

TBA810P

7W AUDIO AMPLIFIER

NOT FOR NEW DESIGN

The TBS810P is an improvement of TBA810S.

It offers:

- Higher output power ($R_{L} = 4\Omega$ and 2Ω)
- Low noise
- Polarity inversion protection
- Fortuitous open ground protection
- High supply voltage rejection (40dB min.)

The TBA810P is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier.

The TBA810P provides 7W output power at 16V/4 Ω ; 7W at 14.4/2 Ω .

ABSOLUTE MAXIMUM RATINGS

It gives high output current (up to 3A), high efficiency (75% at 60W output) very low harmonic and crossover distortion. The circuit is provided with a thermal limiting circuit and can withstand a short-circuit on the load for supply voltages up to 15V.

V.	Supply voltage	20	V
1	Output peak current (non repetitive)	4	Α
I,	Output peak current (repetitive)	3	A
Ptot	Power dissipation at $T_{amb} \leq 80^{\circ}C$	1	W
101	T _{tab} ≤ 90°C	5	W
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

TEST AND APPLICATION CIRCUIT

TBA810P

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th J-tab} Thermal resistance junction-tab	max	12	°c/w
R _{th J-amb} Thermal resistance junction-ambient	max	70*	°c/w

* Obtained with tabs soldered to printed circuit with minimized copper area

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage (pin 1)		4		20	V
Vo	Quiescent output voltage (pin 2)		6.4	7.2	8	V
ld	Quiescent drain current			12	20	mΑ
I _b	Input bias current			0.4		μA
Po	Output power	$d = 10\% \qquad f = 1 \text{KHz}$ $R_{\text{L}} = 4\Omega$ $R_{\text{L}} = 2\Omega$	5.5 5.5	6 7		w W
Vi (rms)	Input saturation voltage		220			mV
Ri	Input resistance (pin 8)			5		MΩ
В	Frequency response (-3dB)	$R_{L} = 4\Omega/2\Omega C_{3} = 820pF C_{3} = 150pF$	40 to 20,000 40 to 10,000			Hz Hz
d	Distortion	$P_o = 50$ mW to 2.5W $R_L = 4\Omega/2\Omega$ f = 1KHz		0.3		%
Gv	Voltage gain (open loop)	$R_{L} = 4\Omega$ f = 1KHz		80		dB
Gv	Voltage gain (closed loop)	$R_{L} = 4\Omega/2\Omega$ f = 1KHz	34	37	40	dB
e _N	Input noise voltage	V _s = 16V B (-3dB) = 40 to 15,000Hz		2		μV
'N	Input noise current			80		pА
η	Efficiency	$P_o = 6W$ $R_L = 4\Omega$ f = 1KHz		75		%
SVR	Supply voltage rejection	$R_{L} = 4\Omega$ $V_{ripple} = 1V_{rms}$ $f_{ripple} = 10Hz$	40	48		dB

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $V_s = 14.4V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Fig. 1 - Output power vs. supply voltage

Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation)

