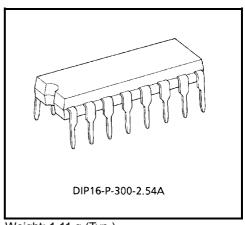
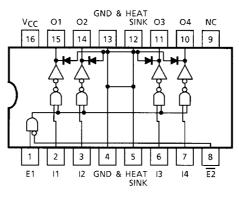
TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TD62707AP

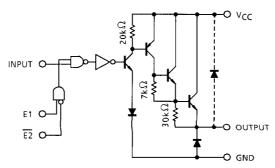

4CH HIGH-VOLTAGE SOURCE DRIVER WITH ENABLE

The TD62707AP is comprised of four source current output stages and enable inputs which can gate the outputs. All outputs feature integral clamp diodes for switching inductive loads. Applications include relay, hammer and lamp drivers.


FEATURES

- High output voltage V_{CC}-V_{OUT} = 50 V MIN.
- Output current (single output) IOUT = -750 mA MIN.
- Input compatible with TTL, 5 V CMOS
- Output clamp diodes
- Enable inputs E1
- GND terminal = HEAT SINK
- Package type : DIP-16 pin

PIN CONNECTION (TOP VIEW)



Weight: 1.11 g (Typ.)

Note: Hold the $\overline{E2}$ input at logic low state.

SCHEMATICS (EACH DRIVER)

Note: The output parasitic diodes cannot be used as clamp diodes.

TRUTH TABLE

E1	IN1~4	OUT1~4
Н	Н	ON
L	Н	OFF
L	L	OFF
Н	L	OFF

Note: Hold the $\overline{E2}$ input at logic low state.

MAXIMUM RATINGS (Ta = 25°C)

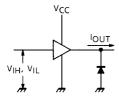
CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	50	V
Output Voltage	V _{OUT}	-50	V
Output Current	I _{OUT}	-0.75	A / ch
Input Voltage	V _{CC} 50 V _{OUT} -50 I _{OUT} -0.75 V _{IN1} -0.5~15 V _{IN2} (Note 1) -0.5~V _{CC} V _R 50 I _F -0.75 P _D 1.47 / 2.7 (Note 2) T _{opr} -40~85	V	
input voltage	V _{IN2} (Note 1)	-0.5~V _{CC}	v
Clamp Diode Reverse Voltage	V _R	50	V
Clamp Diode Forward Current	١ _F	-0.75	А
Power Dissipation	PD		W
Operating Temperature	T _{opr}	-40~85	°C
Storage Temperature	T _{stg}	-55~150	°C

Note 1: $V_{CC} \le 15 V$

Note 2: On PCB (50 × 50 × 1.6 mm Cu 50%)

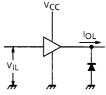
RECOMMENDED OPERATING CONDITIONS (Ta = -40~85°C)

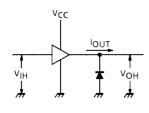
CHARACTERISTIC		SYMBOL	CONDITION		MIN	TYP.	MAX	UNIT
Supply Voltage		V _{CC}	_			_	50	V
Output Voltage	Output Voltage		_		0	_	-50	V
Output Current		I _{OUT} (Note)	DC 1 Circuits, Ta = 25°C	0	_	-600		
			T _{pw} = 25 ms, 4 Circuits Ta = 85°C, T _j = 120°C	Duty = 10 %	0	_	-600	mA / ch
				Duty = 50 %	0	_	-160	
		V _{IN}	_		0	_	15	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IH1}	V _{CC} > 15 V		2.0	_	15	V
Input Voltage		V _{CC}	V					
	"L" level	VIL	—		0	_	0.8	
Clamp Diode Reverse Voltage		V _R	_			_	50	V
Clamp Diode Forward Current		١ _F			_	—	600	mA
Power Dissipation		PD	Ta = 85°C (Note)		_	—	1.2	W


Note: On PCB (50 × 50 × 1.6 mm Cu 50%)

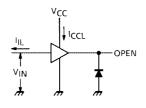
ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise noted V_{CC} = 50 V, "H" = V_{IH}, "L" = V_{IL})

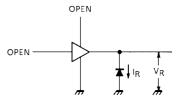
CHAR	CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT			
Input Voltage	"H"	level	VIH	- 1		2.0	-	-	v			
"L" level		VIL			_		0.8	v				
	IN	IN			V _{IN} = H	—	70	100	μΑ			
Input Current	"H" level	E1	Ι _Η	4	V _{E1} = H	_	0	10				
		E2			V _{E2} = H	—	66	100				
		IN			V _{IN} = L	—	-40	-100				
Input Current	"L" level	E1	IIL	I _{IL} 5	V _{E1} = L	—	-20	-50	μA			
		E2			V _{E2} = H	_	-40	-100				
Output Leakage	Current		I _{OL}	2	V _{CC} = 50 V, OUTPUT OFF	_	— 100		μA			
Supply Current	int		upply Current		Іссн		4	V _{IN} = H, V _{E1} = H V _{E2} = L, OUTPUT OPEN	_	5.5	7.0	mA
Supply Current			I _{CCL}	5	V _{IN} = L, V _{E1} = H V _{E2} = L, OUTPUT OFF	_	5.5 7.0 5.5 7.0	IIIA				
Output Voltage	"H"	level	V _{OH}	3	V _{IN} = H, V _{E1} = "H" V _{E2} = L, I _{OUT} = −500 mA	V _{CC} -2.5	V _{CC} -2.0	_	V			
Clamp Diode Re	everse Curre	ent	I _R	6	V _R = 50 V	_	_	100	μA			
Clamp Diode Fo	orward Volta	ge	V _F	7	I _F = 500 mA	— 1.5 2.0		2.0	V			
Turn-On Delay		t _{ON}	ton	$V_{2} = = 50 V D_{2} = 82 O$	_	0.5	—	μs				
Turn-Off Delay		tOFF	- 8	V_{CE} = 50 V, R _L = 83 Ω	_	6.0	_					

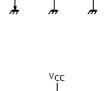

TEST CIRCUIT

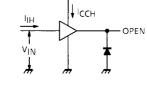


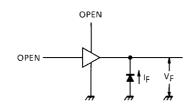
2. I_{OL}

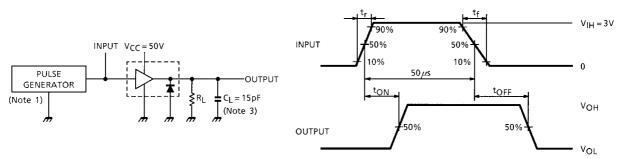

4. Ін, Іссн


3. V_{OH}




5. I_{IL} , I_{CCL}

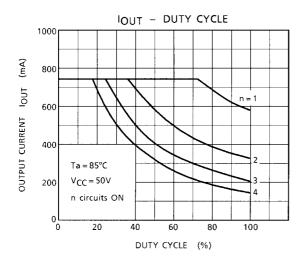

6. I_R

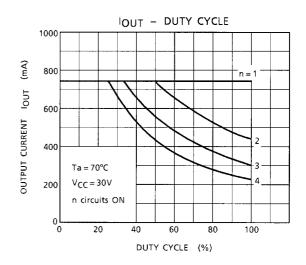


7. V_F

8. ton, toff

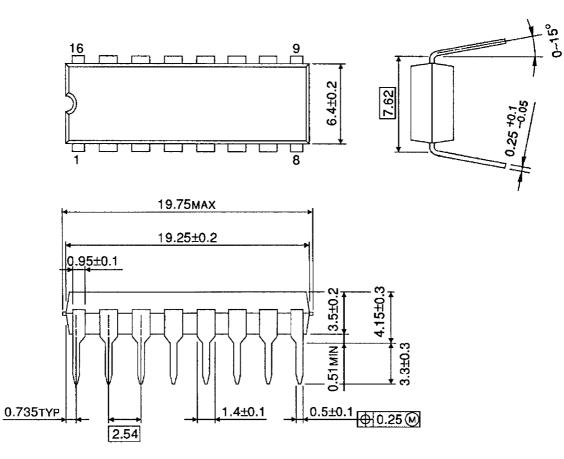
Note 1: Pulse Width 50 μ s, Duty Cycle 10% Output Impedance 50 Ω , t_r ≤ 5 ns, t_f ≤ 10 ns Note 2: V_{IH} = 3 V, E1 = V_{IH}, $\overline{E2}$ = GND, V_{CC} = 50 V Note 3: C_L includes probe and jig capacitance


PRECAUTIONS for USING


This IC does not integrate protection circuits such as overcurrent and overvoltage protectors.

Thus, if excess current or voltage is applied to the IC, the IC may be damaged. Please design the IC so that excess current or voltage will not be applied to the IC.

Utmost care is necessary in the design of the output line, V_{CC} and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.



PACKAGE DIMENSIONS

DIP16-P-300-2.54A

Unit: mm

Weight: 1.11 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.