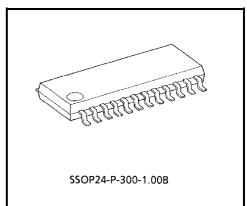
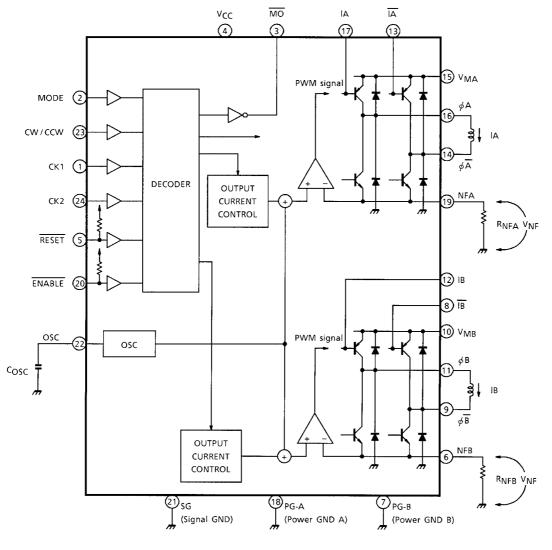
TOSHIBA BI-CMOS INTEGRATED CIRCUIT MULTICHIP


TB6512AF

PWM CHOPPER TYPE BIPOLAR STEPPING MOTOR DRIVER

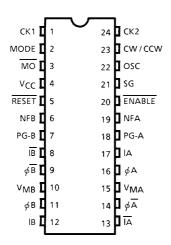
The TB6512AF is PWM chopper type sinusoidal micro step bipolar stepping motor driver. Sinusoidal micro step operation is accomplished only a clock signal inputting by means of built-in hard ware.


FEATURES

- 1 chip bipolar sinusoidal micro step stepping motor driver.
- Output Current up to 150 mA
- PWM chopper type.
- Structured by high voltage Bi-CMOS process technology.
- Forward and reverse rotation are available.
- 1-2, 2W1-2 phase 1 or 2 clock drives are selectable.
- Package : SSOP24-P-300B
- Input Pull–Up Resistor equipped with RESET and ENABLE Terminal : $R = 500 \text{ k}\Omega$ (Typ.)
- Output Monitor available with $\overline{\text{MO}}.\text{IO}(\overline{\text{MO}})=\pm 2$ mA MAX.
- Reset and Enable are available with $\overline{\text{RESET}}$ and $\overline{\text{ENABLE}}$.

Weight: 0.27 g (Typ.)

BLOCK DIAGRAM



PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION					
1	CK1	CLOCK Signal Input terminal	Truth table A				
2	MODE	Excitation Mode Setting terminal	Truth table B				
3	MO	Monitor Output terminal					
4	V _{CC}	Power voltage supply terminal for Logic					
5	RESET	Reset Signal Input terminal	Truth table A				
6	NFB	B Channel current detective terminal					
7	PG-B	Power GND B terminal					
8	ĪB	Upper PNP Transistor Base terminal					
9	φĒ	Output B terminal					
10	V _{MB}	Power voltage supply terminal for Motor B					
11	φΒ	Output B terminal					
12	IB	Upper PNP Transistor Base terminal					
13	١Ā	Upper PNP Transistor Base terminal					
14	φĀ	Output Ā terminal					
15	V _{MA}	Power voltage supply terminal for Motor A					
16	φΑ	Output A terminal					
17	IA	Upper side PNP Transistor Base terminal					
18	PG-A	Power GND A terminal					
19	NFA	A Channel current detective terminal					
20	ENABLE	ENABLE Signal Input terminal	Truth table A				
21	SG	Signal GND terminal					
22	OSC	Internal Oscillation frequency detective terminal					
23	CW / CCW	Forward rotation / Reverse rotation signal Input	Truth table A				
24	CK2	Clock signal Input terminal	Truth table A				

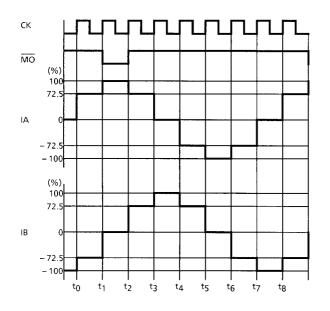
PIN CONNECTION

TRUTH TABLE A

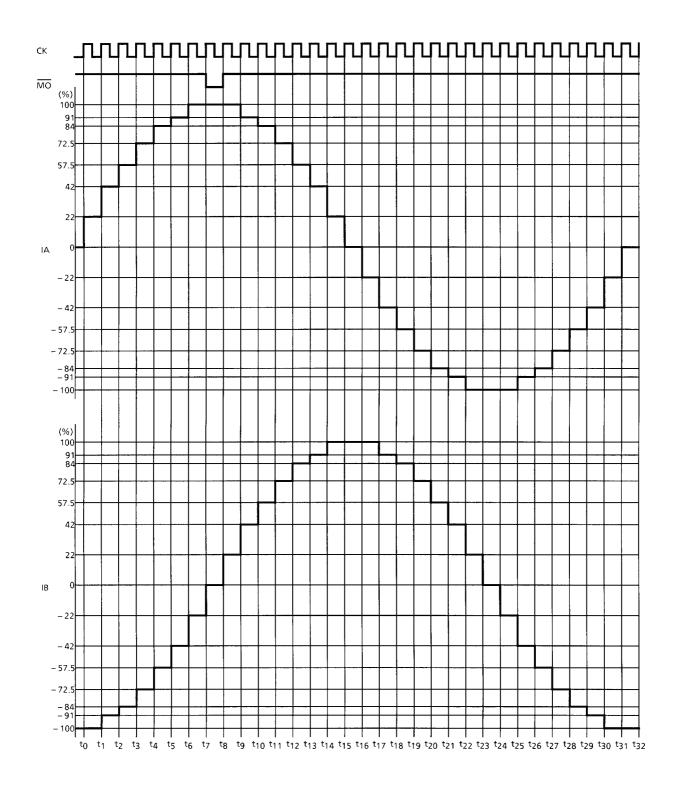
	INPUT									
CK1	CK2	CW / CCW	RESET	ENABLE	MODE					
ſ	Н	L	Н	L	CW					
ς	L	L	Н	L	INHIBIT					
Н	ſ	L	Н	L	CCW					
L		L	Н	L	INHIBIT					
Ч	Н	Н	Н	L	CCW					
Ę	L	Н	Н	L	INHIBIT					
Н	┡┑	Н	Н	L	CW					
L	Ę	Н	Н	L	INHIBIT					
Х	х	х	L	L	INITIAL					
Х	х	х	х	Н	Z					

Z : High Impedance

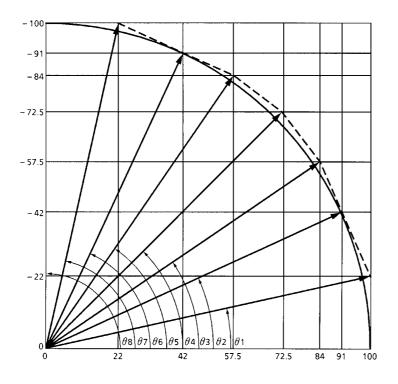
X : Don't Care


Note: Do not use INHIBIT MODE

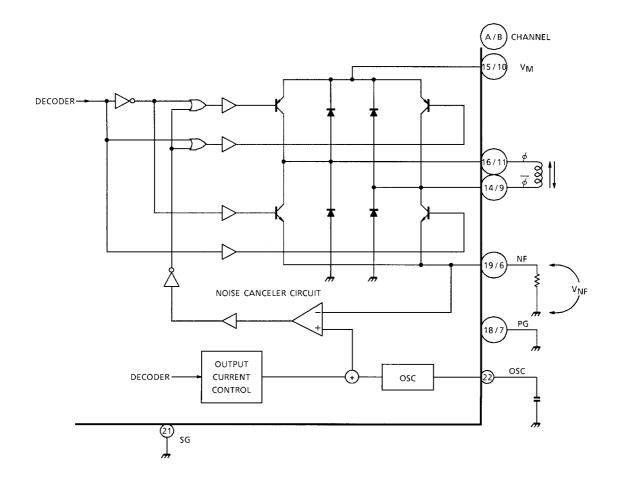
TRUTH TABLE B


INITIAL MODE

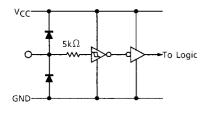
INPUT	MODE (EXCITATION) -2 phase	EXCITATION MODE		Law (D)
MODE	(EXCITATION)	EXCITATION MODE	I _{OUT} (A)	I _{OUT} (B)
L	1-2 phase	1-2 phase	100%	0%
Н	2W1-2 phase	2W1-2 phase	100%	0%


1-2 PHASE EXCITATION (MODE : L, CW mode)

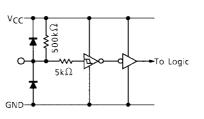
2W1-2 PHASE EXCITATION (MODE : H, CW mode)



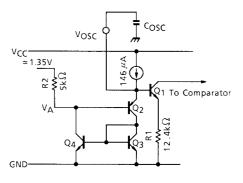
OUTPUT CURRENT VECTOR OR BIT (Normalize to 90 deg for each one step)


0	ROTATIO	N ANGLE	VECTOR LENGTH		
θ	IDEAL	TB6504F	IDEAL	TB6512AF	
θ0	0°	0°	100	100.00	
θ1	11.25°	12.41°	100	102.39	
θ2	22.5°	27.78°	100	100.22	
θ3	33.75°	34.39°	100	101.80	
θ4	45°	45°	100	102.53	
θ5	56.25°	55.61°	100	101.81	
θ6	67.5°	65.22°	100	100.22	
θ7	78.75°	77.59°	100	102.39	
θ8	90°	90°	100	100.00	
		1-2 / 2W1	I-2 Phase		

OUTPUT CIRCUIT



INPUT CIRCUIT


CK1, CK2, CW / CCW, MODE Terminals

RESET, ENABLE Terminals

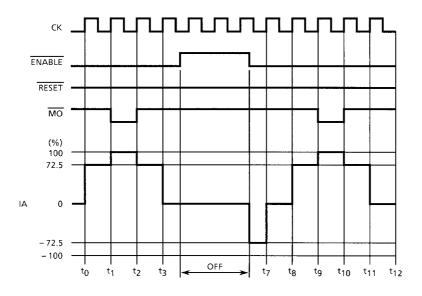
OSC Terminals

<u>TOSHIBA</u>

• OSC frequency calculation

Sawtooth OSC circuit consists of Q_1 through Q_4 and R_1 through R_4 . Q_2 is turned "off" when V_{OSC} is less than the voltage of 2.5 V + V_{BE} Q_2 approximately equal to 2.05 V. V_{OSC} is increased by C_{OSC} charging through R_1 . Q_3 and Q_4 are turned "on" when V_{OSC} becomes 2.05 V (Higher level.)

Lower level of $V_{(22)}$ pin is equal to $V_{BE}\ Q_2$ + $V_{SAT}\ Q_4$ approximately equal to 1.4 V.

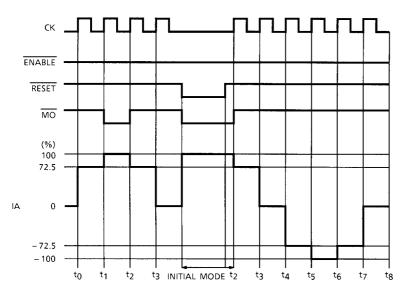

VOSC is calculated by following equation.

Assuming that $V_{OSC} = 1.4 \text{ V} (t = t_1) \text{ and } = 2.05 (t = t_2)$

 C_{OSC} is external capacitance connected to pin(22) and R_1 is on-chip 10 k Ω resistor. Therefore, OSC frequency is calculated as follows.

$$\begin{aligned} t_1 &= \frac{1.0 \ C_{OSC}}{146 \times 10^{-6}} \\ t_2 &= \frac{2.05 \cdot C_{OSC}}{146 \times 10^{-6}} \\ f_{OSC} &= \frac{1}{t_2 - t_1} = \frac{146 \times 10^{-6}}{C_{OSC} \ (2.05 - 1.0)} \\ &= \frac{0.139}{C_{OSC}} (\text{kHz}) \ (C_{OSC} \ \text{unit} = \mu\text{F}) \end{aligned}$$

ENABLE AND RESET FUNCTION AND MO SIGNAL



ENABLE signal disables only Output signal. Internal logic functions are proceeded by CK signal without regard to **ENABLE** signal.

Therefore, Output Current is initiated from the proceeded timing point of internal logic circuit, after release of disable mode.

Fig.1 shows the $\overline{\text{ENABLE}}$ functions, when the system is selected in 1–2 phase drive mode.

As $\overline{\text{RESET}}$ is low, the decoder is initialized and $\overline{\text{MO}}$ is low. After $\overline{\text{RESET}}$ is high, the motion is resumed from next clock as show in Fig.2. $\overline{\text{MO}}$ (Monitor Output) signals is used as rotation and initial signal for stable. rotation checking.

MAXIMUM RATINGS (Ta = 25°C)

CHARAC	TERISTIC	SYMBOL	RATING	UNIT
Supply Voltage		V _{CC}	5.5	V
Output Voltage		V _{M (opr.)}	4.0~10.0	V
Output Voltage		V _{M (MAX.)}	12.0	v
Output Current		I _{O (MAX.)}	120	
	AVE.	I _{O(MO)}	±2	mA
Input Voltage	•	V _{IN}	~V _{CC}	V
Power Dissipation		Po	0.83 (Note 1)	W
Fower Dissipation		PD	4.0~10.0 V 12.0 M 120 m ±2 M ~V _{CC} M 0.83 (Note 1) V 1.04 (Note 2) ~ ~30~85 ° ~55~150 °	vv
Operating Tempera	ature	T _{opr}	-30~85	°C
Storage Temperatu	ıre	T _{stg}	-55~150	°C
Feed Back Voltage	•	VI	1.0	V

Note 1: No heat sink

Note 2: With heat sink (50 × 50 × 1.6 mm Cu 10%)

RECOMMENDED OPERATING CONDITIONS (Ta = -30~85°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Supply Voltage	V _{CC (opr.)}		2.7	3.0	5.5	V
Output Voltage	V _{M (opr.)}		4.0	_	10.0	V
Output Current	I _{OUT}		_	_	100	mA
Input Voltage	V _{IN}		_	_	V _{CC}	V
Clock Frequency	f _{CLOCK}		_	_	5	kHz
OSC Frequency	fosc		15	_	80	kHz

ELECTRICAL CHARACTERISTICS Unless otherwise specified, (Ta = 25°C, V_{CC} = 3 V, V_M = 5 V, L = 20 mH / R = 0.5 Ω)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Input Voltage	High	V _{IN (H)}		MODE, CW / CCW, ENABLE	V _{CC} ×0.7	_	V _{CC} +0.4	v	
input voltage	Low	V _{IN (L)}	1	CK1, CK2, RESET	GND -0.4	_	GND ×0.3	v	
Input Hysteresis Voltag	je	V _H			_	600		mV	
		I _{IN-1 (H)}		M1, M2, REF IN, V _{IN} = 5.0 V	_	_	100	nA	
Input Current		I _{IN-1 (L)}	1	RESET, V _{IN} = 0 V, ENABLE Internal pull-up resistor	3	6	12	μA	
		I _{IN-2 (L)}		V _{IN} = 0 V	—	—	100	nA	
		I _{CC1}		Output open, RESET:H, ENABLE:L,	_	5	9		
		ICC2	2	(1-2 phase excitation)		Ũ	0		
				Output open,					
Quiescent Current V _{CC}	2			RESET : H, ENABLE : L	—	5	9	mA	
				(2W1-2 phase excitation)					
		I _{CC3}		RESET : L, ENABLE : H	—	1.3			
		I _{CC4}		RESET : H, ENABLE : H	_	1.3			
Comparator Reference	Voltage	V _{NF}	3	R _{NF} = 2.5 Ω, C _{OSC} = 0.0033 μF	0.22	0.25	0.28	V	
Output Diffirencial		ΔV _O	_	B / A, C _{OSC} = 0.0033 μF R _{NF} = 2.5 Ω	-10	_	10	%	
Maximum OSC Frequency		fOSC (MAX.)	—		100	_	_	kHz	
Minimum OSC Frequer	ncy	fosc (MIN.)	_		—	_	10	kHz	
OSC Frequency		fosc	—	C _{OSC} = 0.0033 μF	31	44	70	kHz	
Output Voltage		V _{OH (MO)}	-	I _{OH} = -40 μA	2.5	—	V _{CC}	v	
Culput Voltage		V _{OL (MO)}	—	I _{OL} = 40 μA	GND	0.1	0.5	V	

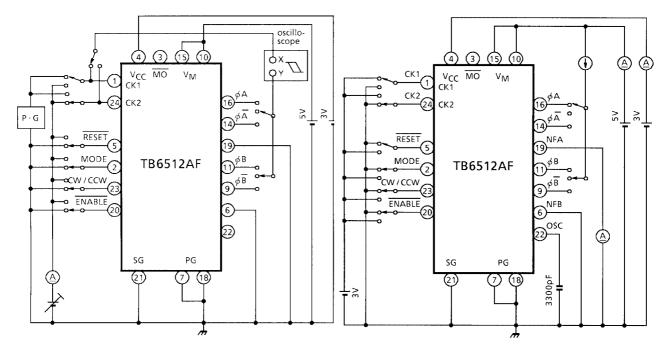
Output block

CHAR	ACTERISTI	С	SYMBOL	TEST CIR- CUIT	TES	T CONDITION	MIN	TYP.	MAX	UNIT
	Upper	Side	V _{SAT U1}		$l_{0,17} = 0.1^{\circ}$	2 A	_	0.08	0.23	
CHARACTERISTIC SYMBOL CIR- CUIT TEST CONDITION MIN TYP.	n Lower	Side	VSAT L1	4	1001 - 0.1.	2 A	_	0.16	0.43	v
	Upper	Side	V _{SAT U2}		lour = 0.0	6 4		0.06		v
	- 0.10									
	Upper	Side	V _{F U1}	5	lour = 0.1	2 Δ		1.13	1.8	V
Voltage	Lower	Side	V _{F L1}	5	I _{OUT} = 0.12 A			0.95	1.6	v
			I _{M1}		RESET	: "L" Level	_	Ι	50	μA
(A+B Channels)			I _{M2}	2	RESET : "H" Level		_	17	28	mA
	rrent		I _{NF}		RESET	: "H" Level	1	2.5	7	mA
	2W1-2φ	1-2φ			θ = 0		_	100	_	-
	2W1-2φ	—			θ = 1 / 8		_	100	_	
	2W1-2φ	—			$\theta = 2/8$		86	91	96	
A-B Chopping	2W1-2φ	—	VECTOR	3	$\theta = 3 / 8$		79	84	89	%
	2W1-2φ	1-2φ	VLUIUK	5	$\theta = 4 / 8$	C _{OSC} = 0.0033 μF	67.5	72.5	77.5	
	2W1-2φ	—			$\theta = 5 / 8$		52.5	57.5	62.5	
	2W1-2φ	—			$\theta = 6 / 8$		37	42	47	
	2W1-2φ	—			$\theta = 7 / 8$		17	22	27	

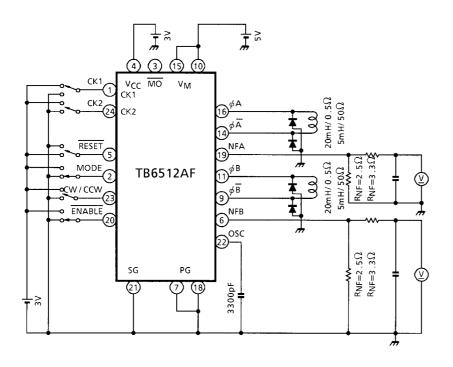
Note: Maximum current ($\theta = 0$) : 100% 2W1-2 ϕ : 2W1, 2 phase excitation mode

 $W1-2\varphi$: W1, 2 phase excitation mode

 $1-2\phi$: 1, 2 phase excitation mode

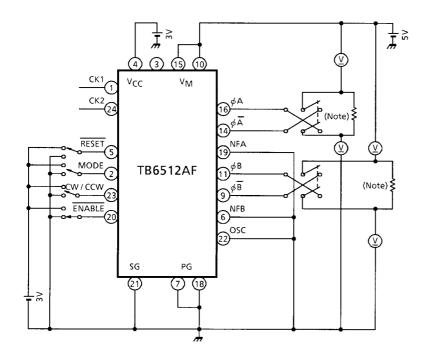

ELECTRICAL CHARACTERISTICS Unless otherwise specified, (Ta = 25°C, V_{CC} = 3 V, V_M = 5 V, L = 20mH / R = 0.5 Ω)

				TEST							
CHARACTERISTIC			SYMBOL	CIR- CUIT	TES	T COI	NDITION	MIN	TYP.	MAX	UNIT
	2W1-2φ	1-2φ			θ = 0			_	100	_	
	2W1-2φ	_			θ = 1 / 8				100		
	2W1-2φ	_			θ = 2 / 8			_	91.1	_	
A-B Chopping Current	2W1-2φ	_	VECTOR	3	$\theta = 3 / 8$	R _{NF}	= 3.3 Ω		83.6		%
(Note)	2W1-2φ	1-2φ	VECTOR	3	$\theta = 4 / 8$	L = 5	c = 0.0033 μF mH / R = 50 Ω		72.6		70
	2W1-2φ	_			$\theta = 5 / 8$				60.0		
	2W1-2φ	_			$\theta = 6 / 8$				44.5		
	2W1-2φ	—			$\theta = 7 / 8$				24.3		
I					$\Delta \theta = 0 / 8$ -	-1/8			0	_	
					Δθ = 1 / 8-	-2/8		10	22.5	35	
			ΔV _{NF}		Δθ = 2 / 8-	-3 / 8 R _{NF} = 2.5 Ω		5	17.5	30	mV
Reference Volta	ge				$\Delta \theta = 3 / 8 - 4 / 8$ COSC		C _{OSC} = 0.0033 µF	16.25	28.75	41.25	
					$\Delta \theta = 4 / 8$ -	-5 / 8	25	37.5	50		
				$\Delta \theta = 5 / 8$ -	-6 / 8		26.25	38.75	51.25		
					$\Delta \theta = 6 / 8$ -	-7/8		37.5	50	62.5	
			tr		R _L = 2 Ω,	V _{NF} =	0 V, C _L = 15	_	0.3	_	
			t _f		pF			_	2.2	_	
			t _{pLH}		CK ~ Output			1.5		-	
			t _{pHL}					2.7			
Output Tr Switch	ning Charact	eristics	t _{pLH}	7	OSC ~ Output				5.4		
	ing onaraot	cholico	t _{pHL}	,	000 00	iput		-	6.3	_	μs
			t _{pLH}		RESET ~	Outou	t		2.0		
			t _{pHL}			Saipu		_	2.5	_	
			t _{pLH}			- Outn	ut	—	5.0	—	
			t _{pHL}		ENABLE ~ Output			_	6.0	_	
Output Leakage	Upper	Side	I _{ОН}	6	V _M = 12 V				—	50	μA
Current	Upper	Side	I _{OL}	Ŭ	vM = 12 v			_	—	50	μ, ,

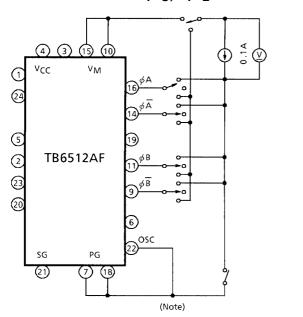

Note: Maximum current ($\theta = 0$) : 100% 2W1-2 ϕ : 2W1, 2 phase excitation mode W1-2 ϕ : W1, 2 phase excitation mode 1-2 ϕ : 1,2 phase excitation mode

TEST CIRCUIT 1 : V_{IN} (H), (L), I_{IN} (H), (L)

TEST CIRCUIT 2 : I_{CC} , I_M , I_{NF}

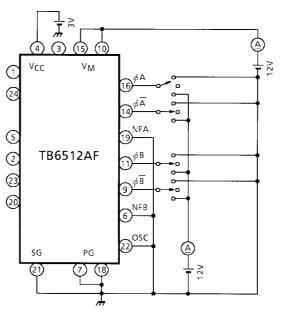


TEST CIRCUIT 3 : V_{NF}



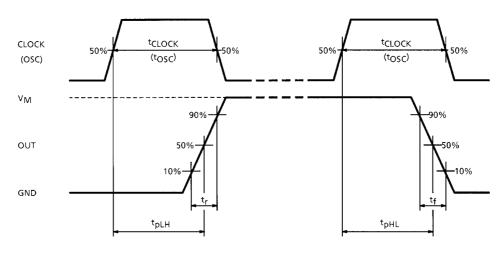
<u>TOSHIBA</u>

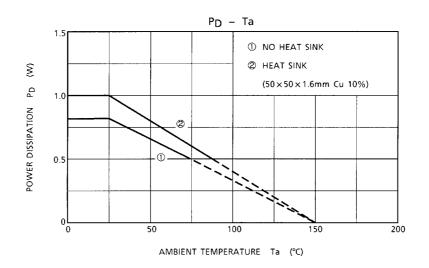
TEST CIRCUIT 4 : V_{CE (SAT)} Upper, lower



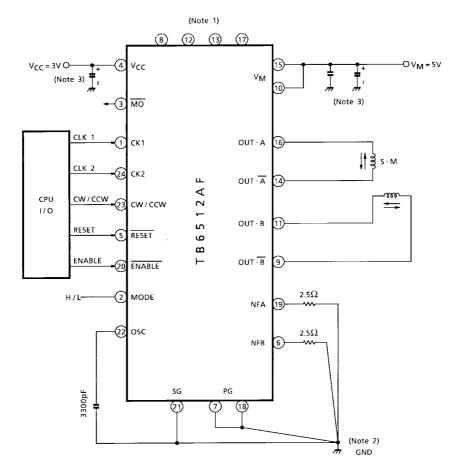
Note: Calibrate Output Current becomes 0.06 A (or 0.10 A) with this resistor.

TEST CIRCUIT 5 : V_{F-U}, V_{F-L}


TEST CIRCUIT 6 : IOH, IOL

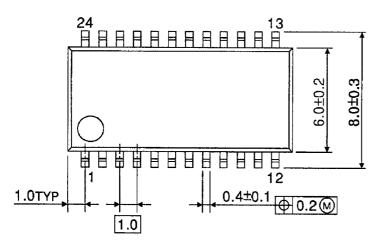


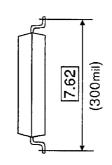
Note: Not to take a GND with any non-connecting Pins.

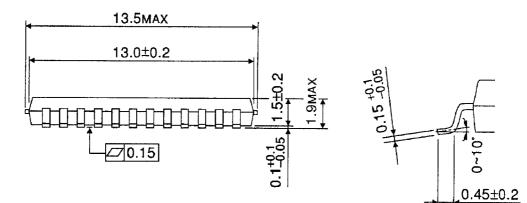

AC ELECTRICAL, CHARACTERICAL

CK (OSC) - OUT

APPLICATION CIRCUIT


- Note 1: (8), (12), (13), (17) pin : open
- Note 2: GND pattern to be laid out at one point in order to prevent common impedance.
- Note 3: Capacitor for noise suppression to be connected between the Power Supply (V_{CC} , V_M) and GND to stabilize the operation.
- Note 4: Utmost care is necessary in the design of the output line, V_M and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.


TB6512AF


Unit: mm

PACKAGE DIMENSIONS

SSOP24-P-300-1.00B

Weight: 0.27 g (Typ.)

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.