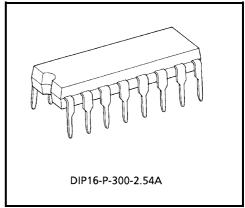
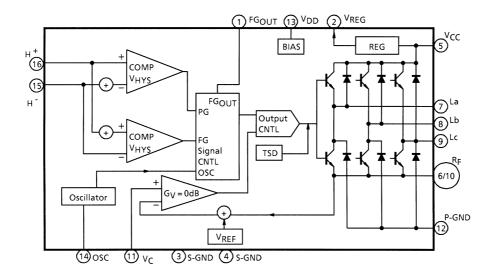
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC


TB6515AP

SENSORLESS MOTOR DRIVER IC

The TB6515AP is a sensorless motor driver IC developed mainly for use with VTR cylinder motors. The PG and FG sensors are sensorless three–phase brushless motor driver ICs with sharing capabilities (specific magnetism is required).


FEATURES

- The PG and FG sensors can be shared, and the motor driver areas are sensorless.
- Three-phase full-wave drive models.
- Equipped with FG output.
- Built-in thermal shut-down circuits.
- Built-in power source for the PG and FG sensors.

Weight: 1.11 g (Typ.)

BLOCK DIAGRAM

PIN FUNCTION

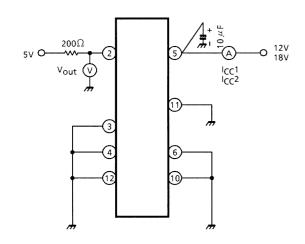
PIN No.	PIN SYMBOL	PIN FUNCTION		
1	FG _{OUT}	FG signal output pin		
2	V _{REG}	Internal power source voltage output pin		
3	S-GND	Small signal ground pin		
4	S-GND	Small signal ground pin		
5	V _{CC}	Power source applied voltage pin		
6	R _F	Output current detection pin		
7	La	a-phase drive output pin		
8	Lb	b-phase drive output pin		
9	Lc	c-phase drive output pin		
10	R _F	Output current detection pin		
11	V _C	Control amplifier positive input pin		
12	P-GND	Output ground pin		
13	V_{DD}	Internal power source voltage output pin		
14	OSC	Oscillation condenser connection pin		
15	H_	PG / FG comparator negative input pin		
16	H ⁺	PG / FG comparator positive input pin		

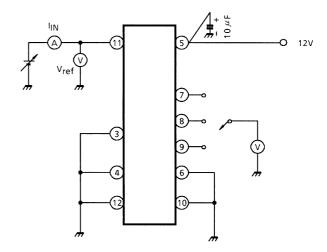
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Power Suplly Voltage	V _{CC}	18	V	
Output Current	Io	1.0	Α	
Regulator Output Current	I _{REG}	12	mA	
FG Output Current	I _{FG}	2.0	mA	
Power Dissipation	P _D	1.2 (Note)	W	
Operating Temperature	T _{opr}	− 30 ~ 85	°C	
Storage Temperature	T _{stg}	− 55 ~ 150	°C	

Note: IC units

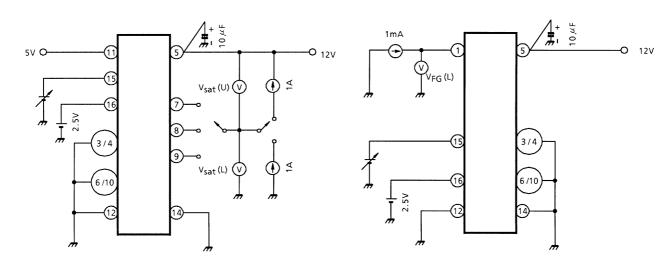
2


ELECTRICAL CHARACTERISTICS (V_{CC} = 12 V, Ta = 25°C)

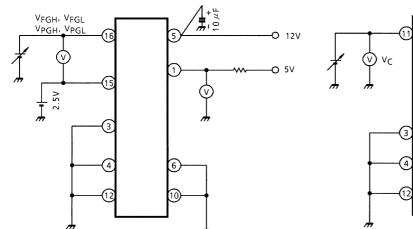

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Power Suplly Current		I _{CC1}	1	V _{CC} = 12 V, V _C = 0 V, V _{REG} = OPEN	_	9.0	15	mA
		I _{CC2}	1	V _{CC} = 18 V, V _C = 0 V, V _{REG} = OPEN	_	9.3	15	
Control Amplifier	Standard Voltage	V _{ref}	2		_	2.6	_	V
	Voltage Gain	G _V	6		_	1.0	_	
	Input Current	I _{IN}	2	V _C = 3.5 V	_	2.5	10	μΑ
Leak Current	Upper	I _{OL (U)}		V _{CC} = 18 V, V _C = 0 V	_	_	50	μΑ
	Lower	I _{OL} (L)		V _{CC} = 18 V, V _C = 0 V	_	_	50	
Output Saturation Voltage	Upper	V _{sat (U)}	3	I _O = 1 A	_	1.5	1.9	V
	Lower	V _{sat (L)}	3	I _O = 1 A	_	0.8	1.2	
Correlated Gain Difference		ΔG _V	_		_	_		%
Residual Output Voltage		Vor	6	V _C = 0 V	_	0	10	mV
FG / PG Threshold Level	FG Upper Level	V_{FGH}		$L \rightarrow H$	91	104	117	mV
	FG Lower Level	V_{FGL}	5	$H \rightarrow L$	108	121	134	
	FG Upper Level	V _{PGH}		$L \rightarrow H$	118	131	144	
	FG Lower Level	V _{PGL}		$H \rightarrow L$	139	152	165	
Hall Amp Common-Mode Input Voltage		CMR	_		0.11	_	2.0	٧
FG Output Voltage		V _{FG (L)}	4	I _{FG} = 1 mA	_	_	1.1	V
FG Output Current		I _{FG}	_		1.8	2.0	_	mA
Delta-Wave Oscillation Frequency		f _{OSC}	7	C _{OSC} = 0.1 μF	_	8	_	Hz
Rated Voltage Output Circuit	Output Voltage	V _{REG}		RL = 200 Ω : 5 V	1.35	1.45	1.55	V
	Temperature Variable	ΔV _O	1	RL = 200 Ω , T _j = -20~70°C	_	±30	_	mV
	Output Current	I _{REG}	_		20	_	_	mA
Thermal Shut-Off Circuit Operating Temperature		T _{SD}	_		150	_	_	°C

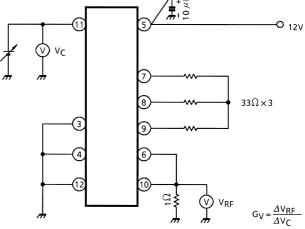
3 2001-06-13

TEST CIRCUIT 1.

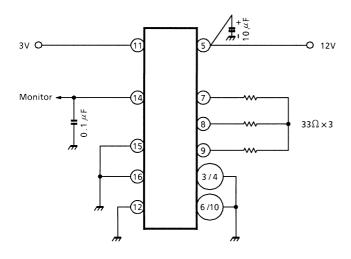


TEST CIRCUIT 3.

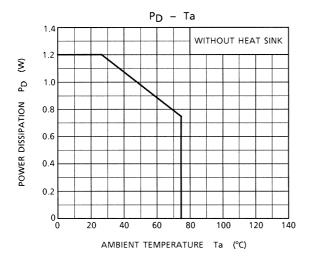

TEST CIRCUIT 4.

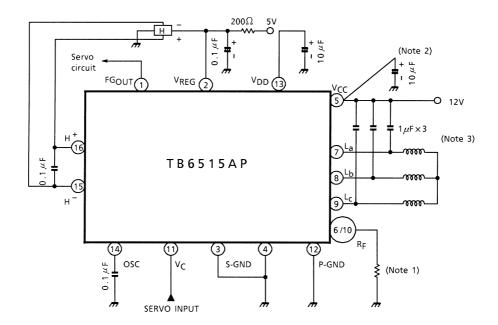


4


TEST CIRCUIT 5.

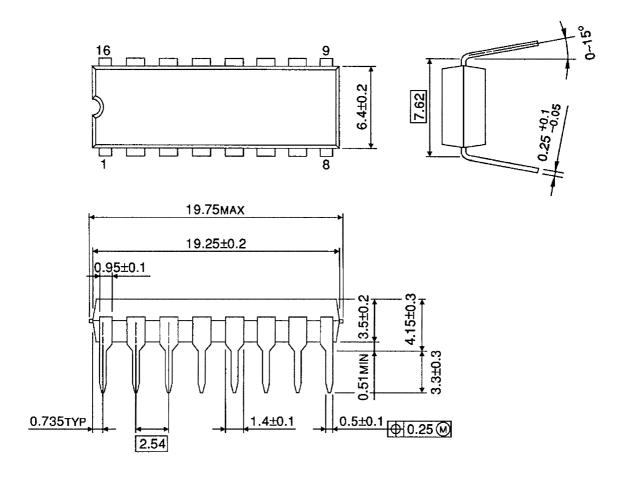
TEST CIRCUIT 6.




TEST CIRCUIT 7.

5

APPLICATION CIRCUIT


- Note 1: R_F is determined in accordance with coil impedance, F / V conversion voltage (control input), the required torque and other factors, but between approximately 0.3 and 5 Ω should be used.
- Note 2: It is recommended that the IC pin and GND are connected directly. Ever larger levels of capacity may be required depending on the shared impedance of the power source line.
- Note 3: There may be cases where connections (various output \rightarrow GND, etc.) and capacity needs to be amended in order to prevent noise and vibrations from the motor.

PACKAGE DIMENSIONS

DIP16-P-300-2.54A Unit: mm

TB6515AP

Weight: 1.11 g (Typ.)

7 2001-06-13

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.