
INTEGRATED CIRCUITS

Product specification Supersedes data of 1995 Mar 21 File under Integrated Circuits, IC02 1996 Nov 7

TDA5634T

FEATURES

- Balanced mixer with a common base input
- 4-pin oscillator
- Local oscillator buffer output for external prescaler
- SAW filter preamplifier with a low output impedance to drive the SAW filter directly
- · Band gap voltage stabilizer for oscillator stability
- External IF filter between the mixer output and the IF amplifier input.

APPLICATION

- UHF tuners for TV and VCR
- One band tuners.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The TDA5634T is an integrated circuit that performs the UHF mixer/oscillator functions in TV and VCR tuners. This low-power mixer/oscillator requires a power supply of 9 V and is available in a very small package.

The device gives the designer the capability to design an economical and physically small tuner.

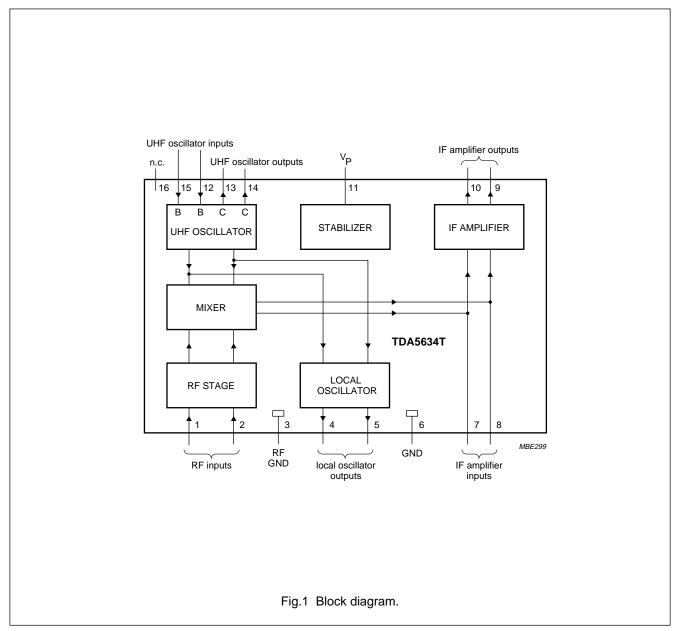
The tuner development time can be drastically reduced by using this device.

The frequency band is determined by the external tank circuit. It can be adapted to various standards.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage		_	9.0	-	V
I _P	supply current		-	35	-	mA
f _{RF}	RF frequency	RF input; note 1	430	-	860	MHz
G _v	voltage gain		-	36	-	dB
NF	noise figure	not corrected for image	-	9	-	dB
Vo	output voltage causing 1% cross modulation in channel		_	121	-	dBμV

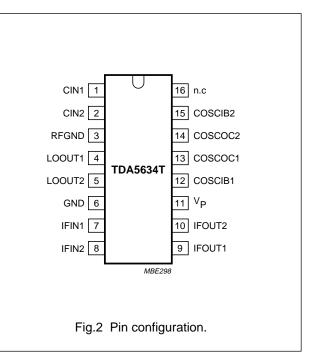
Note

1. The limits are related to the tank circuits used in Fig.7 and the intermediate frequency. Frequency bands may be adjusted by the choice of external components.


ORDERING INFORMATION

TYPE		PACKAGE			
NUMBER	NAME	DESCRIPTION VERSION			
TDA5634T	SO16	SO16 plastic small outline package; 16 leads; body width 3.9 mm SOT109-1			

TDA5634T


9 V UHF mixer/oscillator for TV and VCR tuners

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION
CIN1	1	band C input 1
CIN2	2	band C input 2
RFGND	3	ground for RF inputs
LOOUT1	4	local oscillator amplifier output 1
LOOUT2	5	local oscillator amplifier output 2
GND	6	ground (0 V)
IFIN1	7	IF amplifier input 1
IFIN2	8	IF amplifier input 2
IFOUT1	9	IF amplifier output 1
IFOUT2	10	IF amplifier output 2
V _P	11	supply voltage
COSCIB1	12	UHF oscillator input base 1
COSCOC1	13	UHF oscillator output collector 1
COSCOC2	14	UHF oscillator output collector 2
COSCIB2	15	UHF oscillator input base 2
n.c.	16	not connected

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _P	supply voltage	-0.3	+10.5	V
lo	output current of each pin referenced to ground	_	-10	mA
t _{sc}	maximum short-circuit time (all pins)	_	10	S
T _{stg}	IC storage temperature	-55	+150	°C
T _{amb}	operating ambient temperature	-10	+80	°C
Tj	junction temperature	_	+150	°C

HANDLING

Human body model: the IC withstands 2000 V in accordance with the "*UZW-BO/FQ-A302*", specification equivalent to the "*MIL-STD-883C category B*" (2000 V);

 R = 1500 $\Omega,\,\mathsf{C}$ = 100 pF.

Machine model: the IC withstands 200 V except pin 11 (175 V) in accordance with the "*UZW-BO/FQ-B302*", specification (date of issue: Nov 6th, 1990);

 $R = 0 \Omega$, C = 200 pF.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT	
R _{th j-a}	ermal resistance from junction to ambient in free air 120 K/W		K/W	

tuners

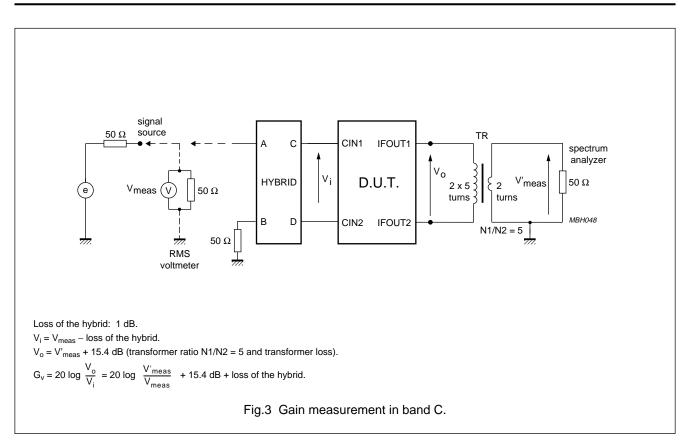
CHARACTERISTICS

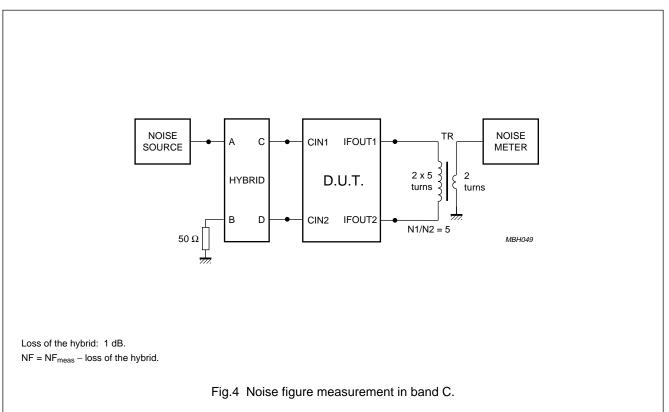
 V_{P} = 9 V; T_{amb} = 25 °C; measured in circuit of Fig.7; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				1	1	1
V _P	supply voltage		8.1	9.0	9.9	V
I _P	supply current	$V_P = 8.1$ to 9.9 V; $T_{amb} = -10$ to +80 °C	-	35	45	mA
Mixer (inc	luding IF amplifier)					
f _{RF}	RF frequency	note 1	430	-	860	MHz
G _v	voltage gain	f _{RF} = 430 MHz; see Fig.3; note 2	33	36	39	dB
		f _{RF} = 860 MHz; see Fig.3; note 2	33	36	39	dB
NF	noise figure (not corrected	f _{RF} = 430 MHz; see Fig.4	_	9	11	dB
	for image)	f _{RF} = 860 MHz; see Fig.4	-	9	11	dB
Vo	output voltage causing 1%	f _{RF} = 430 MHz; see Fig.5	115	118	-	dBµV
	cross modulation in channel	f _{RF} = 860 MHz; see Fig.5	118	121	-	dBµV
Vi	input voltage causing 10 kHz pulling in channel	f _{RF} = 860 MHz; note 3	-	87	-	dBμV
	input voltage causing N + 5 – 1 MHz pulling	f _{RF} = 820 MHz; see Fig.6	65	72	-	dBμV
Zi	input impedance ($R_S + jL_S\omega$)	R _S at f _{RF} = 430 MHz; see Fig.8; note 4	-	28	-	Ω
		R _S at f _{RF} = 860 MHz; see Fig.8; note 4	_	33	_	Ω
		L_S at f_{RF} = 430 to 860 MHz; see Fig.8; note 4	-	8	-	nH
IF amplifie	er					
S ₁₁	input reflection coefficient	magnitude; see Fig.10; note 4	_	-0.6	_	dB
		phase; see Fig.10; note 4	_	-2.5	_	deg
S ₁₂	reverse transmission	magnitude; see Fig.11; note 4	_	-56	-	dB
	coefficient	phase; see Fig.11; note 4	_	30	-	deg
S ₂₁	forward transmission	magnitude; note 4	_	-9.5	_	dB
	coefficient	phase; note 4	_	165	_	deg
S ₂₂ output	output reflection coefficient	magnitude; see Fig.11; note 4	_	-7	-	dB
		phase; see Fig.11; note 4	_	6	-	deg
Zo	output impedance	R _S ; see Fig.11; note 4	_	100	-	Ω
	$(R_{S} + jL_{S}\omega)$	L _S ; see Fig.11; note 4	_	32	-	nH
Y _i	input admittance (G_P + j $C_P\omega$)	G _P ; see Fig.10; note 4	_	0.8	-	mS
		C _P ; see Fig.10; note 4	_	2.5	_	pF

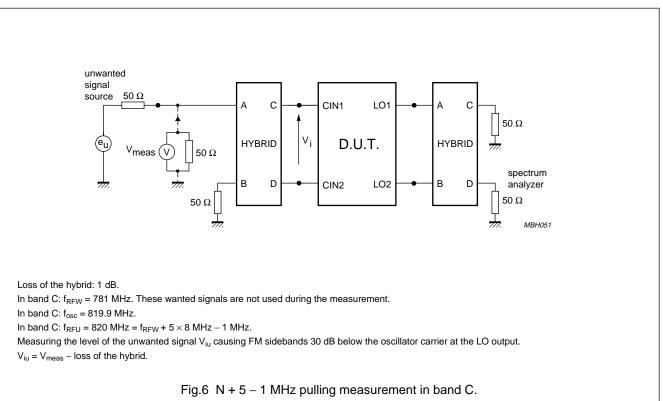
Product specification

9 V UHF mixer/oscillator for TV and VCR

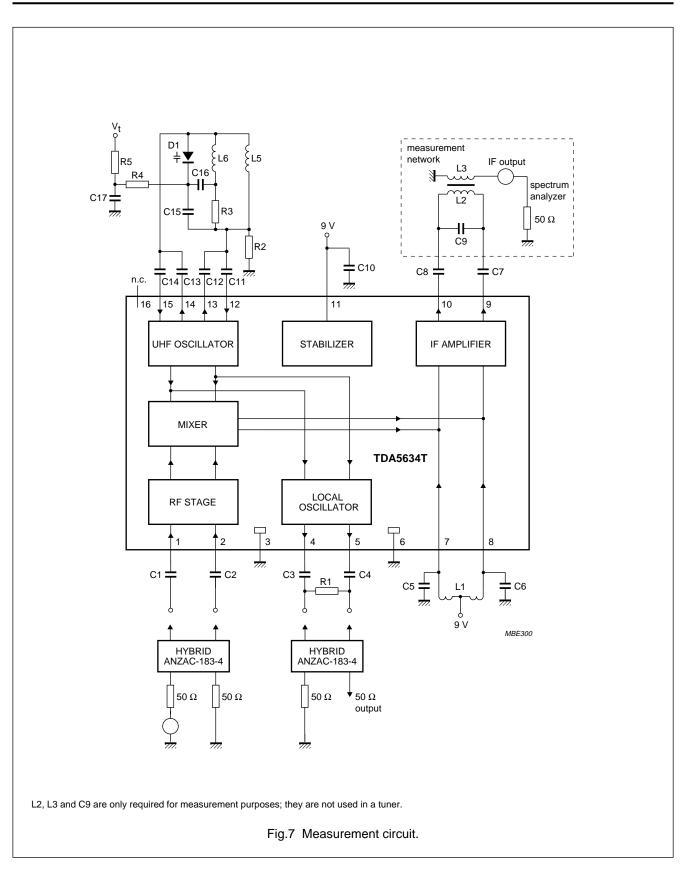

tuners


TDA5634T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LO output	;; R _L = 100 Ω	I		-		1
Y _o	output admittance	f _{OSC} = 470 MHz; see Fig.9; note 4	-	3	-	mS
	(G _P + jC _P ω)		_	0.5	-	pF
		f _{OSC} = 900 MHz; see Fig.9; note 4	_	3.5	-	mS
			-	0.5	-	pF
Vo	output voltage	$R_L = 50 \Omega$; V _P = 8.1 to 9.9 V; T _{amb} = -10 to +80 °C	83	91	100	dBμV
SRF	spurious signal on LO output with respect to LO output signal	$R_L = 50 \Omega$; note 5	_	-	-10	dBc
SHD	LO signal harmonics with respect to LO signal	R _L = 50 Ω	-	-	-10	dBc
Band C os	scillator		-			
f _{OSC}	oscillator frequency	$V_t = 0.45$ to 28 V; $V_P = 8.1$ to 9.9 V; $T_{amb} = -10$ to +80 °C; note 6	470	-	900	MHz
f _{shift}	frequency shift	$\Delta V_{P} = 10\%$; note 7	_	-	400	kHz
f _{drift}	frequency drift	$\Delta T = 25 \text{ °C}$ without compensation; NP0 capacitors; note 8	-	-	2.5	MHz
		$\Delta T = 25 \ ^{\circ}C$ with compensation; note 9	_	-	800	kHz
		5 s to 15 minutes after switch on; without compensation; note 10	-	-	600	kHz


Notes

- 1. The RF frequency range is defined by the oscillator frequency range and the intermediate frequency.
- 2. The gain is defined as the transducer gain (measured in Fig.7) plus the voltage transformation ratio of L3 to L2 (10 : 2, 15.4 dB including transformer loss).
- 3. The input level causing 10 kHz frequency detuning at the LO output; $f_{osc} = f_{RF} + 33.4$ MHz.
- 4. All S-parameters are referred to a 50 Ω system.
- 5. Measured with RF input voltage of 97 dB μ V at 430 MHz < f_{RF} < 860 MHz.
- 6. Limits are related to the tank circuits used in Fig.7. Frequency bands may be adjusted by the choice of external components.
- 7. The frequency shift is defined as the change in oscillator frequency when the supply voltage varies from $V_P = 9$ to 8.1 V or from $V_P = 9$ to 9.9 V.
- 8. The frequency drift is defined as the change in oscillator frequency when the ambient temperature varies from $T_{amb} = 25 \text{ °C}$ to 0 °C or from $T_{amb} = 25 \text{ °C}$ to 50 °C. Without compensation, the capacitors C11 to C15 are NP0.
- The frequency drift is defined as the change in oscillator frequency when the ambient temperature varies from T_{amb} = 25 °C to 0 °C or from T_{amb} = 25 °C to 50 °C. With compensation, the capacitors C11 to C14 are N750 and C15 is N470.
- 10. Switch on drift is defined as the change in oscillator frequency between 5 s and 15 min after switch on.



TDA5634T

9 V UHF mixer/oscillator for TV and VCR tuners

Product specification

9 V UHF mixer/oscillator for TV and VCR

tuners

TDA5634T

Component values for measurement circuit

 Table 1
 Capacitors

(all SMD and NP0 except C11 to C15)

COMPONENT	VALUE
C1	1 nF
C2	1 nF
C3	1 nF
C4	1 nF
C5	18 pF
C6	18 pF
C7	1 nF
C8	1 nF
C9	18 pF
C10	22 nF
C11	1 pF (N750)
C12	1 pF (N750)
C13	1 pF (N750)
C14	1 pF (N750)
C15	6 pF (N470)
C16	100 pF
C17	1 μF (40 V electrolytic capacitor)

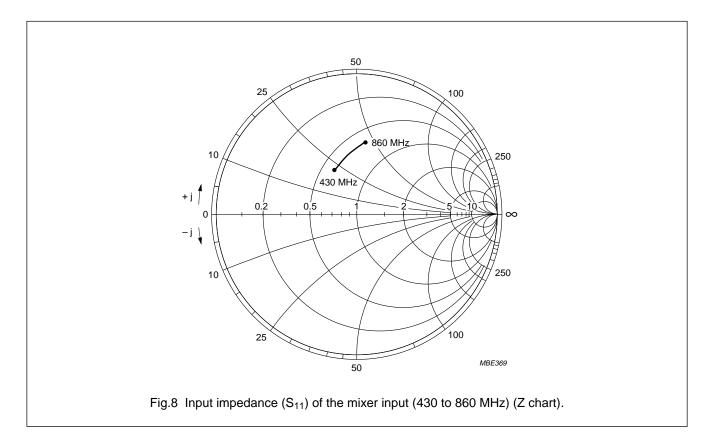
Table 2Resistors (all SMD)

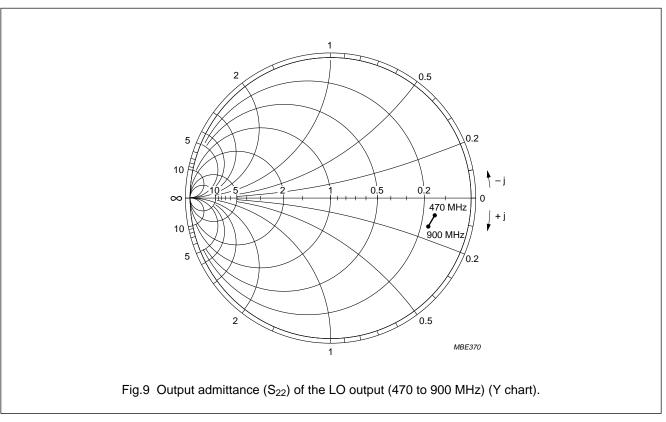
COMPONENT	VALUE
R1	100 Ω
R2	22 kΩ
R3	2.2 kΩ
R4	22 kΩ
R5	47 kΩ

Table 3 Diodes and IC

COMPONENT	VALUE
D1	BB215
IC	TDA5634T

Table 4 Coils (wire size 0.4 mm)


COMPONENT	VALUE
L5	2.5 turns; diameter 3 mm
L6	2.5 turns; diameter 2.5 mm


Table 5Transformers; note 1

COMPONENT	VALUE
L1	2×6 turns
L2	2×5 turns
L3	2 turns

Note

1. Coil type: TOKO 7kN; material: 113kN; screw core 03-0093; pot core 04-0026.

2 0.5 0.2 5 10 0.5 0.2 ∞ S11 10 5 0.2 0.5 2 MBE371 1 Fig.10 Input admittance (S11) of the IF amplifier (25 to 45 MHz) (Y chart).

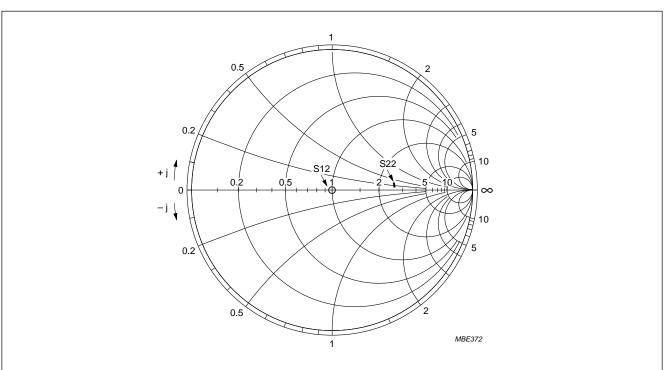


Fig.11 Reverse transmission and output reflection coefficient (S_{12} and S_{22}) of the IF amplifier (25 to 45 MHz) (Z chart).

TDA5634T

SYMBOL	PIN	DESCRIPTION	AVERAGE DC VOLTAGE ⁽¹⁾ IN (V)
	TDA5634T	1	BAND C
CIN1	1		2.2
CIN2	2	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2.2
RFGND	3	мвн431 777.	0.0
LOOUT1	4		7.3
LOOUT2	5	(4) (5) (4) (5) (4) (5) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	7.3
GND	6	MBH432 777.	0
IFIN1	7		9.0
IFIN2	8		9.0
IFOUT1	9		3.8
IFOUT2	10	(9) MBH428	3.8

INTERNAL PIN CONFIGURATION

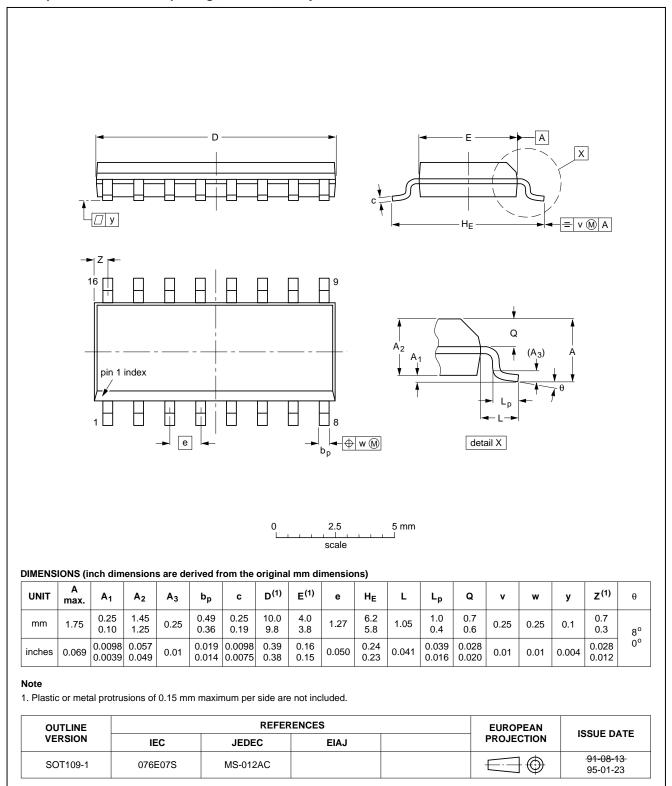
Product specification

9 V UHF mixer/oscillator for TV and VCR tuners

AVERAGE DC PIN VOLTAGE⁽¹⁾ IN SYMBOL DESCRIPTION (V) TDA5634T BAND C 9.0 11 supply voltage COSCIB1 12 2.3 COSCOC1 13 4.4 COSCOC2 14 4.4 (13) COSCIB2 15 2.3 (12) (15) MBH434 N.R.⁽²⁾ 16 not connected n. c.

Notes

VP


2. N.R. = Not Relevant.

1996 Nov 7

^{1.} Average DC voltage measured in circuit of Fig.7.

PACKAGE OUTLINE

SO16: plastic small outline package; 16 leads; body width 3.9 mm

TDA5634T

SOT109-1

TDA5634T

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

tuners

Product specification

TDA5634T

DEFINITIONS

Data sheet status		
Objective specification	This data sheet contains target or goal specifications for product development.	
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.	
Product specification	This data sheet contains final product specifications.	
Limiting values		
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.		
Application information		

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.