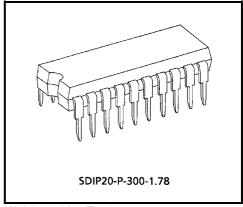
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

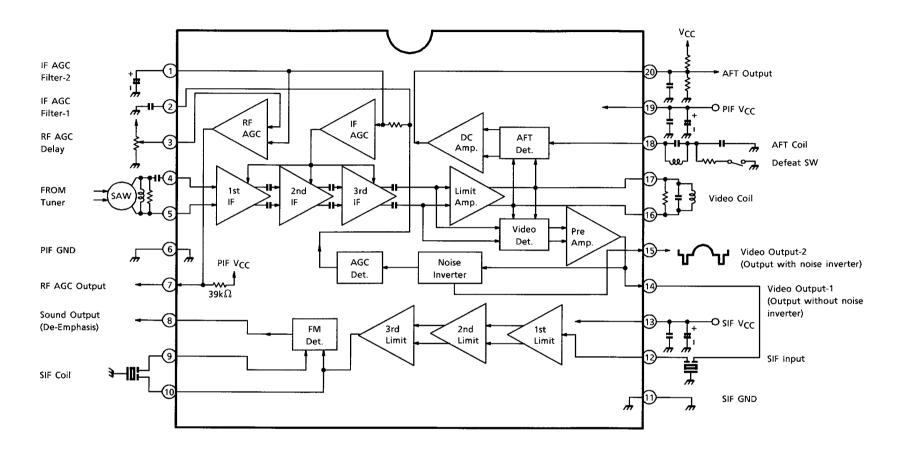
TA8700AN

PIF / SIF IC FOR TV / VTR


FEATURES

PIF section

- RF-Pre Amp. less by high input sensitivity
- 3-Stage IF amplifier with variable gain
- High-Speed response AGC with dual time constants
- Single end AFT output with defeat function
- Delayed RF AGC output (Reverse AGC)
- Output with white / black noise inverter
- Output without white / black noise inverter
- Video mute switch


SIF section

- 3-stage limiter amplifier
- Quadrature-type detection circuit
- Use of a ceramic discriminator device makes the SIF circuit adjustment-free
- · Sound mute switch

Weight: 1.02g (Typ.)

BLOCK DIAGRAM

2 2001-05-10

TERMINAL FUNCTION

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
1 2	AGC Filter	This filter is a dual time constant system to speed up AGC. By connecting the primary filter terminal of pin 2 to GND, the picture muting is executed.	V _{CC} 1 S1Ω S2 W C XZ AGC Det.
3	AGC Delay	This terminal adjusts the delay point of RF AGC by varying the reference voltage of comparator.	VCC Oys. 6 Output AGC Output
4 5	PIF Input	This is an input terminal of PIF signal using an emitter follower. The input impedance is typical 2.5k Ω , 4pF.	6kΩ 4kΩ 4kΩ 4kΩ
6	PIF GND	GND pin for the PIF amplifier. Connect a capacitor between pins 19 and 6.	_
7	RF AGC Output	Output pin for RF-AGC supplied to the tuner. (A $39k\Omega$ resistor is connected internally between pin 7 and the internal power supply pin.)	VCC CS AGC Delay

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
8	FM Det Output (De-emphasis)	This is an output terminal of FM detector circuit. (Supply this signal to the de-emphasis circuit.)	8 8
9 10	SIF Coil	This terminal connects FM detector Coil. Use of a ceramic discriminator device makes the SIF circuit adjustment-free. By connecting pin 9 to GND, the Audio muting is executed.	9 12kΩ Audio Mute CONTROL FM Det.
11	SIF GND	GND pin for the SIF amplifier. Connect a capacitor between pins 13 and 11.	_
12	SIF Input	Limiter amplifier input terminal.	
13	SIF V _{CC}	V _{CC} pin for the SIF amplifier. Connect a capacitor between pins 11 and 13.	_
14	Video signal Output-1 (N.I. OFF)	This is an output terminal of Video output. By Connecting pin 2 to GND, a muting is executed. Output signal supplied to the sound IF (SIF) circuit. (Example for diversity antenna circuit.)	10000

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
15	Video signal Output-2 (N.I. ON)	This is an output terminal of video output. By connecting pin 2 to GND, a muting is executed.	(15) A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
16 17	Video Coil	This terminal connects video detector Coil.	VCC 3kU 3kU 3kU AFT
18	AFT Coil	Supply a control signal by single end. This method is that the phase difference is treated as current and voltage is converted by an external resistor. There-fore, this can be connected to AFT using only one pin. By connecting a resistor of $5.1 k\Omega$ to GND, an AFT defeat can be executed.	V _{CC} 3.3kΩ 3.3kΩ 3.3kΩ
19	PIF V _{CC}	V _{CC} pin for the PIF amplifier. Connect a capacitor between pins 6 and 19.	_
20	AFT Output	This is an output terminal of AFT.	20007 1kΩ 20007

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	15	V
Power Dissipation	P _D (Note)	1.2	W
Operating Temperature	T _{opr}	-20 ~ 65	°C
Storage Temperature	T _{stg}	− 55 ~ 150	°C

Note: When using the device at above $Ta = 25^{\circ}C$, decrease the power dissipation by 9.6mW for each increase of $1^{\circ}C$.

RECOMMENDED SUPPLY VOLTAGE

PIN No.	PIN NAME	MIN	TYP.	MAX	UNIT
13	PIF V _{CC}	8.1	9.0	9.9	٧
19	SIF V _{CC}	8.1	9.0	9.9	٧

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS (Unless otherwise specified, V_{CC} = 9V, Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Supply Current		Icc	1	_	28	38	48	mA	
	Pin 3	V ₃		SW ₂ : b	5.7	6.2	6.7		
	Pin 4	V ₄		_	3.5	4.0	4.5		
	Pin 5	V ₅		_	3.5	4.0	4.5		
	Pin 7	V ₇₍₁₎		SW ₁ : a, SW ₂ : c	8.8	_	_		
	FIII /	V ₇₍₂₎	V ₇₍₂₎	SW ₁ : b, SW ₂ : a	_	_	0.5		
	Pin 8	V ₈	1	SW ₃ : b	3.3	3.9	4.5		
	Pin 9	V ₉		SW ₃ : a	2.2	2.7	3.2		
Terminal Voltage	Pin 10	V ₁₀		1	1	_	3.2	3.7	4.2
	Pin 12	V ₁₂		_	2.5	3.0	3.5		
	Pin 14	V ₁₄		_	4.2	4.7	5.2		
	Pin 15	V ₁₅		_	4.2	4.7	5.2		
	Pin 16	V ₁₆		_	5.8	6.3	6.8		
	Pin 17	V ₁₇		_	5.8	6.3	6.8		
	Pin 18	V ₁₈		SW ₄ : a	2.3	2.8	3.3		
	Pin 20	V ₂₀		SW ₄ : b	2.5	4.0	5.5		

6

AC CHARACTERISTICS (Unless otherwise specified, V_{CC} = 9V, Ta = 25°C)

PIF section (When using the specified video coil)

CHARACTERISTI	С	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Input Sensitivity		V _{in} MIN	2	(Note 1)	36	41	46	dΒμV
Maximum Input Level		V _{in} MAX	2	(Note 2)	100	110	_	dΒμV
IF AGC Range		ΔΑ	2	_	50	62	_	dB
Differential Gain		DG	. 3	(Note 2)	_	_	8	%
Differential Phase		DP	3	(Note 3)	_	_	6	0
No-signal Output Level		V ₁₄ , V ₁₅	2	(Note 4)	4.0	4.6	5.2	V
Sync. Tip Level		V _{SYNC}	2	(Note 5)	2.0	2.3	2.6	V
Video Output Amplitude		V _{OUT}	2	(Note 6)	1.7	2.0	2.3	V _{p-p}
White Noise Inverter Level		V _{WTH}			_	5.0	_	
White Noise Clamp Level		V _{WCL}	2	(Note 7)	_	3.8	_	V
Black Noise Inverter Level		V _{BTH}		(Note 1)	0.9	1.2	1.5	
Black Noise Clamp Level		V _{BCL}			3.2	3.5	3.8	
Carrier Wave Rejection Ratio		C _L	4	(Note 8)	40	_	_	dB
Harmonic Rejection Ratio		I _{2nd}	4	(Note 9)	40	_	_	dB
AFT Sensitivity		ΔF /ΔV	2	(Note 10)	_	20	30	kHz / V
AFT Output Voltage	Min.	VL	2		_	0.1	0.5	V
	Max.	VU		_	8.4	8.7	_]
Intermodulation		I ₉₂₀	4	(Note 11)	30	38	_	dB

SIF section (When using the specified SIF coil)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
FM Detector Output Level	V _{OD}	5	(Note 12)	350	550	750	${\rm mV}_{\rm rms}$
Limiting Sensitivity	V _{INLIM}	5	(Note 13)	_	40	50	dΒμV
AM Suppression Ratio	AMR	5	(Note 14)	40	_	_	dB
−3dB Bandwidth	±Δf _G	5	(Note 15)	60	80	_	kHz
Distortion Bandwidth	±∆f _D	5	(Note 16)	50	70	_	kHz

TEST CONDITIONS

Note 1: Input sensitivity

PIF input (Pin 4) : f_0 =58.75MHz, f_m =15.75kHz, 30% AM, 84dB μ V.

Gradually reduce the input level. Measure the input level when the detection output at video output (Pin 15-a) will be -3dB.

Note 2: Maximum input level

PIF input (Pin 4): Input same as Note 1.

Gradually raise the input level. Measure the input level when the detection output at video output (Pin 15-a) is at the noise inverter threshold.

Note 3: Differential gain / Differential phase

PIF input (Pin 4): f₀=58.75MHz, Standard television signal (V / S=10: 4 ramp waveform), 87.5%

AM, 84dBµV.

IF AGC=Free.

Measure the differential gain and differential phase with a vector scope. (Pin 15-b)

Note 4: No-signal output level

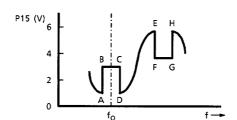
PIF input (Pin 4): No input. 2nd AGC terminal (Pin 1): GND, Measure DC voltage at video output Pin 15-a).

Note 5: Sync. Tip level

PIF input (Pin 4): Input same as Note 3. Measure Sync. Tip DC voltage at video output (Pin 15-b).

Note 6: Video output amplitude

PIF input (Pin 4): Input same as Note 3. Measure amplitude level at video output (Pin 15-b).


Note 7: Noise inverter

PIF input (Pin 4): f₀=57~65MHz (Sweep Signal), 84dBµV.

Connect monitor scope to video output (Pin 15-b).

Measure the 2nd AGC terminal (Pin 1) voltage and fix the terminal to that voltage using the external power supply.

Then, 2nd AGC Voltage variable when a waveform like that in the accompanying diagram is output.

AD: Black noise inverter level.

BC: Black noise clamp level.

EH: White noise inverter level.

FG: White noise clamp level.

Note 8: Carrier wave rejection ratio

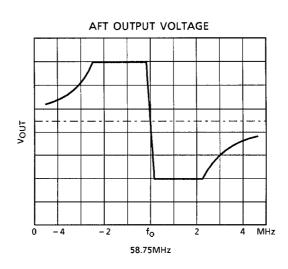
PIF input (Pin 4) : f_0 =58.75MHz, f_m =15.75kHz, 78% AM, 84dB μ V.

Add the voltage 2nd AGC terminal (Pin 1), So that the video output (Pin 15-b) can be $2V_{p-p}$. Calculate the following equation by setting the modulation off and measuring the output carrier level. (V_{no-mod})

$$C_L = 20 \lambda og \frac{2.0}{V_{no\text{-}mod} (V_{p\text{-}p})} [dB]$$

Note 9: Harmonic rejection ratio

Measure as is Note 8, above, and calculate the secondary harmonic level (117.5MHz component) at video output (Pin 15-b).


Note 10: AFT sensitivity

PIF input (Pin 4) : f_0 =58.75MHz, 84dB μ V, CW.

Input the above signal and adjust the AFT coil so that the AFT output pin (Pin 20) voltage is 4.5V.

Measure the output voltage differential (ΔV) of the AFT output pin when the frequency is raised by 20kHz. Then, calculate the ratio using the following formula.

$$\frac{\Delta f}{\Delta V} = \frac{20}{\Delta V} [kHz / V]$$

9

Note 11: Intermodulation

PIF input (Pin 4): Input the following composite signals to the PIF input.

(1) SG1: 58.75MHz (P) 84dBµV

(2) SG2: 54.25MHz (S) 74dBµV

(3) SG3: 55.17MHz (C) 74dBμV

Monitor the video output (Pin 15-b) detection output waveform. Apply external voltage to the 2nd AGC terminal (Pin 1) so that the waveform's lowest level matches the sync. Tip level.

Using a spectrum analyzer, measure the difference between the level of the chroma signal component and 920kHz signal component.

Note 12: FM detection output level

SIF input (Pin 12): $f_0 = 4.5 MHz$, $f_m = 400 Hz$, 25 kHz / devi, $100 dB \mu V$.

Measure the sound detection output of the sound output terminal (Pin 8).

Note 13: Limiting sensitivity

SIF input (Pin 12): Input same as Note 12. Gradually reduce the input signal. Measure the input level when the sound detection output of the sound output terminal (Pin 8) will be -3dB.

Note 14: AM Suppression ratio

SIF input (Pin 12): $f_0 = 4.5MHz$, $84dB\mu V$.

Measure the sound detection output level of the sound output terminal (Pin 8) when the above signals are modulated as follows. Calculate The ratio.

- (1) AM modulation: $f_m = 400Hz$, 30%
- (2) FM modulation: f_m = 400Hz, 25kHz / devi

$$AMR = 20 \lambda og \left[\frac{with \, FM \, modulation \, (mV_{rms})}{with \, AM \, modulation \, (mV_{rms})} \right] [dB]$$

Note 15: -3dB bandwidth

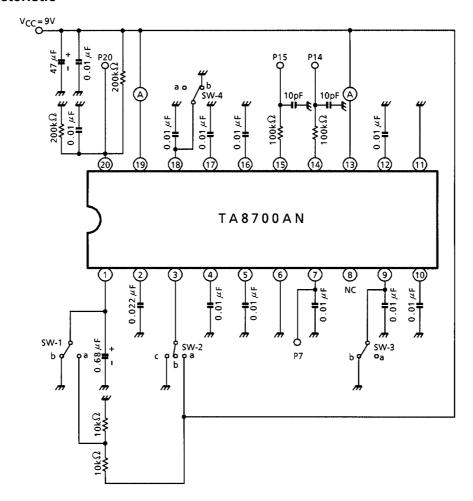
SIF input (Pin 12): f_0 =4.5MHz, f_m =400Hz, 7.5kHz / devi, 100dB μ V.

- f_{AFh}: Gradually raise the frequency. Measure the input frequency when the sound detection output of the sound output terminal will be −3dB.
- (2) f_{AFI}: Gradually lower the frequency. Measure the input frequency when the sound detection output of the sound output terminal will be −3dB.

-3dB bandwidth = $(f_{AFh}-f_{AFI})$ [kHz]

Note 16: Distortion bandwidth (1.5%)

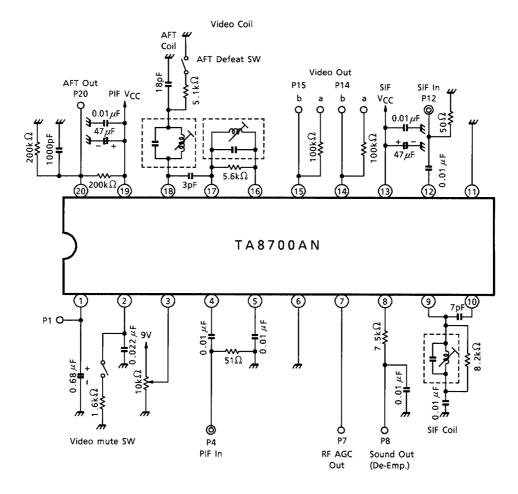
SIF input (Pin 12): Input same as Note 15.


- (1) f_{DAFh}: Gradually raise the frequency. Measure the Input frequency when the sound distortion ratio of the sound output terminal will be 1.5%.
- (2) f_{DAFI}: Gradually lower the frequency. Measure the input frequency when the sound distortion ratio of the sound output terminal will be 1.5%.

10

Distortion bandwidth = $(f_{DAFh}-f_{DAFI})$ [kHz]

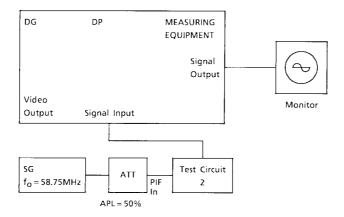
TEST CIRCUIT 1


DC characteristic

11 2001-05-10

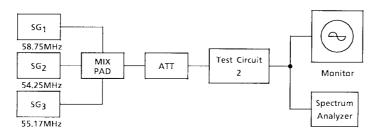
TEST CIRCUIT 2

AC characteristic

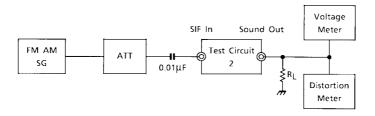


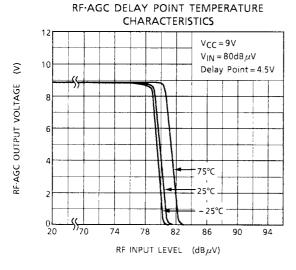
COIL	JAPAN	USA
VIDEO	292YCS-3390BS	T119KC-14969NK
AFT	292GCS-3388BS	T119KC-14969NK
SIF	F292MCAS-3297IB	F292MCAS-3297IB

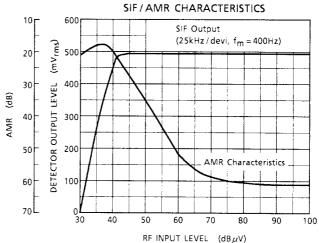
12 2001-05-10

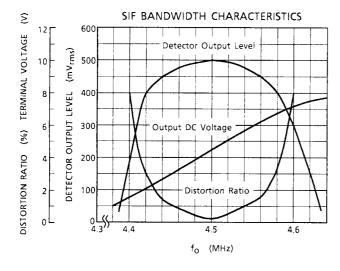

TEST CIRCUIT 3

DG / DP

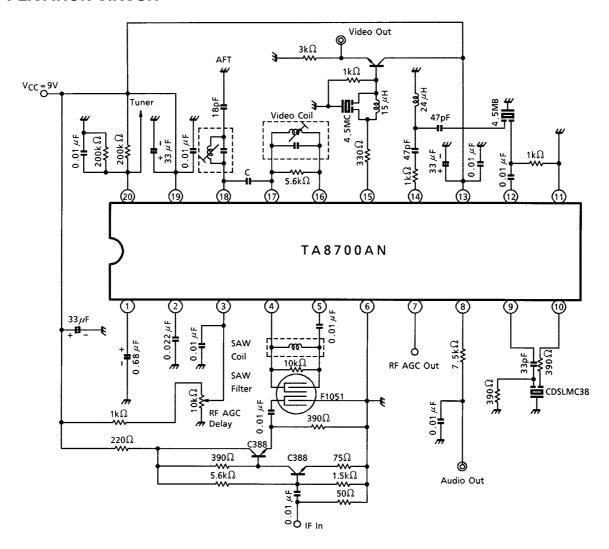

TEST CIRCUIT 4

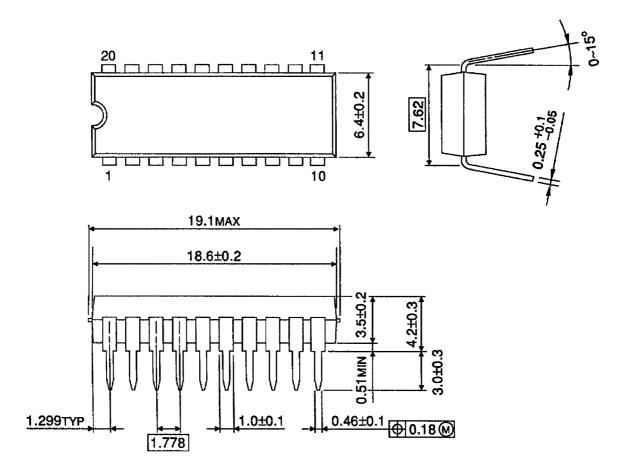

Carrier wave rejection ratio, harmonic rejection ratio and intermodulation




TEST CIRCUIT 5g,

 $V_{IN(LIM)},\,AMR,\,V_{OD},\,\Delta f_G,\,\Delta f_D$




APPLICATION CIRCUIT

COIL	JAPAN	USA
VIDEO	292YCS-3390BS	T119KC-14969NK
AFT	292GCS-3388BS	T119KC-14969NK
SIF	F292MCAS-3297IB	F292MCAS-3297IB

PACKAGE DIMENSIONS

SDIP20-P-300-1.78 Unit: mm

Weight: 1.02g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.