TDA4420

VISION IF SYSTEM WITH AFC

- HIGH GAIN-HIGH STABILITY
- VERY LOW INTERMODULATION PRODUCTS

SGS-THOMSON MICROELECTRONICS

- MINIMUM DIFFERENTIAL ERROR
- CONSTANT INPUT IMPEDANCE INDEPEN-DENT OF AGC
- FAST AGC GATING-ACTION, LARGELY INDE-PENDENT OF PULSE SHAPE AND AMPLI-TUDE
- ADJUSTABLE WHITE LEVEL
- LARGE AFC OUTPUT CURRENT SWING (push-pull output)
- SWITCHABLE AFC

DESCRIPTION

The TDA4420 is a monolithic integrated circuit in 18 lead dual in-line plastic package. The functions incorporated are :

- gain controlled vision IF amplifier
- video demodulator controlled by picture carrier
- AGC detector with gating facility

CONNECTION DIAGRAM (top view)

- AGC amplifier for tuner drive with variable delay
- phase comparator for AFC current generation
- electronic AFC switch, controlled by a DC threshold detector
- thermally compensated push-pull AFC output stage.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage (pin 15)	15	V
V ₅	Voltage at Pin 5	15	V
I ₁₃ , I ₁₄	Video DC Output Current	5	mA
Ptot	Total Power Dissipation at T _{amb} ≤ 70 °C	1	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C

THERMAL DATA

Rth j-amb	Thermal Resistance Junction-ambient	Max	80	°C/W

TEST CIRCUIT

Note : (*) $C \equiv 1.5 \text{ pF}$ (pin and lead capacitance)

ELECTRICAL CHARACTERISTICS (Refer to the test circuit ; $V_s = 12 V$, $f_0 = 38.9 MHz$; $P_1 = 2.5 K\Omega$; pin 7 connected to GND ; P_2 adjusted for $V_{13} = 3.3 Vpp$; AFC off ; $T_{amb} = 25$ °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range (pin 15)		10	12	15	V
Is	Suppply Current (pin 15)			52		mA
V ₁₄	Video Output DC Voltage	$V_{13} = 5.5 V (1)$		5.6		V
V ₁₃	Video Output DC Voltage	Pin 12 Open (1)			4.5	V
		Pin 12 Grounded (1)	7			V
V ₁₃	Peak Black Clamping Level at Negative Video Output		1.75	1.9	2.15	V
113	Output DC Current (pin 13)	V _s = 15 V V ₁₃ = 8 V		1.6		mA
l ₉ , l ₁₀	DC Control Current for AFC off		150	300		μΑ

DC CHARACTERISTICS

Notes: 1. V13 and V14 are simultaneously adjustable by means of the resistance connected between pin 12 and ground (P2).

- 2. $\Delta V_i = +60 \text{ dB}$ (see note 7) ; $f_m = 100 \text{ KHz}$; m = 0.82
- 3. Input at pin 7 through C8.
- 4. The input voltage Vi can have any value within the AGC range.
- 5. P2 adjusted for V13 = 5.5 V or V13 = 6.4 V ; fm = 100 KHz ; m = 0.82.
- 6. ΔV_a = 1 dB ; fm = 100 KHz ; m = 0.82
- The measured amplitude is assumed as 0 dB reference level of V_i that is the rms value of the unmodulated video carrier (modulation down).
- P2 is adjusted in order to have V13 = 3 Vpp at Vi = 4 mV, then the sensitivity is obtained as the minimum input voltage that maintains this output level. fm = 100 KHz ; m = 82 %.
- 9. f_{σ} = 38.9 MHz (video carrier); f_{a} = 33.4 MHz (sound carrier); the amplitude of the sound carrier is 30 dB below the amplitude of the video carrier.
- Vi at f_a = 38.9 MHz (video carrier) ; f_a = 33.4 MHz, 6 dB below Vi (sound carrier) ; f_b = 34.47 MHz, 24 dB below Vi (Chroma subcarrier).
- 11. $V_c = 40 \text{ dB}$; $R_5 = R_6 = 5.1 \text{ K}\Omega$; AFC on ; $f_0 = 39.9 \text{ MHz}$; $f_0 = 37.9 \text{ MHz}$.
- 12. $V_1 = 40 \text{ dB}$; $f_0 = 39.2 \text{ MHz}$; AFC on ; $V_{16} = 6 \text{ V}$
- 13. $V_1 = 40 \text{ dB}$; $f_0 = 38.9 \text{ MHz}$; $f_2 = 39.2 \text{ MHz}$; AFC on ; $V_{16} = 6 \text{ V}$.

ELECTRICAL CHARACTERISTICS (continued)

AC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I ₅	Available Tuner AGC Current	(2)		10		mA
V ₇	AGC Gating Pulse Input Peak Voltage	f pulse = 15625 Hz (3)	- 1.5	- 3	- 5	V
Vo	Peak to Peak Video Output Signal (pin 13)	$V_{13} = 5.5 V (4), (5)$		3.3		V
		$V_{13} = 6.4 V (4), (5)$		4.2		V
ΔV_i	AGC Range	(6)	50	60		dB
В	Frequency Response (- 3 dB)	(4)	8	10		MHz
Vi	Input Sensitivity	(7), (8)	100	150	200	μV
V13, V14	Video carrier and video carrier 2nd harmonic leakage at video output.				30 50	mV mV
V ₁₄	Sound IF at Positive Video Output (5.5 MHz)	(4), (9)	30			mV
d	Differential Distortion of Negative Video Output Signal	V _i = 30 dB (standard staircase modulating signal)		3		%
dim	Intermodulation Product at Video Outputs (1.07 MHz)	(4), (10)		- 50		dB
Ri	Input Resistance between Pins 1 and 18			1.4		KΩ
Ci	Input Capacitance between Pins 1 and 18			2		pF
V ₁₆	AFC Voltage Range	(11)	1		V _s -1.5	V
116	Maximum Available AFC Current	(12)			± 3	mA
	AFC Slope	(13)		± 0.01		mA
Δī						KHZ

Notes: 1. V₁₃ and V₁₄ are simultaneously adjustable by means of the resistance connected between pin 12 and ground (P₂).

2. $\Delta V_i = +60 \text{ dB}$ (see note 7) ; $f_m = 100 \text{ KHz}$; m = 0.82

3. Input at pin 7 through C8

- 4. The input voltage Vi can have any value within the AGC range.
- 5. P_2 adjusted for $V_{13}=5.5$ V or $V_{13}=6.4$ V ; $f_m=100$ KHz ; m=0.82
- $6. \quad \Delta V_o = 1 \ dB \ ; \ f_m = 100 \ KHz \ ; \ m = 0.82.$

The measured amplitude is assumed as 0 dB reference level of Vi that is the rms value of the unmodulated video carrier (modulation down).

 P₂ is adjusted in order to have V₁₃ = 3 Vpp at V_i = 4 mV, then the sensitivity is obtained as the minimum input voltage that maintains this output level. f_m = 100 KHz ; m = 82 %.

9. f_a = 38.9 MHz (video carrier) ; f_a = 33.4 MHz (sound carrier) ; the amplitude of the sound carrier is 30 dB below the amplitude of the video carrier.

Vi at f_o = 38.9 MHz (video carrier) ; f_a = 33.4 MHz, 6 dB below Vi (sound carrier) ; f_b = 34.47 MHz, 24 dB below Vi (Chroma subcarrier).

11. $V_i = 40 \text{ dB}$; $R_5 = R_6 = 5.1 \text{ K}\Omega$; AFC on ; $f_0 = 39.9 \text{ MHz}$; $f_0 = 37.9 \text{ MHz}$

12. $V_i=40\ dB$; $f_o=39.2\ MHz$; AFC on ; $V_{16}=6\ V.$

13. $V_{\rm i}=40~dB$; $f_{\rm o}=38.9~MHz$; $f_{\rm 2}=39.2~MHz$; AFC on ; $V_{\rm 16}=6~V$

Figure 2 : Set-up for Measurement of ΔV_{O} .

TDA4420

Figure 3 : Application Circuit.

Figure 4 : TV Signal Identification Circuit.

TV signal identification circuit :

The suggested application circuit is shown in fig. 4.

The passive components are chosen as follows :

- $\begin{array}{l} R_1 \text{ and } R_2: \mbox{ these define the AFC response slope.} \\ \mbox{ For } R_1 = R_2 = 5.1 \ K\Omega, \ \mbox{the typical slope is } 750/11 \ \mbox{KHz/V} \ \mbox{(with AFC output unloaded).} \end{array}$
- S₁: switches between low slope (LS) and high slope (HS). The high slope is typically 88/11 KHz/V.

 $\begin{array}{ll} R_3 \text{ and } R_4: & \text{the ratio } (R_3+R_4)/R_3 \text{ defines the digital AFC width } (\delta f) \text{ calculated from the linear AFC width } (2\Delta f). & \text{With } V_s = 12 \text{ V}, \\ & \text{the relation is :} \end{array}$

$$\delta f = 0.036 (2\Delta f) \frac{R_3 + R_4}{R_3}$$

antenna. The video information must be a black pic-

ture or a field of small white points on a black field. Furthermore, the action of the syncs separator must

In receivers with automatic program search, S1 should be in the HS position and then the compo-

nents S1, R1 and R2 can be omitted completely.

be as quick as possible.

RT1: by means of this trimmer it is possible to align the linear tuning with the digital one, at the same frequency. The typical relation is :

$$R_a = 33 R_3$$

with $R_3 = 3.3 \text{ K}\Omega$, R_a can be a fixed resistor of 110 K Ω .

To make better sensitivity adjustment of trimmer R_{T2} , it is necessary to use only a weak signal at the

Figure 5 : Linear and Digital AFC Characteristics (TDA4420 and TDA4431).

