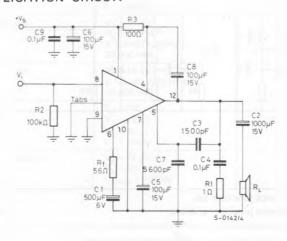

7W AUDIO AMPLIFIER

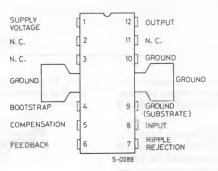
NOT FOR NEW DESIGN

The TBA810S is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier.

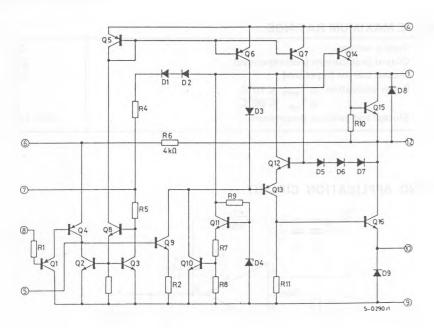
The TBA810A provides 7W power output at $16V/4\Omega$, 6W at $14.4V/4\Omega$, 2.5W at $9V/4\Omega$, 1W at $6V/4\Omega$ and works with a wide range of supply voltage (4 to 20V); it gives high output current (up to 2.5A), high efficiency (75%) at 6W output), very low harmonic and cross-over distor-


tion. In addition, the circuit is provided with a thermal protection circuit.

ABSOLUTE MAXIMUM RATINGS


Vs	Supply voltage	20	V
Io	Output peak current (non-repetitive)	3.5	Α
I _o	Output current (repetitive)	2.5	Α
P _{tot}	Power dissipation: at T _{amb} ≤ 70°C	1	W
	at T _{tab} ≤ 90°C	5	W
$T_{stg^*} T_j$	Storage and junction temperature	-40 to 150	°C

TEST AND APPLICATION CIRCUIT



CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th i-tab}	Thermal resistance junction-tab	max	12 ° C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70*° C/W

^{*} Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $T_{amb} = 25 \,^{\circ}$ C)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage (pin 1)		4		20	V
Vo	Quiescent output voltage (pin 12)	V _S = 14.4V	6.4	7.2	8	V
Id	Quiescent drain current			12	20	mA
Ib	Bias current (pin 8)			0.4		μΑ
Po	Power output	$ d = 10\% $ $ R_{L} = 4\Omega $ $ f = 1 \text{ kHz} $ $ V_{S} = 16V $ $ V_{S} = 14.4V $ $ V_{S} = 9V $ $ V_{S} = 6V $	5.5	7 6 2.5 1		W W W
V _{i(rms)}	Input voltage				220	mV
Vi	Input sensitivity	$P_{O} = 6W$ $V_{S} = 14.4V$ $R_{L} = 4\Omega$ $f = 1kHz$ $R_{f} = 56\Omega$ $R_{f} = 22\Omega$		80 35		mV mV
R _i	Input resistance (pin 8)			5		MΩ
В	Frequency response (-3 dB)	$V_{s} = 14.4V$ $R_{L} = 4\Omega$ $C3 = 820 \text{ pF}$ $C3 = 1500 \text{ pF}$	40 to 20,000 40 to 10,000			Hz Hz
d	Distorsion	P_0 = 50mW to 3W V_s = 14.4V R_L = 4Ω f = 1kHz		0.3		%
G _v	Voltage gain (open loop)	$V_s = 14.4V$ $R_L = 4\Omega$ $f = 1kHz$		80		dB
G _v	Voltage gain (closed loop)	$V_s = 14.4V$ $R_L = 4\Omega$ $f = 1kHz$	34	37	40	dB
e _N	Input noise voltage	V _s = 14.4V R _g = 0 B (-3 dB) = 20Hz to 20,000 Hz		2		μV
iN	Input noise current	V _s = 14.4V B (-3 dB) = 20 Hz to 20,000 Hz		0.1	113	nA
η	Efficiency	$P_o = 5W$ $V_s = 14.4V$ $R_L = 4\Omega$ $f = 1kHz$		70		%
SVR	Supply voltage rejection	$V_S = 14.4V$ $R_L = 4\Omega$ $f_{ripple} = 100 \text{ Hz}$		38		dB