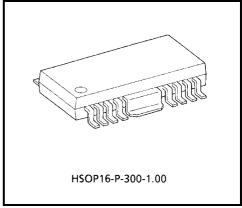
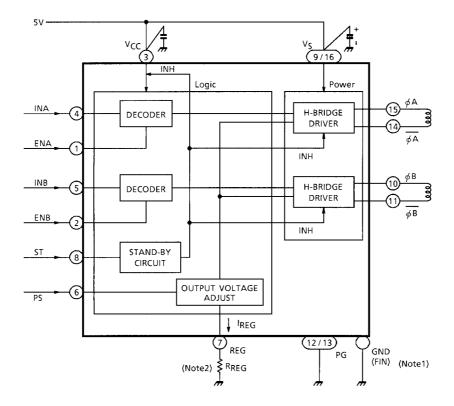
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA8430AF

STEPPING MOTOR DRIVER IC

The TA8430AF is 2 Phase Bipolar Stepping Motor Driver IC designed especially for low operating voltage use FDD and other portable equipments.


FEATURES

- 2 Phase Bipolar Stepping Motor Driver
- Low Voltage Use : VCC opr = 4 V (Min.)
- Power Save and Stand–by Mode available $I_{CC} \; stand-by \leq 100 \; \mu A$
- Built-in Punch Through Current Restriction Circuit
- 1, 2 and 1-2 Phase Excitation Drive available
- C-MOS Compatible Inputs (INA, INB, PS, ST)
- Output Current up to 400 mA (AVE) and 600 mA (PEAK)
- Sealed in PFP 16 SM Package
- HEAT SINK is connected with GND with low impedance.

Weight: 0.50 g (Typ.)

BLOCK DIAGRAM

- Note 1: GND terminal of 12 / 13 connect to FIN.
- Note 2: Output Voltages, appeared at ϕA , $\overline{\phi} A$, ϕB and $\overline{\phi} B$, are adjusted by R_{reg} when Power Save function is selected.
- Note 3: Utmost care is necessary in the design of the output line, V_{CC}, V_S and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.

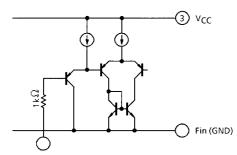
2

PIN FUNCTION

PIN No.	SYMBOL	FUNCTION		
1	ENA	A channel enable		
2	ENB	B channel enable		
3	V _{CC}	Supply voltage		
4	INA	A channel reciprocal switching		
5	INB	B channel reciprocal switching		
6	PS	Energy-saving signal input		
7	REG	Output voltage setting		
8	ST	Stand-by signal input		
9	V _S	Supply voltage		
10	φВ	B output		
11	φB	B output		
12	PG	Power supply GND connection		
13	PG	Power supply GND connection		
14	φA	A output		
15	φΑ	A output		
16	VS	Supply voltage		
Fin	GND	GND connection		

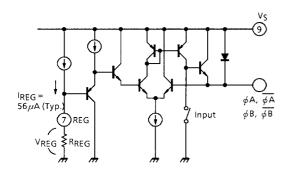
FUNCTION

	INF	TU		OUTPUT				
ST	EN	PS	IN	φ	φ UPPER SIDE SATURATION VOLTA			
Н	Н	L	L	L	Н	V _S – V _{CE} (SAT) U		
Н	Н	L	Н	Н	L	V _S -V _{CE} (SAT) U		
Н	Н	Н	L	L	Н	V _{REG} (Note)		
Н	Н	Н	Н	Н	L	V _{REG} (Note)		


Note: V_{REG} is a voltage appeared at PIN (7) and its value becomes approximately equal to V_{OUT} in power operation period.

ST	ENA	ENB	$\phi A, \ \overline{\phi A}$ $\phi B, \ \overline{\phi B}$		MODE	
Н	L	Н	∞ ENABLE		OPERATION	
Н	Н	L	ENABLE	∞	OPERATION	
Н	Н	Н	ENABLE	ENABLE	OPERATION	
L	Х	Х	∞	∞	STAND-BY	

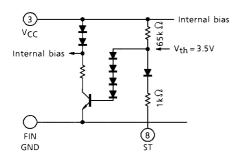
X: Don't Care


High Impedance ∞:

INPUT STEP CIRCUIT DIAGRAM

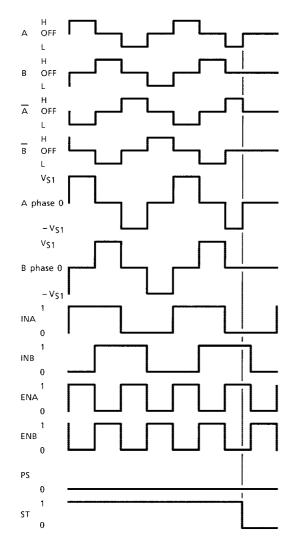
ENA, ENB, INA, INB, PS

VREG OUTPUT CIRCUIT DIAGRAM

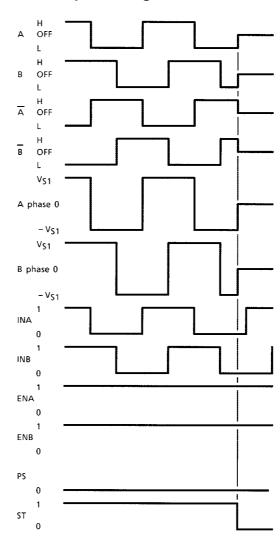


V_{REG} output voltage can be selected with R_{REG} exterior resistance.

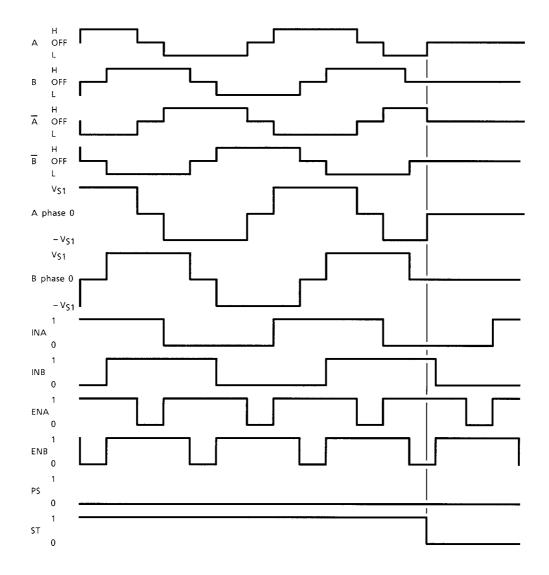
If V_{REG} is not used (as in the case of double-phase magnetization), use pin (7) in the open position. (Do not connect to V_{CC} or GND pins.)


Use the following formula to obtain the output voltage. $V_{OUT} \approx V_{REG} \approx R_{REG} \times 56 \times 10^{-6}$

STAND-BY CIRCUIT DIAGRAM

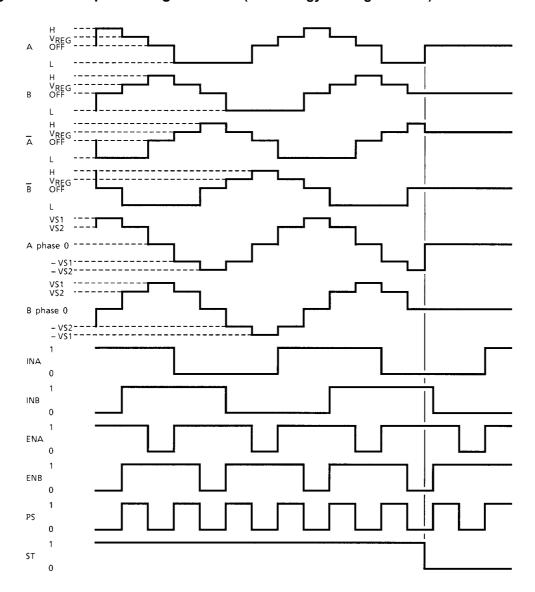

TIMING CHART

Single-phase magnetization


*: $V_{S1} = V_S - (V_{SATU} + V_{SATL})$

Double-phase magnetization

*: $V_{S1} = V_S - (V_{SAT} U + V_{SAT} L)$


Single- / double-phase magnetization

*: $V_{S1} = V_S - (V_{SAT U} + V_{SAT L})$

5 2001-06-13

Single- / double-phase magnetization (with energy-saving function)

 $V_{S1} = V_S - (V_{SATU} + V_{SATL})$

 $V_{S2} = V_{REG} - V_{SATL}$

6 2001-06-13

MAXIMUM RATINGS (Ta = 25°C)

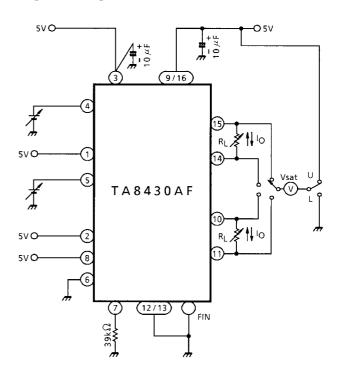
CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	V _{CC}	8.0	V	
Supply Voltage	V _S	8.0	'	
Output Current	I _O (MAX.)	±600	mA	
Output Guirent	I _{O (AVE.)}	±400	111/5	
Input Voltage	V _{IN} , V _{PS} V _{ST} , V _{EN}	GND-0.4~V _{CC} + 0.4	V	
Power Dissipation	P _D (Note)	1.4	W	
Operating Temperature	T _{opr}	-40~85	°C	
Storage Temperature	T _{stg}	-55~150	°C	

Note: $60 \times 30 \times 1.6$ mm PCB occupied in excess of 50% of copper area, mounting.

ELECTRICAL CHARACTERISTICS

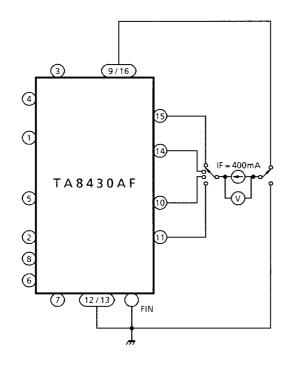
 $(Ta = 25^{\circ}C, V_{CC} = 5 \text{ V}, V_{S} = 5 \text{ V}, ST = 5 \text{ V}, PS = 0 \text{ V}, EN = 5 \text{ V})$

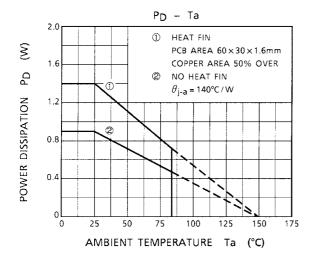
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN	TYP.	MAX	UNIT
	I _{CC1}		Output open		_	14	20	
	I _{CC2}		Output open, PS = 5 V		_	14	20	
	I _{CC3}	1	Output open	ENA = 0 V, ENB = 5 V		9	15	mA
Supply Current	1003			ENA = 5 V, ENB = 0 V	1			
	I _{CC4}		Output open, PS = 5 V	ENA = 0 V, ENB = 5 V		9	15	
	1004			ENA = 5 V, ENB = 0 V				
	I _{CC5}		ST = 0 V		20	65	110	μΑ
	V_{INH}	1	(4), (5) pin Source type		3.5	_	V_{CC}	
	V _{INL}				GND	_	1.7	
Input Voltage	V _{ENH} , V _{PSH}		(1), (2), (6), (8) pin Source type		3.5	_	V _{CC}	V
mpat voltago	V _{STH}				0.0		*00	•
	V _{ENL} , V _{PSL}				GND	_	1.7	
	V _{STL}				OND			
	I _{INH}		V _{IN} = 3.5 V	(4), (5) pin	_	0	0.1	
	I _{INL}		V _{IN} = 0 V	(= <i>j</i> , (0 <i>)</i> piii	_	0.25	5.0	
Input Current	I _{ENH} , I _{PSH}	1	$V_{EN} = V_{PS} = 3.5 \text{ V}$	(1), (2), (6) pin	_	0	0.1	μΑ
mpat Janont	I _{ENL} , I _{PSL}		$V_{EN} = V_{PS} = 0V$		_	0.25	5.0	μ,,
	I _{STH}		V _{ST} = 3.5 V	(8) pin	_	0	0.1	
	I _{STL}		V _{ST} = 0 V	(O) Piii	_	65	110	

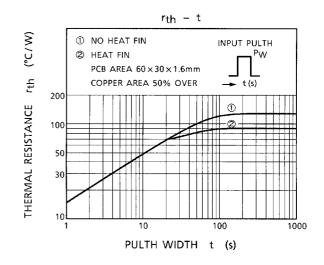

TOSHIBA

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Saturation Voltage		V _{SAT U1}	2		I _{OUT} = 100 mA	1	0.8	_	V
		V _{SAT U2}		_	I _{OUT} = 400 mA	1	0.9	1.2	
		V _{SAT L1}	_		I _{OUT} = 100 mA	1	0.1	_	
		V _{SAT L2}			I _{OUT} = 400 mA	1	0.2	0.4	
Output Control Upr	er Voltage	V _{REG} 1		D = 20 kO	I _{OUT} = 100 mA	1	2.0	_	V
Output Control Upper Voltage		V _{REG} 2		R_{REG} = 39 k Ω	I _{OUT} = 400 mA	1	1.9	_	V
Control Circuit Output Current		I _{REG}	1	_		41	56	71	μA
Diode Forward Voltage		V_{FU}	3	IF = 400 mA		1	1.5	2.0	V
		V_{FL}	3	11 - 400 IIIA		1	1.0	2.0	V
Operating Supply Voltage Range		V _{CC} (opr.)	_			4.0	_	6.0	V
	IN-φ	- t _{pLH}		R _L = 8.2 Ω C _L = 15 pF		1	4.5	_	μs
	EN _{-φ}					1	3	_	
	$PS_{-\phi}$					1	4.5	_	
Propagation Delay Time	ST _{-φ}					_	10	_	
	IN-φ	4				_	0.1		
	EN _{-φ}					_	10	_	
	PS-φ	t _{pHL}				_	0.2		
	ST _{-φ}					_	5	_	

TEST CIRCUIT 1

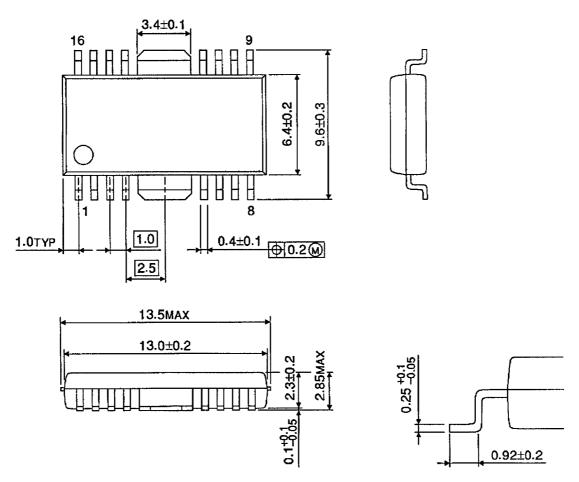



TEST CIRCUIT 2



TA8430AF

TEST CIRCUIT 3



9

PACKAGE DIMENSIONS

HSOP16-P-300-1.00 Unit: mm

Weight: 0.50 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.