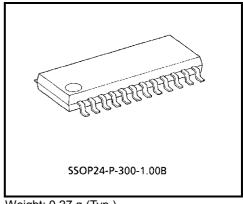
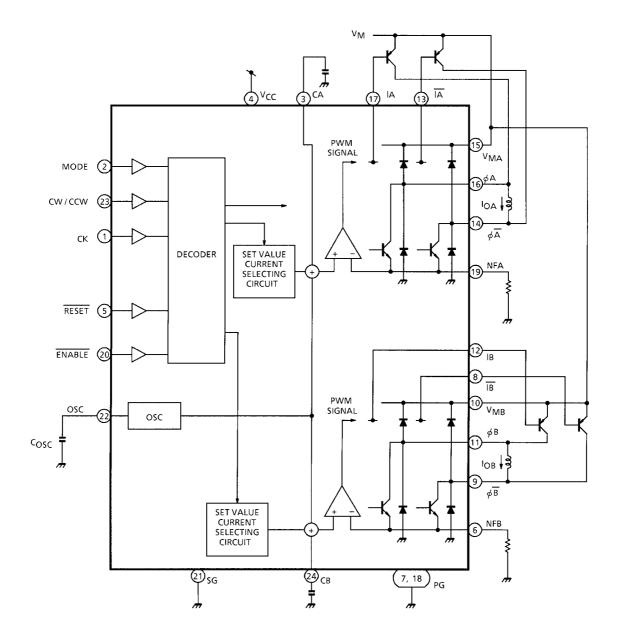
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB6526AF


CHOPPER-TYPE BIPOLAR STEPPING MOTOR CONTROL DRIVER IC

The TB6526AF is a PWM chopper—type sinusoidal micro—step bipolar stepping motor driver IC.

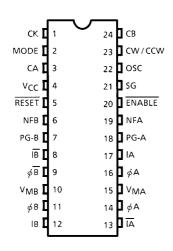
It is capable of 1–2 and 2W1-2 phase excitation modes and forward and reverse rotation modes, low–vibration, low–torque ripple, and high–efficiency driving.


FEATURES

- Forward and reverse rotations are available.
- 1-2, 2W1-2 phase driving is available.
- Structured by Bi-CMOS process.
- \bullet Package: SSOP24-P-300-1.00B
- Externally equipped with PNP output transistor.
- Reset and enable pins are attached.

Weight: 0.27 g (Typ.)

BLOCK DIAGRAM


2 2001-06-13

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION	
1	СК	CLOCK Signal Input	Truth table A
2	MODE	Excitation Mode Setting terminal	Truth table B
3	CA	Noise reduction condenser outer terminal	
4	V _{CC}	Power voltage supply terminal for Logic	
5	RESET	RESET Signal Input terminal	Truth table A
6	NFB	B Channel current detective terminal	
7	PG-B	Power GND B terminal	
8	ΙĒ	Upper PNP Transistor Base terminal (B phase)	
9	φB	B output	
10	V _{MB}	Power voltage supply terminal for Motor B	
11	φВ	Output B terminal	
12	IB	Upper PNP Transistor Base terminal (B phase)	
13	١Ā	Upper PNP Transistor Base terminal (A phase)	
14	φĀ	Output \overline{A} terminal	
15	V _{MA}	Power voltage supply terminal for Motor A	
16	φΑ	Output A terminal	
17	IA	Upper side PNP transistor Base terminal (A phase)	
18	PG-A	Power GND A terminal	
19	NFA	A Channel current detection terminal	
20	ENABLE	ENABLE Signal input terminal	Truth table A
21	SG	Signal GND terminal	
22	OSC	Internal Oscillation frequency detective terminal with external condenser	
23	CW / CCW	Forward rotation / Reverse rotation signal input	Truth table A
24	СВ	Noise reduction condenser outside terminal	

3

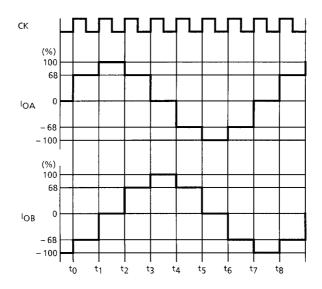
PIN CONNECTION

TRUTH TABLE A

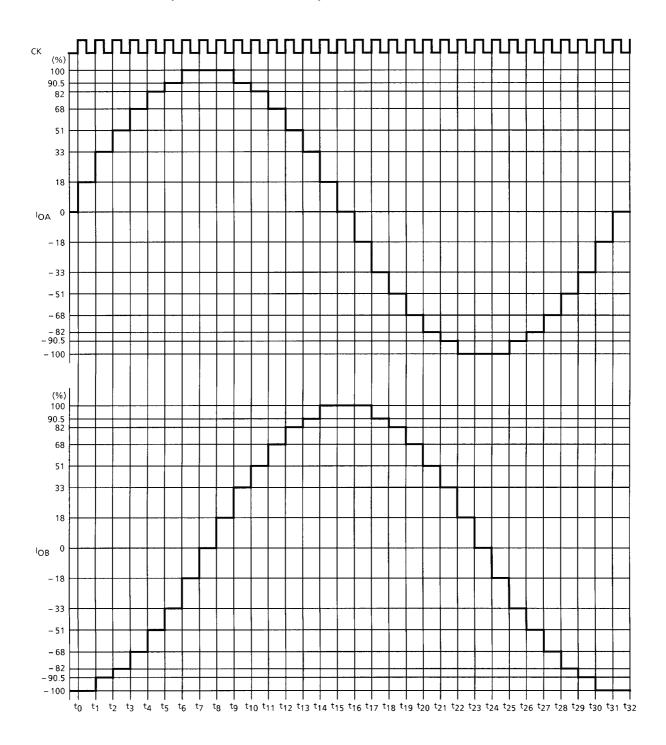
	II.	NPUT		MODE
CK1	CW / CCW	RESET	ENABLE	MODE
7	L	Н	L	CW
7	Н	Н	L	ccw
Х	X	L	L	INITIAL MODE
Х	X	Х	Н	Z

Z : High impedance X : Don't Care

Note: Do not use INHIBIT MODE.

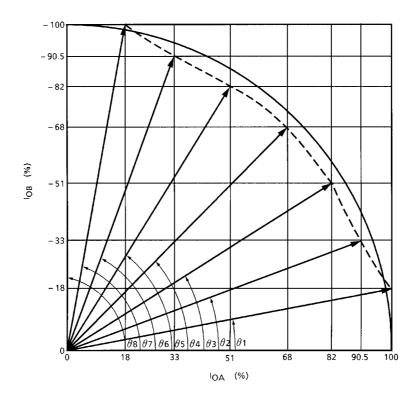

TRUTH TABLE B

INPUT	MODE
MODE	(EXCITATION)
L	1-2 phase
Н	2W1-2 phase


INITIAL MODE

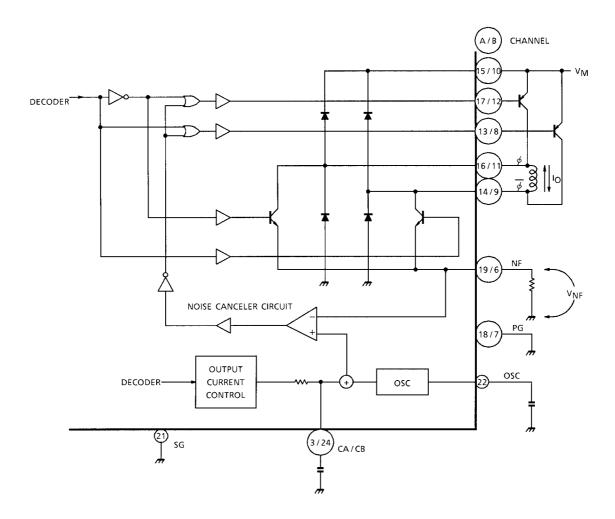
MODE EXCITATION	A-PHASE CURRENT	B-PHASE CURRENT
1-2 phase	100%	0%
2W1-2 phase	100%	0%

1-2 PHASE EXCITATION (MODE : L, CW mode)



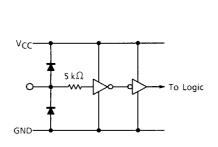
2W1-2 EXCITATION (MODE: H, CW mode)

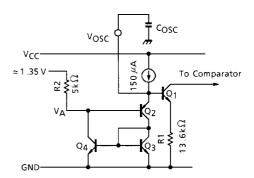
5


OUTPUT CURRENT VECTOR OR BIT (Normalize to 90 deg for each one step)

0	ROTATIO	N ANGLE	VECTOR	LENGTH	
θ	IDEAL TB6526AF		IDEAL	TB6526AF	
θ0	0°	0°	100	100.00	
θ1	11.25°	10.20°	100	101.65	
θ2	22.5°	20.03°	100	96.35	
θ3	33.75°	31.88°	100	96.56	
θ4	45°	45°	100	96.17	
θ5	56.25°	58.12°	100	96.57	
θ6	67.5°	69.97°	100	96.33	
θ7	78.75°	79.80°	100	101.61	
θ8	90°	90°	100 100.00		
		1-2 / 2W1	-2, Phase		

6 2001-06-13


OUTPUT CIRCUIT



INPUT CIRCUIT

CK,CW / CCW, RESET, ENABLE, MODE Terminals

OSC : Terminals

OSC frequency calculation

 V_{OSC} is increased by C_{OSC} charging through the constant current source (150 μ A). V_{OSC} is calculated by following equation.

$$V_{OSC} = \frac{150 \times 10^{-6} \times t}{C_{OSC}}$$

 Q_2 is turned "off" when V_{OSC} is less than the voltage of 1.35 V + V_{BE} (Q_2) approximately equal to 2.05 V.

 $\mathrm{Q}3$ and $\mathrm{Q}4$ are turned "on" when $\mathrm{V}_{\mathrm{OSC}}$ becomes 2.05 V.

$$V_{OSC}(H) = V_{BE}(Q_2) + 1.35$$

$$\approx 2.05\; V$$

Lower level of V (22) pin is equal to V_{BE} (Q2) + V_{CE} (SAT) (Q4) approximately equal to 1.0 V.

$$V_{OSC}(L) = V_{BE}(Q_2) + V_{CE}(S_{AT})(Q_4)$$

$$\approx 1.0 \text{ V}$$

Assuming that VOSC = 1.0 V (t = t₁) and = 2.05 V (t = t₂), OSC frequency is calculated as follows.

$$t_1 = \frac{1.0 \cdot C_{OSC}}{150 \times 10^{-6}}$$

$$t_2 = \frac{2.05 \cdot C_{OSC}}{150 \times 10^{-6}}$$

$$f_{OSC} = \frac{1}{t_2 - t_1} = \frac{150 \times 10^{-6}}{C_{OSC} (2.05 - 1.0)}$$

$$\approx \frac{0.143}{C_{OSC}}$$
 (kHz) (C_{OSC} unit = μ F)

8

ENABLE AND RESET FUNCTION AND MO SIGNAL

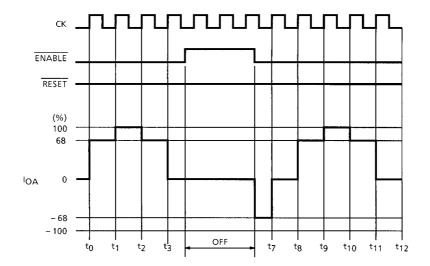


Fig.1. 1-2 phase drive mode (MODE: L)

ENABLE signal disables only Output signal. Internal logic functions are proceeded by CK signal without regard to ENABLE signal.

Therefore, Output Current is initiated from the proceeded timing point of internal logic circuit, after release of disable mode.

Fig.1 shows the ENABLE functions, when the system is selected in 1-2 phase drive mode.

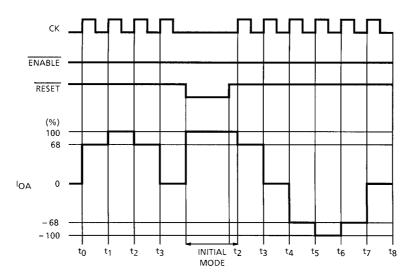


Fig.2. 1-2 phase drive mode (MODE : L)

As $\overline{\text{RESET}}$ is low, the decoder is initialized. (Output Current : A-Phase 100%, B-Phase 0%) After $\overline{\text{RESET}}$ is high, the motion is resumed from next clock as show in Fig.2. $\overline{\text{MO}}$ (Monitor Output) signals is used as rotation and initial signal for stable. rotation checking.

9

MAXIMUM RATING (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	5.5	V
Output Voltage	V _{M (opr.)}	3.5~8.0	V
Output voltage	V _{M (MAX.)}	10.0	V
Output Current	I _{O (MAX.)}	120	mA
Input Voltage	V _{IN}	~V _{CC} + 0.5	V
Power Dissipation	PD	0.83 (Note 1)	W
Power Dissipation	FD	1.04 (Note 2)	VV
Operating Temperature	T _{opr}	-30~85	°C
Storage Temperature	T _{stg}	-55~150	°C
Feed Back Voltage	VI	1.0	V

Note 1: No heat sink

Note 2: When mounted on substrate (50 × 50 × 1.6 mm Cu 10%)

RECOMMENDED OPERATING CONDITIONS (Ta = -30~85°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Control Power Supply Voltage	V _{CC (opr.)}		2.7	3.0	5.5	V
Motor Power Supply Voltage	V _{M (opr.)}		3.5	_	8.0	٧
Output Current	lout		_	_	100	mA
Input Voltage	V _{IN}		-0.4	_	V _{CC} + 0.4	V
Clock Frequency	f _{CLOCK}		_	_	5	kHz
OSC Frequency	fosc		15	_	80	kHz

ELECTRICAL CHARACTERISTICS

Unless otherwise specified (Ta = 25°C, V_{CC} = 3 V, V_{M} = 5 V, load inductance : L = 8 mH / R = 50 Ω , with outer PNP)

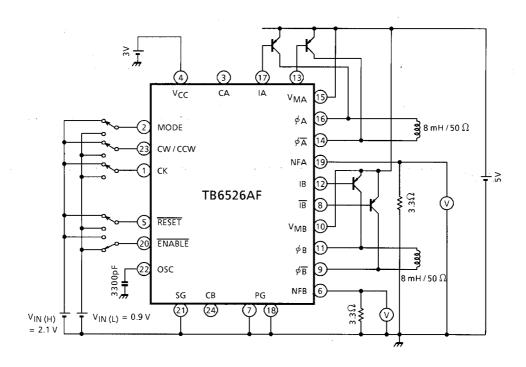
CHARACTER	ISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Input Voltage	High	V _{IN (H)}	1	MODE, CW / CCW, ENABLE	V _{CC} × 0.7	_	V _{CC} + 0.4	V	
input voltage	Low	V _{IN (L)}	'	CK, RESET	GND - 0.4	_	V _{CC} × 0.3	V	
Input Current		I _{IN (H)}	2	V _{IN} = 3.0 V	_	_	100	nA	
		I _{IN (L)}		V _{IN} = 0 V	1	_	100	шА	
		lcc1		Output open, RESET: H, ENABLE: L, (1-2 phase excitation)	ı	7	9		
Current Consumption V _{CC} Pin		I _{CC2}	3	Output open, RESET: H, ENABLE: L, (2W1-2 phase excitation)	-	7	9	mA	
		I _{CC3}		RESET : L, ENABLE : H	_	1.3	_		
		I _{CC4}		RESET : H, ENABLE : H	_	1.3	_	Ī	
		V _{NF1}	9	C _A , C _B	0.245	0.275	0.305	V	
Comparator Reference	Voltage Level	V _{NF2}	4	$R_{NF} = 3.3 \Omega$, $C_{OSC} = 3300 pF$	175	195	220	mV	
		V _{NF3}	4	R_{NF} = 2.2 Ω , C_{OSC} = 3300 pF	150	172	190	mV	
Output Inter-channel Differential		ΔV _O	4	(V _{NFA} -V _{NFB}) / V _{NFA} , C _{OSC} = 3300 pF, R _{NF} = 3.3 Ω	-10		10	%	
Maximum OSC Frequency		fosc (MAX.)	_		100		_	kHz	
Minimum OSC Frequency		fosc (MIN.)	_		_		10	kHz	
OSC Frequency		fosc	5	C _{OSC} = 3300 pF	31	44	70	kHz	

ELECTRICAL CHARACTERISTICS

Unless otherwise specified (Ta = 25°C, V_{CC} = 3 V, V_{M} = 5 V, load inductance : L = 8 mH / R = 50 Ω , with outer PNP)

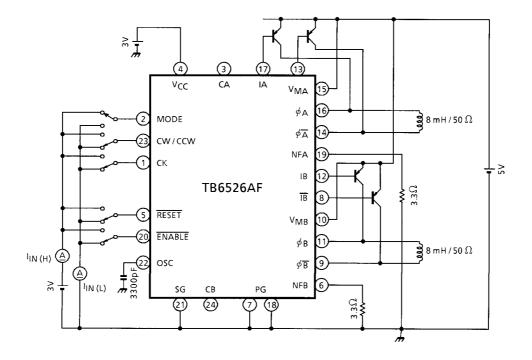
OUTPUT SECTION

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TES	T CONDITION	MIN	TYP.	MAX	UNIT	
Upper Side Driving Current		lu	6	V _C = 3 V	V _C = 3 V		1.5	1.6	mA	
Lower Side Saturation Voltage		V _{SAT L1}	7	I _{OUT} = 0.06	6 A	_	0.10	_	V	
		V _{SAT L2}] ′	I _{OUT} = 0.12	2 A	_	0.16	0.43	V	
Voltage		Upper Side	V _{F U}	- 8	I _{OUT} = 0.12	2.4	_	1.24	1.8	V
		Lower Side	V _{F L}] °	1007 - 0.12	2 A	_	0.95	1.6	V
Output D	ark Current		I _{M1}		ENABLE : RESET : ' Output ope	'L" level	_	_	50	μA
(A + B channel)		I _{M2}	3	RESET : '	ENABLE : "L" level RESET : "H" level Output open		17	28	- mA	
NF Dark Current (1 channel)		Inf		ENABLE : "L" level RESET : "H" level Output open		1	2.5	7		
	2W1-2 pha excitation	se 1-2 phase excitation			θ = 0	R _{NF} = 3.3 Ω	_	100	_	
<u> </u>	2W1-2 pha excitation	se			θ = 1 / 8		_	100	_	
ot (Note	2W1-2 pha excitation	se			θ = 2 / 8		85.5	90.5	95.5	
. Currer	2W1-2 pha excitation		Vector	4	θ = 3 / 8		77	82	87	
op- per	2W1-2 pha excitation	se 1-2 phase excitation	Vector	4	θ = 4 / 8	C _{OSC} = 3300 pF V _{NF}	64	69	74	
A-B Chop- per Current (Note)	2W1-2 pha excitation	se			θ = 5 / 8		48	53	58	
⋖	2W1-2 pha excitation	se _			θ = 6 / 8		31	36	41	
	2W1-2 pha excitation	se					16	21	26	

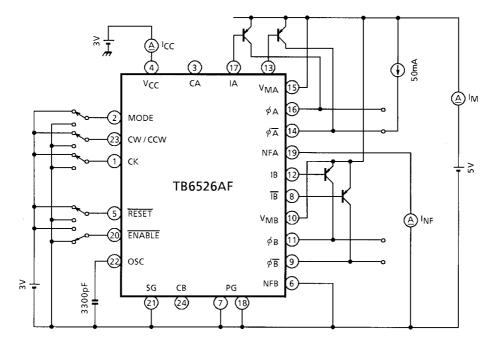

Note: Maximum current $\theta = 0$ is set at 100.

ELECTRICAL CHARACTERISTICS

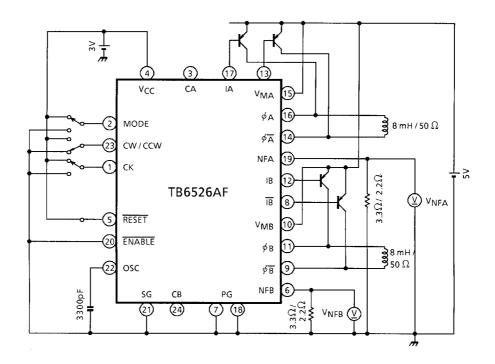
Unless otherwise specified (Ta = 25°C, V_{CC} = 3 V, V_{M} = 5 V, load inductance : L = 8 mH / R = 50 Ω , with outer PNP)


CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CON	NDITION	MIN	TYP.	MAX	UNIT
			Δθ = 0 / 8-1 / 8		_	0	_	
			Δθ = 1 / 8-2 / 8		10	17	35	
			Δθ = 2 / 8-3 / 8		5	16	30	
Reference Voltage	ΔV_{NF}	9	Δθ = 3 / 8-4 / 8	Measured by CA and CB	16.25	21	41.25	mV
			Δθ = 4 / 8-5 / 8		25	32	50	
			Δθ = 5 / 8-6 / 8		26.25	31	51.25	
			Δθ = 6 / 8-7 / 8		15	28	45	
	t _r		$R_L = 2 \Omega$, $V_{NF} = 0 V$, $C_L = 15 pF$		_	0.3	_	μs
	t _f				_	2.2	_	
	t _{pLH}		CK~output		_	1.5	_	
	t _{pHL}				_	2.7	_	
Output Tr Switching	t _{pLH}	12	OSC~output		_	5.4	_	
Output IT Switching	t _{pHL}	12			_	6.3	_	
	t _{pLH}		RESET ~ output		_	2.0	_	
	t _{pHL}				_	2.5	_	
	t_{pLH}		ENABLE ~ output		-	5.0	_	
	t _{pHL}				_	6.0		
Output Leakage Current	l _{OL}	10	V _M = 10 V		_	_	50	μA
V _{MA} / V _{MB} Off Current	l _{off}	11	V _{CC} = 0, V _M = 5 \	/	_	_	1	μA

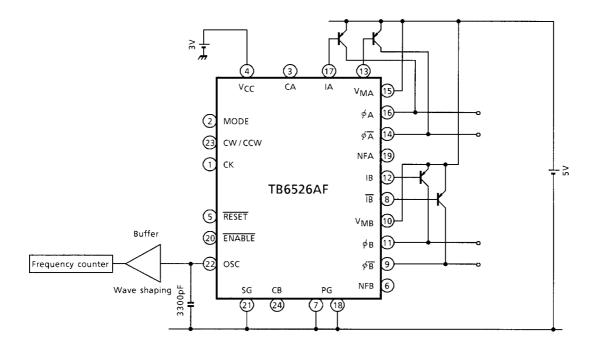
TEST CIRCUIT 1 : $V_{IN\ (H)},\ V_{IN\ (L)}$

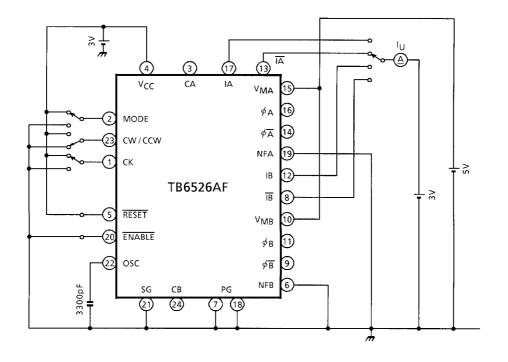


Note: When input voltage V_{IN (H)}, V_{IN (L)} is applied, verify the output function (NF voltage measurement).

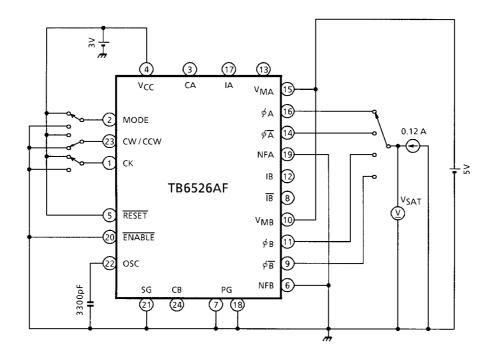

TEST CIRCUIT 2: I_{IN (H)}, I_{IN (L)}

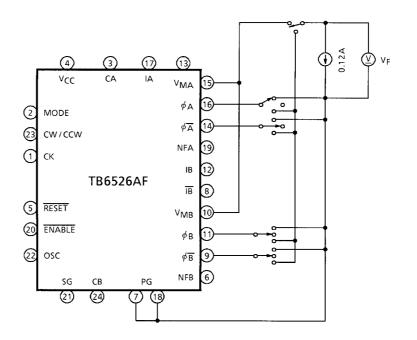
TEST CIRCUIT 3: I_{CC}, I_M, I_{NF}


TEST CIRCUIT 4: V_{NF2}, V_{NF3}, ΔV_O

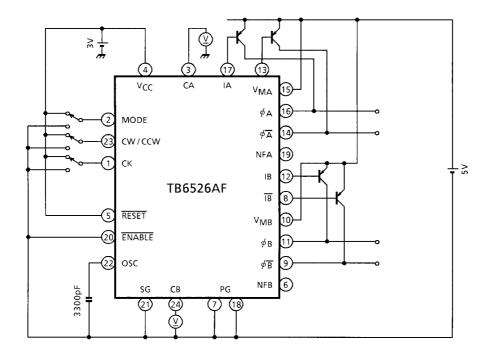

Note: V_{NF2} : V_{NFA} (100%), V_{NFB} (100%) when R_{NF} = 3.3 Ω

 V_{NF3} : V_{NFA} (100%), V_{NFB} (100%) when R_{NF} = 2.2 Ω

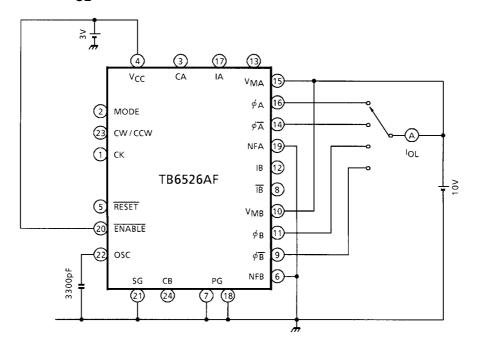

TEST CIRCUIT 5: fosc


TEST CIRCUIT 6: IU

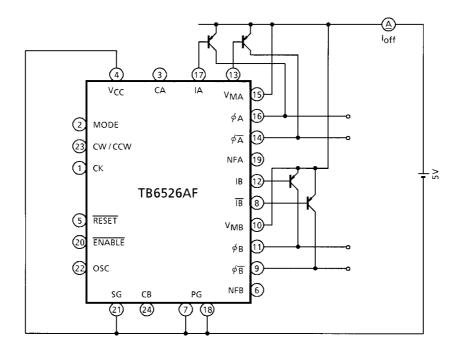
TEST CIRCUIT 7: V_{SAT}



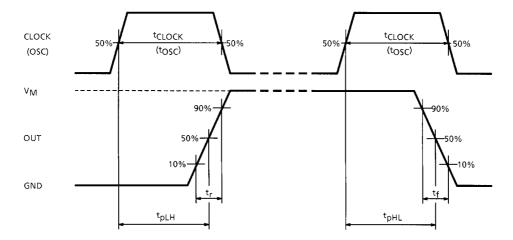
TEST CIRCUIT 8: VF-U, VF-L

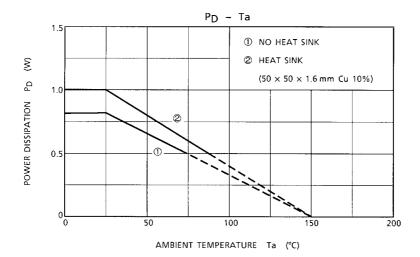


Note: Not to take GND with any non-connecting pins.

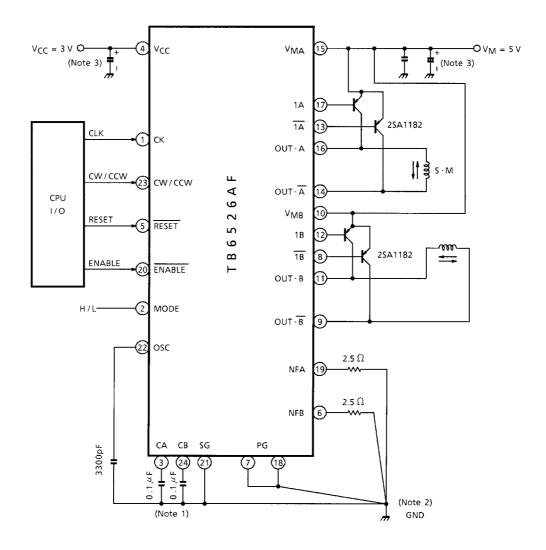

TEST CIRCUIT 9: V_{NF1}, ΔV_{NF}

TEST CIRCUIT 10: IOL

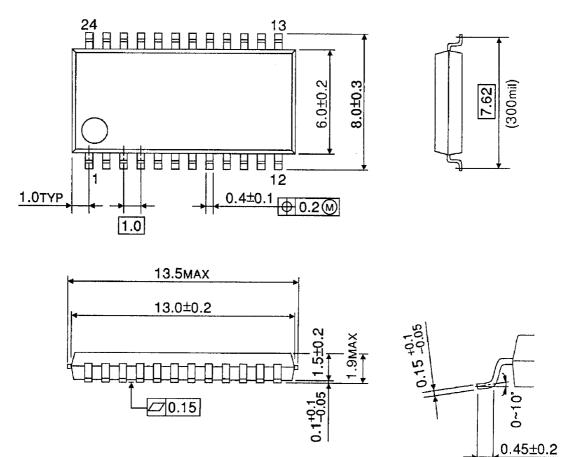



TEST CIRCUIT 11

AC ELECTRICAL CHARACTERISTICS, TEST CIRCUIT 12 CK (OSC) - OUT


CK (OSC) - OUT

20 2001-06-13


APPLICATION CIRCUIT

- Note 1: A change in a step at the time of the micro-step can be improved smoothly with the capacitor of CA, CB.
- Note 2: GND pattern to be laid out at one point in order to prevent common impedance.
- Note 3: Capacitor for noise suppression to be connected between the Power Supply (V_{CC}, V_M) and GND to stabilize the operation.
- Note 4: Utmost care is necessary in the design of the output line, V_M and GND line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

SSOP24-P-300-1.00B Unit: mm

Weight: 0.27 g (Typ.)

22

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.