TB6528P

FIVE-PHASE STEPPING MOTOR DRIVE CONTROLLER

The TB6528P universal controller for stepping motor drives is a Bi-CMOS monolithic-type IC for controlling five-phase stepping motors.
This IC enables five-phase stepping motor drive units to be configured simply by preparing a pulse oscillator, a switching element and a direct current power source. This IC was developed in order to simplify the use of stepping motors.

FEATURES

- Universal controller : The excitation mode switching terminal enables the selection of the following eight modes.
Uni-polar type: 2 excitation, 2-3 excitation, 3 excitation

DIP24-P-600-2.54

Weight: 3.38 g (Typ.)

Bi-polar type : 2-3 excitation, 3 excitation, 4 excitation, $4-5$ excitation, 5 excitation

- Operating suplly voltage range
- High-output current
- High noise margin
- Two types of pulse input
- Power down function
- Excitation mode protection function
- Reset function
- Phase home position monitor
: VCC = 4~16 V
: 20 mA min (source)
: All input pin are equipped with a Schmidt circuit.
: 2 input pin method (CW and CCW input modes). 1 input / 1 switching pin method (CK and U / D input modes).
: All output is at the "L" level
: No fluctuations in output even when switching excitation modes such as $2 \mathrm{Ex} \leftrightarrow 2-3 \mathrm{Ex} \leftrightarrow 3 \mathrm{Ex}, 4 \mathrm{Ex} \leftrightarrow 4-5 \mathrm{Ex} \leftrightarrow 5 \mathrm{Ex}$.
: Moves the phase home position across to the excitation status.
: "H" level is output when at the phase home position (output in the reset mode).
- Excitation status identification monitor :
- Input pulse monitor
: The input is output as a monitor signal.

PIN FUNCTION

PIN No.	PIN SYMBOL	PIN FUNCTION	
1	Cu	Input pulse UP clock	Truth table A
2	C_{D}	Input pulse DOWN clock	
3	C_{K}	Input pulse clock	
4	U / D	Converts rotation directions " 0 " is DOWN, " 1 " is UP	
5	$\mathrm{E}_{\text {A }}$	Excitation mode switching input	Truth table B
6	E_{B}		
7	E_{C}		
8	$P_{\text {D }}$	All output becomes " L " when power down is "L"	
9	Z_{0}	Phase home position monitor	
10	Co	Input pulse monitor	
11	E_{M}	Excitation monitor	
12	GND	GND	
13	$\overline{\mathrm{R}}$	Reset when the reset input is "L"	
14	φ_{E}	φ_{E} Output	
15	φ_{D}	φ_{D} Output	
16	φC	φC Output	
17	φ_{B}	φ_{B} Output	
18	$\varphi_{\text {A }}$	$\varphi_{\text {A }}$ Output	
19	φ_{E}	¢E Output	
20	φ_{D}	φ_{D} Output	
21	φC	φ_{C} Output	
22	φ В	φ_{B} Output	
23	$\varphi_{\text {A }}$	φ A Output	
24	V_{CC}	V_{CC}	

EQUIVALENT I / O CIRCUIT

$$
C_{u}, C_{D}, C_{k}
$$

$\varphi_{\mathrm{A}} \sim \varphi_{\mathrm{E}} \quad$ and $\varphi \overline{\mathrm{A}} \sim \varphi_{\overline{\mathrm{E}}}$

Z_{o}, C_{o}, E_{m}

TRUTH TABLE A

C_{U}	C_{D}	C_{K}	U / D	FUNCTION
L	L	L	$\left(^{*}\right)$	CW
L	L	L	$\left(^{*}\right)$	CCW
L	L	\square	H	CW
L	L	\square	L	CCW

Note 1: * means Don't Care
Note 2: The C_{U} pin is an input pin when counting up, and the C_{D} pin is an input pin when counting down.
Note 3: The C_{K} pin is the count pulse input pin, and count-up and count-down is determined by the U / D pin.

TRUTH TABLE B

E_{A}	E_{B}	E_{C}	$\overline{\mathrm{R}}$	\bar{P}_{D}	FUNCTION	EXCITATION TYPE
L	H	H	H	H	2 Excitation	Uni-polar type
L	L	H	H	H	2-3 Excitation	
H	L	H	H	H	3 Excitation	
H	H	L	H	H	2-3 Excitation	Bi-polar type
H	H	H	H	H	3 Excitation	
L	H	L	H	H	4 Excitation	
L	L	L	H	H	4-5 Excitation	
H	L	L	H	H	5 Excitation	

Note 4: The output enters the initial status when $\overline{\mathrm{R}}$ is set at the LOW level, and the Z_{O} output indicates the High level.
Note 5: The input clock signal is prohibited and the phase output terminals ($\varphi \mathrm{A} \sim \varphi \mathrm{E}$ and $\varphi \overline{\mathrm{A}} \sim \varphi \overline{\mathrm{E}})$ enter the LOW level when \bar{P}_{D} is set at the LOW level.
$\mathrm{Z}_{\mathrm{O}}, \mathrm{C}_{\mathrm{O}}$ and E_{M} output is not prohibited.

FUNCTION 1 (Uni-polar type)
2 EXCITATION

PULSE PHASE	0 (RESET)	1	2	3	4	5
φ_{A}	H	L	L	L	H	H
φ_{B}	H	H	L	L	L	H
φC	L	H	H	L	L	L
φ_{D}	L	L	H	H	L	L
φE	L	L	L	H	H	L
$\varphi \overline{\mathrm{A}}$	L	L	L	L	L	L
$\varphi \bar{B}$	L	L	L	L	L	L
$\varphi \overline{\mathrm{C}}$	L	L	L	L	L	L
$\varphi \overline{\mathrm{D}}$	L	L	L	L	L	L
$\varphi \overline{\mathrm{E}}$	L	L	L	L	L	L
Z_{0}	H	L	L	L	L	H
E_{M}	L	L	L	L	L	L
UP	\longrightarrow					
DOWN	4					

2-3 EXCITATION

PHASE PULSE	0 (RESET)	1	2	3	4	5	6	7	8	9	10
φ_{A}	H	H	L	L	L	L	L	H	H	H	H
φ_{B}	H	H	H	H	L	L	L	L	L	H	H
φ_{C}	L	H	H	H	H	H	L	L	L	L	L
φ_{D}	L	L	L	H	H	H	H	H	L	L	L
φ_{E}	L	L	L	L	L	H	H	H	H	H	L
$\varphi \overline{\mathrm{A}}$	L	L	L	L	L	L	L	L	L	L	L
$\varphi^{\bar{B}}$	L	L	L	L	L	L	L	L	L	L	L
$\varphi \overline{\mathrm{C}}$	L	L	L	L	L	L	L	L	L	L	L
$\varphi \overline{\mathrm{D}}$	L	L	L	L	L	L	L	L	L	L	L
$\varphi \overline{\mathrm{E}}$	L	L	L	L	L	L	L	L	L	L	L
Z_{O}	H	L	L	L	L	L	L	L	L	L	H
E_{M}	L	H	L	H	L	H	L	H	L	H	L
UP	-DOWN	4									

3 EXCITATION

PHASE PULSE	0 (RESET)	1	2	3	4	5		
φ_{A}	H	H	L	L	H	H		
φ_{B}	H	H	H	L	L	L		
φ_{C}	L	H	H	H	L	L		
φ_{D}	L	L	H	H	H	H		
φ_{E}	H	L	L	H	H	L		
$\varphi \overline{\mathrm{A}}$	L	L	L	L	L	L		
$\varphi \overline{\mathrm{B}}$	L	L	L	L	L	L		
$\varphi \overline{\mathrm{C}}$	L	L	L	L	L	L		
$\varphi \overline{\mathrm{D}}$	L	L	L	L	L	L		
$\varphi \overline{\mathrm{E}}$	L	L	L	L	L	L		
Z_{O}	H	L	L	L	L	H		
E_{M}	H	H	H	H	H	H		
UP						C		
DOWN								

FUNCTION 2 (Bi-polar type)

2-3 EXCITATION

PULSE PHASE	0 (RESET)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\varphi \mathrm{A}^{\prime}$	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	L	L	L	L	L
$\varphi_{B}{ }^{\prime}$	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H
$\varphi_{C}{ }^{\prime}$	L	L	L	H	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L
$\varphi \mathrm{D}^{\prime}$	L	L	L	L	L	L	L	L	L	H	H	H	H	H	L	L	L	L	L	L	L
$\varphi \mathrm{E}^{\prime}$	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	L
$\varphi \overline{\mathrm{A}}$,	L	H	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
$\varphi \overline{\mathrm{B}}$,	L	L	L	L	L	L	L	H	H	H	H	H	L	L	L	L	L	L	L	L	L
$\varphi \bar{C}^{\prime}$	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	L	L	L
$\varphi \overline{\mathrm{D}}$,	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H
$\varphi \overline{\mathrm{E}}$ '	L	L	L	L	L	H	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L
Z_{O}	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H
E_{M}	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L
UP																					
DOWN	4																				

3 EXCITATION

PULSE PHASE	0 (RESET)	1	2	3	4	5	6	7	8	9	0
$\varphi \mathrm{A}^{\prime}$	L	L	L	L	L	L	H	H	H	L	L
$\varphi \mathrm{B}^{\prime}$	H	H	L	L	L	L	L	L	L	H	H
$\varphi_{C}{ }^{\prime}$	L	L	H	H	H	L	L	L	L	L	L
φD^{\prime}	L	L	L	L	L	H	H	H	L	L	L
$\varphi \mathrm{E}^{\prime}$	H	L	L	L	L	L	L	L	H	H	H
$\varphi \overline{\mathrm{A}}$,	L	H	H	H	L	L	L	L	L	L	L
$\varphi \overline{\mathrm{B}}$,	L	L	L	L	H	H	H	L	L	L	L
$\varphi \bar{C}$,	L	L	L	L	L	L	L	H	H	H	L
$\varphi \overline{\mathrm{D}}$,	H	H	H	L	L	L	L	L	L	L	H
$\varphi \mathrm{E}^{\prime}$	L	L	L	H	H	H	L	L	L	L	L
Z_{0}	H	L	L	L	L	L	L	L	L	L	H
E_{M}	H	H	H	H	H	H	H	H	H	H	H
UP											
DOWN											

4 EXCITATION

PHASE PULSE	0 (RESET)	1	2	3	4	5	6	7	8	9	10
φ_{A}	H	L	L	L	L	L	L	H	H	H	H
φ_{B}	H	H	L	L	L	L	L	L	H	H	H
φ_{C}	H	H	H	L	L	L	L	L	L	H	H
φ_{D}	H	H	H	H	L	L	L	L	L	L	H
φ_{E}	L	H	H	H	H	L	L	L	L	L	L
$\varphi \overline{\mathrm{A}}$	L	L	H	H	H	H	L	L	L	L	L
$\varphi \overline{\mathrm{B}}$	L	L	L	H	H	H	H	L	L	L	L
$\varphi \overline{\mathrm{C}}$	L	L	L	L	H	H	H	H	L	L	L
$\varphi \overline{\mathrm{D}}$	L	L	L	L	L	H	H	H	H	L	L
$\varphi \overline{\mathrm{E}}$	L	L	L	L	L	L	H	H	H	H	L
Z_{O}	H	L	L	L	L	L	L	L	L	L	H
E_{M}	L	L	L	L	L	L	L	L	L	L	L
UP	-DOWN										

4-5 EXCITATION

PULSE PHASE	0 (RESET)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
甲A	H	H	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H
φB	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	H
φC	H	H	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H
φD	H	H	H	H	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	H	H
φ_{E}	L	H	H	H	H	H	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L
$\varphi \overline{\mathrm{A}}$	L	L	L	H	H	H	H	H	H	H	H	H	L	L	L	L	L	L	L	L	L
$\varphi \bar{B}$	L	L	L	L	L	H	H	H	H	H	H	H	H	H	L	L	L	L	L	L	L
$\varphi \bar{C}$	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	L	L	L	L	L
$\varphi \overline{\mathrm{D}}$	L	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	L	L	L
φE	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	L
Z_{0}	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H
E_{M}	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L
UP																					>
DOWN	4																				

5 EXCITATION

PHASE	0 (RESET)	1	2	3	4	5	6	7	8	9	10
φ_{A}	H	H	L	L	L	L	L	H	H	H	H
φ_{B}	H	H	H	L	L	L	L	L	H	H	H
φC	H	H	H	H	L	L	L	L	L	H	H
φ_{D}	H	H	H	H	H	L	L	L	L	L	H
$\varphi \mathrm{E}$	L	H	H	H	H	H	L	L	L	L	L
$\varphi \overline{\mathrm{A}}$	L	L	H	H	H	H	H	L	L	L	L
$\varphi \bar{B}$	L	L	L	H	H	H	H	H	L	L	L
$\varphi \overline{\mathrm{C}}$	L	L	L	L	H	H	H	H	H	L	L
$\varphi \overline{\mathrm{D}}$	L	L	L	L	L	H	H	H	H	H	L
$\varphi \overline{\mathrm{E}}$	H	L	L	L	L	L	H	H	H	H	H
Z_{0}	H	L	L	L	L	L	L	L	L	L	H
E_{M}	H	H	H	H	H	H	H	H	H	H	H
UP	\qquad										
DOWN	4										

MAXIMUM RATINGS ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

CHARACTERISTIC		SYMBOL	RATING	UNIT
Power Suplly Voltage		V_{CC}	-0.5~20	V
Output Current φn	"H" LEVEL	$\mathrm{IOH} \varphi$	-30	mA
	"L" LEVEL	$\mathrm{lOL} \varphi$	2	
Output Current $\left(\mathrm{C}_{\mathrm{O}}, \mathrm{E}_{\mathrm{M}}, \mathrm{Z}_{\mathrm{O}}\right)$	"H" LEVEL	IOH	-50	$\mu \mathrm{A}$
	"L" LEVEL	IOL	2	mA
Input Voltage		$V_{\text {IN }}$	$-0.5 \sim V_{\text {CC }}$	V
Input Current		I_{IN}	± 1	mA
Power Dissipation		P_{D}	1000	mW
Operating Temperature		Topr	-20~85	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathbf{T a}=\mathbf{- 3 0} \sim 85^{\circ} \mathrm{C}$)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Power Suplly Voltage		V_{CC}	-	4	-	13	V
Output Current φn	"H" LEVEL	$\mathrm{IOH} \varphi$	-	-	-	-10	mA
	"L" LEVEL	$\operatorname{loL} \varphi$	-	-	-	1.6	
Output Current $\left(\mathrm{C}_{\mathrm{O}}, \mathrm{E}_{\mathrm{M}}, \mathrm{Z}_{\mathrm{O}}\right)$	"H" LEVEL	IOH	-	-	-	-40	$\mu \mathrm{A}$
	"L" LEVEL	IOL	-	-	-	1.6	mA
Input Voltage		$\mathrm{V}_{\text {IN }}$	-	0	-	V_{CC}	V
Clock Frequency		-	-	0	-	250	kHz

ELECTRICAL CHARACTERISTICS ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

CHARACTERISTIC		SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Output Current$\varphi_{A} \sim \varphi \bar{E}$	" H " level	Іон	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-2.0$	-20	-	-	mA
			-	$\mathrm{V}_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{C C}-2.0$	-20	-	-	
	"L" level	loL	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.3 \mathrm{~V}$	1.6	-	-	mA
			-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.3 \mathrm{~V}$	1.6	-	-	
Output Current $\mathrm{C}_{\mathrm{o}}, \mathrm{E}_{\mathrm{M}}, \mathrm{Z}_{\mathrm{O}}$	" H " level	VOH	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{IO}=-40 \mu \mathrm{~A}$	3.6	-	-	V
			-	$\mathrm{V}_{C C}=10 \mathrm{~V}, \mathrm{I}_{0}=-40 \mu \mathrm{~A}$	8.6	-	-	
	"L" level	VoL	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$	-	-	0.4	V
			-	$\mathrm{V}_{C C}=10 \mathrm{~V}, \mathrm{l}_{0}=1.6 \mathrm{~mA}$	-	-	0.6	
Input Voltage	" H " level	V_{IH}	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.0	2.5	-	V
			-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	6.0	5.0	-	
	"L" level	VIL	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	2.0	1.5	V
			-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	-	4.0	3.0	
Input Current C_{U}, C_{D}, C_{K} $\mathrm{E}_{\mathrm{A}}, \mathrm{E}_{\mathrm{B}}, \mathrm{E} \mathrm{E}_{\mathrm{C}}$	" H " level	$\mathrm{IIH}^{\text {H }}$	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {CC }}-0.5 \mathrm{~V}$	-	-	0.4	mA
			-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	-	-	0.7	
	"L" level	IIL	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-	-	± 10	$\mu \mathrm{A}$
			-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-	-	± 10	
Input Current$\mathrm{U} / \mathrm{D}, \overline{\mathrm{P}}_{\mathrm{D}}, \overline{\mathrm{R}}$	" H " level	$\mathrm{IIH}^{\text {H }}$	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	-	-	-100	$\mu \mathrm{A}$
			-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	-	-	-100	
	"L" level	IIL	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-	-	-0.4	mA
			-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-	-	-0.7	
Static Current Consumption		Icc	-	$\mathrm{V}_{C C}=5 \mathrm{~V}$, all pins open	-	-	25	mA
		-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$, all pins open	-	-	35		

SWITCHING CHARACTERISTICS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Maximum Clock Frequency	$\mathrm{f}_{\text {MAX }}$	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	250	300	-	kHz
		-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	270	350	-	
Minimum Clock Pulse Width	t_{W}	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	300	500	ns
		-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	-	300	500	
Minimum Reset Pulse Width	tWR	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	200	500	ns
		-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	-	200	500	
Delay Time (φ output from clock input)	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	2500	3500	ns
		-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	-	2500	3500	
Delay Time (each monitor from clock input)	$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	3000	4000	ns
		-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	-	3000	4000	
Setting Time	tset	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	4000	3000	-	ns
		-	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	4000	3000	-	
Storage Time	$t_{\text {HOLD }}$	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	500	0	-	ns
		-	$\mathrm{V}_{C C}=10 \mathrm{~V}$	500	0	-	

MEASURED WAVE-FORM FOR SWITCHING TIME

APPLICATION CIRCUIT 1

2 input pin method

APPLICATION CIRCUIT 2

1 input / switting pin method

PACKAGE DIMENSIONS

Weight: 3.38 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

