to GND.

2001-08-27

BLOCK DIAGRAM

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION	
1 / (1)	V _{S2A}	Low-voltage power supply terminal	
2 / (3)	V _{CC}	Power voltage supply terminal for control	
3 / (4)	IN A	A-ch forward rotation / reverse rotation signal input terminal	
4 / (F)	GND	GND terminal	
5 / (F)	GND	GND terminal	
6 / (5)	IN B	B-ch forward rotation / reverse rotation signal input terminal	
7 / (6)	PS	Powersave signal input terminal	
8 / (8)	V _{S2B}	Stand-by signal input terminal	
9 / (9)	V _{S1 B}	High-voltage power supply terminal	
10 / (10)	φΒ	Output B	
11 / (11)	φB	Output B	
12 / (F)	GND	GND terminal	
13 / (F)	GND	GND terminal	
14 / (14)	φĀ	Output Ā	
15 / (15)	φΑ	Output A	
16 / (16)	V _{S1A}	High-voltage power supply terminal.	

(): TA7774F

TRUTH TABLE 1

INPUT		OUTPUT		
PS	IN	φ φ		
L	L	L	Н	Enable V _{S1}
L	Н	н	L	Enable V _{S1}
Н	L	L	Н	Enable V _{S2} (Power save)
н	Н	Н	L	Enable V _{S2} (Power save)

TRUTH TABLE 2

V _{S2B}	
L	Power Off (stand-by)
Н	Operation

OUTPUT CIRCUIT

INPUT CIRCUIT IN A, INB

INPUTCIRCUIT VS2 A or VS2 B

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
		V _{CC}	7.0		
Supply Voltage		V _{S1}	17.0	V	
		V _{S2}	~V _{CC}		
		l _{O (PEAK)}	±400		
Output Current		I _{O (START)}	±350	mA	
		IO (HOLD)	±100		
Input Voltage		V _{IN}	~V _{CC}	V	
	TA 7774D		1.4 (Note 1)		
Power Dissipation		PD	2.7 (Note 2)	W	
	TA7774F		1.4 (Note 3)		
Operating Temperat	ture	T _{opr}	-30~75	°C	
Storage Temperatur	re	T _{stg}	-55~150	°C	

- Note 1: No heat sink
- Note 2: This value is obtained by 50 × 50 × 0.8 mm PCB mounting occupied copper area in excess of 60%.
- Note 3: This value is obtained by 60 × 30 × 1.6 mm PCB mounting occupied copper area in excess of 50%.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Ta = 25°C, V_{CC} = 5 V, V_{S1} = 12 V, V_{S2A} = 5 V)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITI	ON	MIN	TYP.	MAX	UNIT
	I _{CC1}		PS: H, V _{S2} : H		_	9	14	m۸
Supply Current	I _{CC2}	1	PS: L, V _{S2} : H		_	8.5	13	ШA
	I _{CC3}		V _{S2} : L		70	90	115	μA
	V _{IN H}			Pin(3)(6)	2.0	—	V _{CC}	
	V _{IN L}		T _i = 25°C	1 111 (3), (0)	GND		0.8	
Input Voltage	V _{PS H}	_	V _{S2} : H	Pin (7)	2.0	_	V _{CC}	V
input voltage	V _{PS L}			1 (7)	GND	—	0.8	v
	V_{S2BH}		T: = 25°C	Pin (8)	3.5	_	V _{CC}	Αų - μΑ - ν
	V_{S2BL}		1j - 25 C	1 111 (0)	GND	—	0.4	
Input Current	I _{IN}	1	T _j = 25°C, V _{S2} : H	Pin (3), (6)	_	2.6	30	
	I _{PS}		V _{IN} / PS (2 V): Sink current	Pin (7)	_	2.6	30	
	V _{SAT 1H1}	2	PS: L, V _{S2} : H	I _{OUT} = 100 mA	_	0.9	_	
	V _{SAT 1H2}			I _{OUT} = 400 mA	_	1.2	1.5	
	V _{SAT 2H1}	3	PS: H, V _{S2} : H	I _{OUT} = 20 mA	_	1.6	_	
Output Saturation Voltage	V _{SAT 2H2}			I _{OUT} = 100 mA	—	1.8	2.1	
	V _{SAT L1}			I _{OUT} = 20 mA	—	0.03	—	
	V _{SAT L2}	2	V _{S2} : H	I _{OUT} = 100 mA	—	0.15	—	
	V _{SAT L3}	_		I _{OUT} = 400 mA	_	0.35	0.6	
Diode Forward Voltage	V _{FU}	4	l 350 mA		—	1.5	—	V
	V _{FL}			F = 330 mA		1.0	—	•
Delay Time	t _{pLH}	_	IN – φ		—	7	—	us
	t _{pHL}		··· ¥		—	2	—	P
Operating Voltage	V _{CC (opr.)}	—	V _{CC} = ST		4.5	5.0	7.0	V

Recommendable Operating Voltage

V_{S1 (opr.)} 12 V ± 10% V_{S2A (opr.)} 5 V ± 10%

Operating Voltage Restriction

 $V_{S1} \ge V_{S2A}$

TEST CIRCUIT 1

 $I_{\text{CC1}}, I_{\text{CC2}}, I_{\text{CC3}}, I_{\text{IN}\,\text{A}}, I_{\text{IN}\,\text{B}}, I_{\text{PS}}$

ITEM	SW1	SW ₂	SW_3	SW4
I _{CC1}	b	b	а	а
I _{CC2}	b	b	b	а
I _{CC3}	b	b		b
I _{IN A}	а	_	_	а
I _{IN B}	-	а		а
I _{PS}	_	_	а	а

TEST CIRCUIT 2

VSAT 1H1, VSAT 1H2, VSAT L2, VSAT L3

Note: Calibrate IL to 0.4 / 0.1 A by RL.

ITEM	SW ₁	SW ₂	SW ₃	SW4	SW_5	I _L (mA)
	а	_		а		
Vortaur	b	_	h	b	2	100
VSAT 1H1	_	а	b	d	a	100
	_	b		С		
	а			а		
Voitaun	b		h	b	2	400
VSAT 1H2		а	b	d	a	400
		b		с		
	а		1	b		
Voitio	b			а	h	100
VSAT L2		а		с	D	100
		b		d		
	а			b		
Voitio	b		h	а	b	400
• 5AT L3	—	а	a	С		
	_	b		d		

TEST CIRCUIT 3

 $V_{\text{SAT 2H1}}, V_{\text{SAT 2H2}}, V_{\text{SAT L1}}$

Note: Calibrate IL to 20 / 100 mA by RL.

ITEM	SW ₁	SW ₂	SW ₃	SW4	SW_5	I _L (mA)
	а	_		а		
Votant	b	_	2	b	2	20
VSAT2H1	_	а	a	С	a	20
	—	b		d		
a — b —	а	_		а		
	_		b	2	100	
VSAT2H2	—	а	a	с	a	100
	_	b		d		
	а			b		
Voiti	b		a a b	h	20	
VSATL1	_	а		a	С	ŭ
	_	b		d	1	

TEST CIRCUIT 4

MEASURING METHOD

ITEM	SW1	SW2	
	а		
Veu	b	۵	
VF U	с	C	
	d		
		а	
	0	b	
VFL	e	с	
		d	

TIMING CHART (2 phase excitation)

APPLICATION CIRCUIT

Note: Utmost care is necessary in the design of the output line, V_S and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

Unit: mm

Weight: 1.11 g (Typ.)

PACKAGE DIMENSIONS

HSOP16-P-300-1.00

Unit: mm

Weight: 0.50 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.