TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8466AF

3 PHASE FULL WAVE BRUSHLESS DC MOTOR DRIVER IC

TA8466AF is a semi-linear type 3 Phase Full Wave Brushless DC Motor Driver IC, developed as a cylinder motor driver for stationary VTRs.

FEATURES

- Low Noise Soft Switching Drive
- One direction Drive
- Small Outer Capacitance
- Operating Supply Voltage : V_{CC} = 7~17 V
- Hall Input Sensitivity $: V_H = 30 \text{ mV}_{p-p}$
- Built-in Protective Diodes for All Input Pins
- Built-in Control Amp Reference Voltage (with Output Pins)
- Built-in Thermal Shutdown Circuit

Weight: 0.50 g (Typ.)

TOSHIBA

BLOCK DIAGRAM

Pins (4) and (14) are NC. Keep Pin (6) open.

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL			
1	V _{CC}	Supply voltage input pin			
2	La	a-phase drive output pin			
3	R _F	Output current detecting pin			
4	N.C.	N.C. pin			
5	V _{IN}	Control amp positive input pin			
6	V _{ref}	Control amp reference voltage output pin			
7	H_a^+	a-phase Hall amp positive input pin			
8	Ha⁻	a-phase Hall amp negative input pin			
9	H _b ⁺	b-phase Hall amp positive input pin			
10	H _b ⁻	b-phase Hall amp negative input pin			
11	H_{c}^{+}	c-phase Hall amp positive input pin			
12	H _c ⁻	c-phase Hall amp negative input pin			
13	R _F	Output current detecting pin			
14	N.C.	N.C. pin			
15	L _c	c-phase drive output pin			
16	Lb	b-phase drive output pin			
F	FIN	(Connect to GND)			

1. Control input circuit

Feedback circuit of output currents is built into IC, that is, the voltage feedback is proportional to the output current in $R_{\rm F}$.

Note: The common impedance inside IC is taken into consideration in providing two R_F terminals. Short two pins ((3) and (13)) in using them.

INPUT / OUTPUT CHARACTERISTICS

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	V _{CC}	18	V	
Output Current	I _{O (MAX.)}	0.7	А	
Power Discipation	Po	0.9 (Note 1)	\ \ /	
	Ū	8.3 (Note 2)	vv	
Operating Temperature	T _{opr}	-30~75	°C	
Storage Temperature	T _{stg}	-55~150	°C	

Note 1: Single body

Note 2: Infinite heat sink mounting

ELECTRICAL CHARACTERISTICS ($V_{CC} = 12 V$, Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Supply Current		I _{CC1}	1	Output open, V _{IN} = 0 V	1.5	3.0	4.5	mA	
		I _{CC2}		Output open, V _{IN} = 3 V	18	50	95		
		I _{CC3}		Output open, V _{CC} = 18 V, V _{IN} = 3 V	18	55	110		
Referen		Voltage	V _{ref}			2.25	2.35	2.45	V
Control Amp	Control Gain		G _m	- 2	R _F = 0.47Ω, V _{IN} = 2.45 V / 2.6 V	_	1.0	_	A / V
	Input Current		l _{in}		V _{IN} = 3.5 V	-	2.5	10	μA
	Reference Voltage Ripple Compression Rate		R _r		V _{CC} = 7 V / 18 V	-53	-64	_	dB
Leak Current Upper Side Lower Side		I _{OL (U)}	- 3	V _{CC} = 18 V		—	50	μA	
		I _{OL (L)}		V _{CC} = 18 V		—	50		
Saturation Voltage Upper Side Lower Side		V _{sat (U)}	- 4	I _L = 0.7 A		1.2	1.6	V	
		V _{sat (L)}		I _L = 0.7 A		0.5	0.85		
Residual Output Voltage		V _{OR}	2	V _{IN} = 0 V		0	12	mV	
Hall Amp	Difference Input Voltage Range		V _H	6		30	_	200	mV _{p-p}
	Common-Mode Input Voltage Range		V _{CMRH}	5		2.0	_	V _{CC} -3	V
Thermal Shutdown Operating Temperature		TSD	_		_	175	_	°C	

TEST CIRCUIT 1

 $I_{CC1},\,I_{CC2},\,I_{CC3}$

TEST CIRCUIT 2

TEST CIRCUIT 3

I_{OL (U)}, I_{OL (L)}

TEST CIRCUIT 4

V_{sat (U)}, V_{sat (L)}

TEST CIRCUIT 5

VCMRH

TEST CIRCUIT 6 V_H

V_H: Functional check to be made at 30 mV_{p-p} / 200 mV_{p-p}.

TOSHIBA

APPLICATION CIRCUIT

- Note 1: R_F value is determined by coil impedance, F / V conversion voltage (control input), and necessary activation torque. But determine it at about 0.3~5 Ω.
- Note 2: Connect this condenser directly to IC fin (GND). Still larger capacity may be necessary depending upon common impedance among supply lines.
- Note 3: Write Hall sensor GND line and coil current R_F line without common impedance.
- Note 4: It may be necessary to change condenser capacity depending upon motor type, to prevent noise and oscillation.
- Note 5: Utmost care is necessary in the design of the output line, V_{CC} and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

TOSHIBA

PACKAGE DIMENSIONS

HSOP16-P-300-1.00

Unit : mm

Weight : 0.50 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.