

10+10W SHORT CIRCUIT PROTECTED STEREO AMPLIFIER

The TDA2009A is class AB dual Hi-Fi Audio power amplifier assembled in Multiwatt[®] package, specially designed for high quality stereo application as Hi-Fi and music centers. Its main features are:

- High output power (10 + 10W min. @d = 1%)
- High current capability (up to 3.5A)
- AC short circuit protection
- Thermal overload protection
- Space and cost saving: very low number of external components and simple mounting thanks to the Multiwatt[®] package.

TDA2009A

ABSOLUTE MAXIMUM RATINGS

Supply voltage	28	V
Output peak current (repetitive f \geq 20Hz)	3.5	A
Output peak current (non repetitive, $t = 100\mu s$)	4.5	A
Power dissipation at $T_{case} = 90^{\circ}C$	20	W
Storage and junction temperature	-40 to 150	°C
	Supply voltage Output peak current (repetitive $f \ge 20$ Hz) Output peak current (non repetitive, $t = 100\mu$ s) Power dissipation at $T_{case} = 90^{\circ}$ C Storage and junction temperature	Supply voltage28Output peak current (repetitive $f \ge 20$ Hz)3.5Output peak current (non repetitive, $t = 100 \mu s$)4.5Power dissipation at $T_{case} = 90^{\circ}$ C20Storage and junction temperature-40 to 150

TEST CIRCUIT

TDA2009A

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3	°C/W
------------------------	----------------------------------	-----	---	------

ELECTRICAL CHARACTERISTICS (Refer to the stereo application circuit, $T_{amb} = 25^{\circ}C$, $V_s = 24V$, $G_v = 36 \text{ dB}$, unless otherwise specified)

Parameters		Test Conditions		Min.	Тур.	Max.	Unit
Vs	Supply voltage			8		28	V
Vo	Quiescent output voltage	V ₅ = 24∨			11.5		V
ld	Total quiescent drain current	V ₅ = 24∨			60	120	mA
Po	Output power (each channel)	d = 1% V _s = 24V f = 1KHz	R _L = 4Ω R _L = 8Ω		12.5 7		ww
		f = 40Hz to 12. $R_{L} = 4\Omega$ $R_{L} = 8\Omega$.5KHz	10 5			WW
		V _s = 18V f = 1KHz	$R_{L} = 4\Omega$ $R_{L} = 8\Omega$		7 4		ww
d	Distortion (each channel)				0.2 0.1		% %
					0.2 0.1		% %
ст	Cross talk (°°°)	RL = ∞	f = 1KHz		60		dB
		$R_g = 10K\Omega$	f = 10KHz		50		dB
VI	Input saturation voltage (rms)			300			mV
R _i	Input resistance	f = 1KHz non inverting input		70	200		KΩ
fL	Low frequency roll of (-3dB)	$R_{L} = 4\Omega$			20		Hz
fн	High frequency roll off (-3dB)				80		KHz
Gv	Voltage gain (closed loop)	f = 1KHz		35.5	36	36.5	dB
∆Gv	Closed loop gain matching				0.5		dB
eN	Total input noise voltage	$R_g = 10K\Omega (\circ)$			1.5		μV
		$R_g = 10K\Omega$ (00)		2.5	8	μV
SVR	Supply voltage rejection (each channel)	R _q = 10KΩ f _l pple = 100Hz Vripple = 0.5V			55		dB
Tj	Thermal shut-down junction temperature				145		°C

(°) Curve A

(00) 22Hz to 22KHz

(000) Optimized test box.

TDA2009A

Fig. 1 - Test and application circuit ($G_v = 36$ dB)

Fig. 2 - P.C. board components layout of the circuit of fig. 1 (1: 1 scale)

Fig. 6 - Distortion vs. frequency

Fig. 7 - Distortion vs. frequency

6041

40

26 V. (V)

26

Fig. 9 - Supply voltage rejection vs. frequency

Fig. 10 - Total power dissipation and efficiency vs. output power

SGS-THOMSON

SI.

Fig. 11 - Total power dissipation and efficiency vs. output power

APPLICATION INFORMATION

Fig. 12 - Example of muting circuit

SGS-THOMSON

471.

Fig. 13 - 10W + 10W stereo amplifier with tone balance and loudness control

APPLICATION INFORMATION (continued)

Fig. 15 - High quality 20 + 20W two way amplifier for stereo music center (one challel only)

Fig. 16 - 18 W bridge amplifier (d = 1%, $G_v = 40 dB$)

Fig. 17 – P.C. board and components layout of the circuit of fig. 16 (1 : 1 scale)

TDA2009A

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1. Different values can be used; the following table can help the designer.

Component	Recomm. value	Purposa	Larger than	Smaller than
R1 and R3	1.2KΩ		Increase of gain	Decrease of gain
R2 and R4	18KΩ	Close loop gain setting (*)	Decrease of gain	Increase of gain
R5 and R6	1Ω	Frequency stability	Danger of oscillation at high frequency with inductive load	
C1 and C2	2.2µF	Input DC decoupling	High turn-on delay	High turn-on pop Higher low frequency cutoff. Increase of noise
C3	22µF	Ripple rejection	Better SVR. Increase of the Switch-on time	Degradation of SVR
C6 and C7	220µF	Feedback input DC decoupling.		
C8 and C9	0.1µF	Frequency stability		Danger of oscillation
C10 and C11	1000μF to 2200μF	Output DC decoupling.		Higher low-frequency cut-off

(*) Closed loop gain must be higher than 26dB

BUILD-IN PROTECTION SYSTEMS

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

- an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case

of excessive junction temperature: all that happens is that P_o (and therefore $P_{tot})$ and I_o are reduced.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 18 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Short circuit (AC Conditions). The TDA2009A can withstand an accidental short circuit from the output and ground made by a wrong connection during normal play operation.

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the MULTIWATT $^{(\!R\!)}$ package attaching the heatsink is very simple, a screw or a com-

pression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.