TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC83220-0019

TC83220-0019: Single-Chip CMOS LSI for FL (fluorescent) Calculator with Printers

The Toshiba printing/display calculator circuit TC83220-0019 is 10- or 12-digit calculator on single-chip CMOS LSI.
TC83220-0019 can drive the printing machine (PTMFL-76/77, PTMFL-86/87; ALPS) with magnet driver circuit, and can drive the fluorescent display tube with DC-DC converter.

It contains a 4 K -word ROM, a 256×4-bit RAM.

Features

Operational Features

- Print: 11 or 13 digits of data.
(including decimal point) 1 digit of minus sign. 2 digits of operational symbol. 3 digits of commas. 1-color (black) or 2-colors (black and red) printing.
- Display: 10 or 12 digits of data. (including punctuation in each digit.)

1 digit of floating minus sign, memory load, error symbol, grand total memory load, 3 digits of commas.

- Decimal output: Decimal set lock key controls output format.

Fixed decimal setting ("0", " 1 ", " 2 ", " 3 ", " 4 ", " 6 "), full floating decimal, and ADD mode.

- Key input buffer: 12 stages
- Function: 4 basic arithmetic functions (+,,$- \times, \div$).

Repeat addition and subtraction.
Automatic constants in multiplication, division, percent calculation, calculations.
Automatic percent add-on and percent discount calculation.
Memory calculation.
Automatic accumulating calculation.
Gross margin profit calculation.
Delta percent calculation.
Tax calculation.
Grand total calculation.

- Item counter: 0~999 count up or -999~0~999 count up/down by depressing of $\quad+, \square_{-}$key.
- Punctuation: Commas for thousands on display.

 $\mathrm{M} *, \Delta \%, \boxed{\mathrm{M}_{*}^{\diamond}}, \boxed{\rightarrow}, \boxed{\mathrm{GT}}, \stackrel{+}{=}, \boxed{=}, \mathrm{IC},+\mathrm{TAX},-\mathrm{TAX}$
- Kinds of lock key (refer to page 5.): "P/ $\overline{\mathrm{NP}}$ " printing mode selectable switch. (ON: printing mode. OFF: nonprinting mode.)
" Σ " summation mode selectable switch.
" $5 / 4$ " "CUT" "UP" rounding switch. ("5/4": "CUT" and "UP" lock key off.)
Fixed point mode selectable switch.
" 0 ", " 1 ", " 2 ", " 3 ", " 4 ", " 6 ", " F ", "A". " "A": ADD mode. " F ": full floating mode, all decimal setting lock key off.)
"IC+" "IC \pm " item counter mode selectable switch.
"GT" grand total memory selectable switch.
"SET/ $\overline{\mathrm{CAL}}$ " tax memory selectable switch. (ON: set mode. OFF: normal calculation mode.)
" $10 / \overline{12}$ " display digits selectable switch. (refer to page 3.)
" $\mathrm{B} / \overline{\mathrm{R}}$ " printing colors selectable switch. (refer to page 3.)
- Duty of display: Duty = $1 / 16.5$
- Leading zero suppression
- Trailing zero suppression
- Tax calculation (refer to page 5.):

+ TAX
- TAX
key is calculation for included tax.
SET/CAL

Changing lock key from set mode to normal calculation mode stores number of display to tax memory.
Changing lock key from normal calculation mode to set mode recalls tax rate to display from tax memory.
Depression of +TAX following data key at normal calculation mode performs the calculating included tax.
Depression of -TAX following data key at normal calculation mode performs the calculating excluded tax.

Electrical Features

- P-MOS output buffer with pull down resistor for direct driving of fluorescent display tube.
- Oscillator/clock generator internal to chip.
- Key board encoding internal to chip.
- Shrink dual in line package.

Protection

(1) Double depression of keys will be inoperative.
(2) In the overflow condition, all key except "C", "C/CE", "CE", "Feed", " \rightarrow " key are inoperative.
(3) Key bouncing protection (at 4 MHz clock)

Key read in: 15 ms
Key off: 40 ms

Function Select

(1) " $10 / \overline{12}$ " selectable with calculated digits (lock key).

ON \qquad 10-digits calculated
OFF \qquad 12-digits calculated
(2) "B/̄" selectable with printer heads (lock key).

ON \qquad PTMFL-76/86 (1 color)
OFF PTMFL-77/87 (2 color)

Pin Assignment (top view)

System Diagram

$C=100 \mathrm{pF}$
$R=1 \mathrm{k} \Omega \pm 2 \%$
VP: Power source to drive printer.
$V_{K K}$: Power source for display.
Note 1: MG control

Note 2: FL cut (R83) (VF1, VF2 cut at printing)
Note 3: Connection to $\overline{\mathrm{HOLD}}$ pin is shown in the following page 14.
TOSHIBA

Key Connection

Touch Key

Lock Key

Note 8: \ulcorner 㧳 \rceil : Feed

Operation Example

Note 9: PRINT COLOR R: Red

No mark: Black
<PF>
Paper feed

Note 9: PRINT COLOR R: Red

No mark: Black

Note 9: PRINT COLOR. R: Red

No mark: Black

Note 9: PRINT COLOR R: Red

No mark: Black
\qquad Paper feed

Note 9: PRINT COLOR........R: Red
No mark: Black
<PF> \qquad Paper feed

Maximum Ratings ($\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Characteristics	Symbol	Rating	Unit
Supply voltage 1	V_{DD}	$-0.5 \sim 7$	V
Supply voltage 2	$\mathrm{~V}_{\text {KK }}$	$-40 \sim+0.5$	V
Input voltage	$\mathrm{V}_{\text {IN }}$	$-35 \sim \mathrm{~V}_{\mathrm{DD}}+0.5$	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	$-35 \sim \mathrm{~V}_{\mathrm{DD}}+0.5$	V
Output current	$\mathrm{l}_{\mathrm{OUT}}$	-10	mA
Power dissipation $\left(\mathrm{T}_{\mathrm{opr}}=70^{\circ} \mathrm{C}\right)$	P_{D}	600	mW
Soldering temperature, time	$\mathrm{T}_{\text {sld }}$	$260(10 \mathrm{~s})$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 125$	${ }^{\circ} \mathrm{C}$
Operating temperature	$\mathrm{T}_{\text {opr }}$	$0 \sim 40$	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions ($\mathrm{V}_{\mathrm{Ss}}=0 \mathrm{~V}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Max	Unit
Operating temperature	Topr	-	-	0	40	${ }^{\circ} \mathrm{C}$
Supply voltage	$V_{D D}$	-	-	4.5	6	V
Supply voltage (FL)	VKK	-	-	-30	-15	V
Supply voltage (hold)	$\mathrm{V}_{\text {DDH }}$	-	-	2	6	V
Input high voltage (except schmitt circuit input)	$\mathrm{V}_{\mathrm{H} 1}$	-	$V_{D D} \geqq 4.5$	$\begin{gathered} V_{D D} \times \\ 0.7 \end{gathered}$	$V_{D D}$	V
Input high voltage (schmitt circuit input)	$\mathrm{V}_{\mathrm{H} 2}$	-		$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.75 \end{gathered}$	$V_{D D}$	V
Input high voltage	$\mathrm{V}_{1 \mathrm{H} 3}$	-	$\mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.9 \end{gathered}$	VDD	V
Input low voltage (except schmitt circuit input)	$\mathrm{V}_{\text {IL1 }}$	-	$V_{D D} \geqq 4.5$	V_{KK}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.3 \end{gathered}$	V
Input low voltage (schmitt circuit input)	$\mathrm{V}_{\text {IL2 }}$	-		V_{KK}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.25 \end{gathered}$	V
Input low voltage	VIL3	-	$\mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	V_{KK}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \times \\ 0.1 \end{gathered}$	V
Output voltage (source open drain)	Vout	-	-	$\mathrm{V}_{\mathrm{DD}} \mathrm{~V}_{5}^{-}$	$V_{D D}$	V
Clock high pulse width (Note 10)	TwCH	-	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I}}$	80	-	ns
Clock low pulse width (Note 10)	TWCL	-	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$	80	-	ns

Note 10: In case of the external clock operation.

Electrical Characteristics

DC Characteristics ($\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}} \pm 10 \%, \mathrm{~T}_{\mathrm{opr}}=0 \sim 40^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Hysteresis voltage (schmitt circuit input)	V_{HS}	-	-	-	0.7	-	V
Input current ($\overline{\text { RESET }}, \overline{\text { HOLD }}, \overline{\text { TEST }})$	In	-	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 / 0 \mathrm{~V}$	-	-	± 50	$\mu \mathrm{A}$
Output leak current (source open drain)	ILO	-	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-32 \mathrm{~V}$	-	-	-10	$\mu \mathrm{A}$
Output high voltage $\text { (} \left.\mathrm{P} 1 \sim \mathrm{P} 2, \mathrm{R}_{4} \sim \mathrm{R}_{9}\right)$	VOH	-	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.4	-	-	V
Input pull down resistor $\left(\mathrm{K}_{0}, \mathrm{R}_{7} \sim \mathrm{R}_{9}\right)$	RIN	-	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{KK}}=-30 \mathrm{~V}$	-	100	-	k Ω
Pull down resistor (source open drain)	$\mathrm{R}_{\text {KK }}$	-		50	80	200	k Ω
Operating supply current	IDD0	-	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}\left(\mathrm{~V}_{\mathrm{DDH}}\right) 5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{C}}=4 \mathrm{MHz}, \\ & \mathrm{~V}_{\text {IN }}=5.3 / 0.2 \mathrm{~V} \end{aligned}$	-	3	6	mA
Supply current (after clear)	$\mathrm{I}_{\mathrm{KK} 1}$	-	$\mathrm{V}_{\mathrm{KK}}=-30 \mathrm{~V}, \mathrm{f}_{\mathrm{C}}=4 \mathrm{MHz}$	-	0.6	0.9	mA
Supply current (shown full digits)	IKK2	-		-	3.5	6	mA
Holding supply current	IDDH	-	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	0.5	10	$\mu \mathrm{A}$
Oscillating frequency	F ϕ	-	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5.0 \mathrm{~V}, \mathrm{C}=100 \mathrm{pF} \\ & \mathrm{R}=1 \mathrm{k} \Omega \pm 2 \% \end{aligned}$	2.4	4.0	5.6	MHz

The Proposal of Outer Circuit for Tax Rate Holding with Back-Up Battery.

Note 11: $\mathrm{V}_{1}=3 \mathrm{~V}$: Battery supply
$\mathrm{V}_{2}=5 \mathrm{~V}$: DC supply
($\overline{\mathrm{HOLD}}$ pin is pulled down in the LSI, but normally pulled up to VDD.)
$\overline{\text { RESET }}$ pin is pulled up to VDD.
(1) Setting POWER SW to ON, V_{2} is supplied to VDD pin, and also to $\overline{\mathrm{HOLD}}$ pin. Then calculator operates normally.
(2) Setting POWER SW from ON to OFF, V_{1} is supplied to VDD pin and VSS is supplied to $\overline{\mathrm{HOLD}}$ pin. Under this connection, TAX RATE is held.
(3) Setting POWER SW to ON, V_{2} is supplied to VDD pin, and also to $\overline{\mathrm{HOLD}}$ pin. Then calculator operates normally with TAX RATE to be held.

Note 12: V_{1} (battery) should be supplied to the circuit after $\mathrm{V}_{2}(\mathrm{DC})$ supply, because of prevention from exhaustion of battery and abnormal operation.

Package Dimensions

```
SDIP42-P-600-1.78
```

Unit: mm

Weight: 4.12 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

