TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8068L

INTELLIGENT STEPPING MOTOR DRIVER

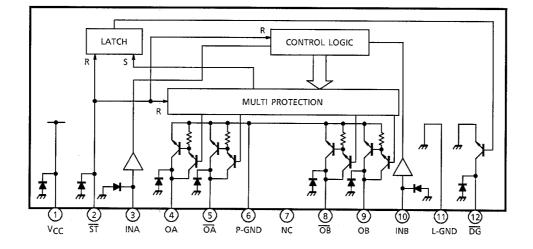
The TA8068L is a stepping motor driver with a current capacity of 1.5A. Inputs INA and INB are combined to control the four outputs.

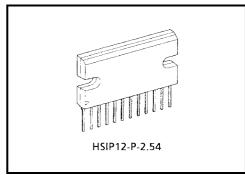
Since the inputs are TTL-compatible, this IC can be controlled directly from a CPU or other control system.

The IC also incorporates various protective functions as well as a self-diagnostic function for diagnostic function for diagnostic output.

FEATURES

• Output current capacity : 1.5 A (max.)• Low standby current : $100 \mu A \text{ (max.)}$

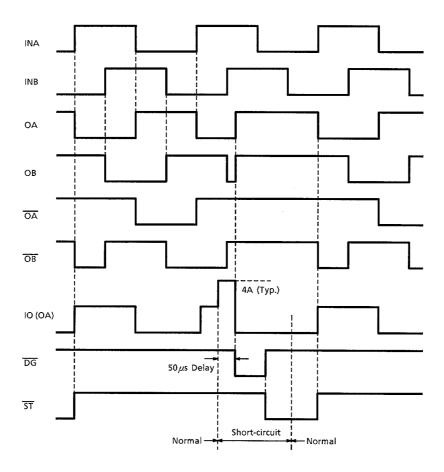

• Built-in Protective Functions: Over-Voltage Protection / Short-Circuit Protection (latch) / Thermal-Shutdown


• Self-diagnostic Output : On Short-Circuit Detection

• Separate GND for output and logic control sections

• Plastic package HSIP-12pin

BLOCK DIAGRAM AND PIN LAYOUT



Weight: 7.95 g (typ.)

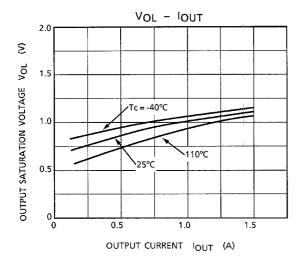
PIN DESCRIPTION

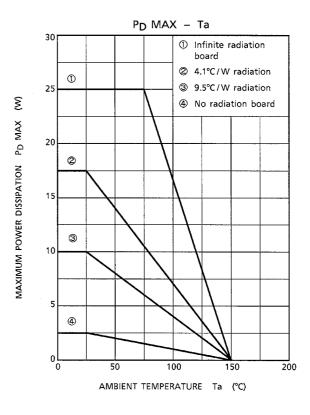
PIN No.	SYMBOL	DESCRIPTION
1	V _{CC}	Power supply pin. This pin has a function to turn off the output when the applied voltage exceeds 30V (Typ.), thus protecting the IC and the motor load.
2	ST	When this pin is opened or grounded, the output turns off, thus reducing the current consumption to $100\mu A$ or less. If standby mode is not needed, the pin is connected to V_{CC} .
3	INA	This is input terminal which controls output condition of pin 4 and pin 5.PNP-type voltage comparator is built in.
4	OA	PNP-type complementary output pin with a current capacity of 1.5A. This pin is controlled by the input from pin 3. When the output is supplied with a current exceeding the detection current (4A Typ.) because of load short-circuit, the output is latched to the OFF state after a 50µs (Typ.) delay in order to protect the IC.
5	ŌĀ	Output pin of the inversion of pin 4. This terminal has the same function as pin 4 and is controlled by pin 3.
6	P-GND	Ground terminal of output section which is usually connected with pin 11.
7	NC	Not connected. (Electrically, this pin is completely open.)
8	ŌB	Output pin of the inversion of pin 9. This terminal has the same function as pin 4 and is controlled by pin 10.
9	ОВ	This terminal has the same function as pin 4 and is controlled by pin 10.
10	INB	This is input terminal which controls output condition of pin 8 and pin 9.PNP-type voltage comparator is built in.
11	L-GND	Ground terminal of logic control section which is usually connected with pin 6.
12	DG	Self-diagnostic output pin. This signal goes low when the output is short-circuited while the input is on (high). The output will be latched after a 50µs (Typ.) delay when the load is short-circuited. This pin supplies an NPN open-collector output.

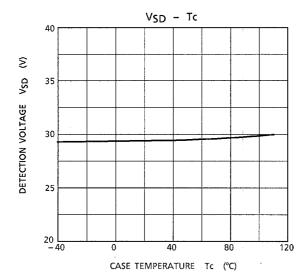
TIMING CHART

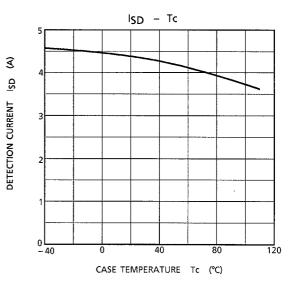
TRUTH TABLE INPUT / OUTPUT

INPUT			OUTPUT					
INA	INB	ST	OA	ŌĀ	OB	OB	DG	
L	L	Н	OFF	ON	OFF	ON	OFF	
L	Н	Н	OFF	ON	ON	OFF	OFF	
Н	L	Н	ON	OFF	OFF	ON	OFF	
Н	Н	Н	ON	OFF	ON	OFF	OFF	
_	_	L	OFF	OFF	OFF	OFF	OFF	
_	_	OPEN	OFF	OFF	OFF	OFF	OFF	

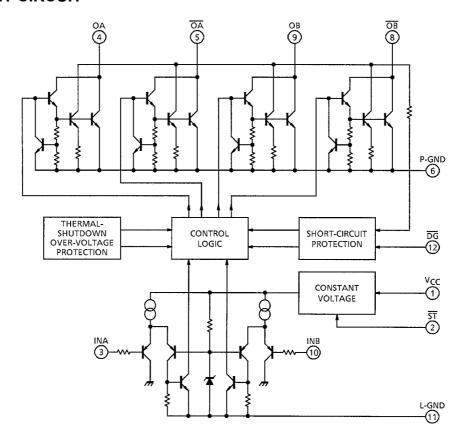

3

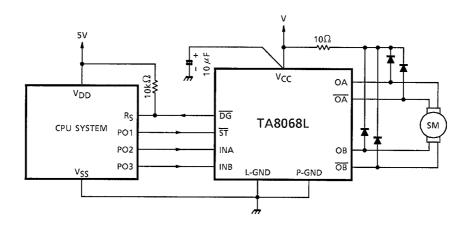

MAXIMUM RATINGS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	V _{CC}	30	٧	
Supply Voltage	V _{CC}	60 (1s)		
Input Voltage	V _{IN}	-0.3~7	V	
Output Voltage	V _{CC}	-0.3~V _{CC}	V	
Output Current	I _O AVE	1.5	Α	
Power Dissipation	P_{D}	25	W	
Operation Temperature	T _{opr}	-40~110	°C	
Storage Temperature	T _{stg}	-55~150	°C	
Lead Temperature-Time	T _{sol}	260 (10s)	°C	

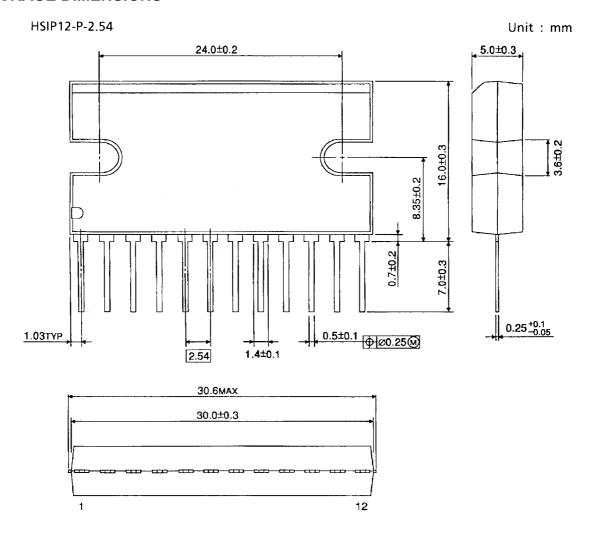

ELECTRICAL CHARACTERISTICS ($V_{CC} = 8\sim16V$, Ta = $-40\sim110^{\circ}C$)

CHARACTERISTIC	SYMBOL	PIN	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Current Consumption	Icc	V _{CC}	_		12	25	40	mA	
Innut Valtage	V _{IL}	INA / INB	_		_	_	0.8	V	
Input Voltage	V _{IH}		_		2.4	_	_		
Input Current	I _{IL}	INA / INB	_	V _{IN} = 0.4V	-50	_	_	μА	
	l _{IH}		_	V _{IN} = 5V	_	_	10		
Input Voltage	V _{IL}	ST	_		_	_	0.8	V	
input voltage	V _{IH}		_		3.0	_	_		
Output Saturation Voltage	V _{SAT}	OA, <u>OA</u> OB, OB	_	I _O = 1.5A / Ta = 25°C	_	1.25	1.5	V	
Output Leakage Current	I _{LEAK}	OA, <u>OA</u> OB, OB	_	V _O = V _{CC}	_	_	10	μΑ	
Output Voltage	V _{OL}	DG	_	I _{OL} = 3mA	_	_	0.3	V	
Output Leakage Current	I _{LEAK}	DG	_	V _O = V _{CC}	_	_	10	μΑ	
Over-current Detection	ISD		_		1.8	4	6	Α	
Shutdown Temperature	TSD-H		_	OUT = ON → OFF	_	160	_	°C	
Shuldown remperature	TSD-L		_	OUT = OFF → ON	_	130	_	C	
Over-voltage Detection	VSD		_		27.5	30	33	V	
Standby Current	IST	V _{CC}	_	ST = GND	_	_	100	μΑ	
Thermal Resistance	Rθ _{j-c}		_		_	3	_	°C/W	
Transfer Dalay Time	t _{pLH}		_		_	1	10	- µs	
Transfer Delay Time	t _{pHL}		_		_	1	10		




2002-02-27

5


EQUIVALENT CIRCUIT

APPLICATION CIRCUIT

PACKAGE DIMENSIONS

Weight: 7.95 g (Typ.)

2002-02-27

RESTRICTIONS ON PRODUCT USE

000707EAA_S

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.